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Def. We will say that G has property FP(X ) if ∀ X ∈ X any
action of G on X has a global fixed point.
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Let X be a class of top. spaces and let G be a gp.

Def. We will say that G has property FP(X ) if ∀ X ∈ X any
action of G on X has a global fixed point.

One can consider different types of actions yielding different
kinds of fixed point properties. E.g.,
■ FPsim – for simplicial actions (without inversions),
■ FPiso – for isometric actions,
■ FPhom – for actions by homeomorphisms.

Ex. 1. Denote by A the class of all simplicial trees.
Then FPsim(A) ⇔ (Serre’s property FA).
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One can consider different types of actions yielding different
kinds of fixed point properties. E.g.,
■ FPsim – for simplicial actions (without inversions),
■ FPiso – for isometric actions,
■ FPhom – for actions by homeomorphisms.

Ex. 1. Denote by A the class of all simplicial trees.
Then FPsim(A) ⇔ (Serre’s property FA).

Thm. (J.-P. Serre). A countable gp. G has FPsim(A) iff all of
the following hold:
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(ii) Z is not a homomorphic image of G;
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Definitions and some examples

One can consider different types of actions yielding different
kinds of fixed point properties. E.g.,
■ FPsim – for simplicial actions (without inversions),
■ FPiso – for isometric actions,
■ FPhom – for actions by homeomorphisms.

Ex. 1. Denote by A the class of all simplicial trees.
Then FPsim(A) ⇔ (Serre’s property FA).

Thm. (J.-P. Serre). A countable gp. G has FPsim(A) iff all of
the following hold:

(i) G is f.g.;
(ii) Z is not a homomorphic image of G;
(iii) G is doesn’t split in a non-trivial amalgamated product.
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Ex. 2. Kazhdan’s property (T) ⇔ FPiso(H) where H is the
class of Hilbert spaces (Delorme-Guichardet).
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Ex. 2. Kazhdan’s property (T) ⇔ FPiso(H) where H is the
class of Hilbert spaces (Delorme-Guichardet).

Ex. 3. Let C0 be the class of all complete f.d. CAT(0)-spaces.
Lemma of center implies that any finite gp. G has FPiso(C0).
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class of Hilbert spaces (Delorme-Guichardet).

Ex. 3. Let C0 be the class of all complete f.d. CAT(0)-spaces.
Lemma of center implies that any finite gp. G has FPiso(C0).

Ex. 4. Denote by Xc the class of all contractible top. spaces of
finite covering dim.
Smith Theory: ∀ prime p, any finite p-group G has FPhom(Xc).
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More examples

Ex. 2. Kazhdan’s property (T) ⇔ FPiso(H) where H is the
class of Hilbert spaces (Delorme-Guichardet).

Ex. 3. Let C0 be the class of all complete f.d. CAT(0)-spaces.
Lemma of center implies that any finite gp. G has FPiso(C0).

Ex. 4. Denote by Xc the class of all contractible top. spaces of
finite covering dim.
Smith Theory: ∀ prime p, any finite p-group G has FPhom(Xc).

Question. Does there exist a countable infinite group with
FPiso(C0) or FPhom(Xc) ?
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Helly’s Theorem: Let K1, . . . , Km be a collection of convex
subsets of the space X = Rn, m > n. If

n+1⋂

j=1

Kij
6= ∅ for any {i1, . . . , in+1} ⊂ {1, . . . , m}

then
⋂m

i=1 Ki 6= ∅.
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Analogues of this thm. were proved by Serre (when X is a
tree, n = 1) and by Bridson (when X is a complete
CAT(0)-space of covering dimension n).
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Kij
6= ∅ for any {i1, . . . , in+1} ⊂ {1, . . . , m}

then
⋂m

i=1 Ki 6= ∅.

Analogues of this thm. were proved by Serre (when X is a
tree, n = 1) and by Bridson (when X is a complete
CAT(0)-space of covering dimension n).

Consequence: the affine reflection group Ãn+1 has
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(n)
0 ), where C
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0 is the class of all complete

CAT(0)-spaces of dimension n.
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Consequence: the affine reflection group Ãn+1 has

FPiso(C
(n)
0 ), where C

(n)
0 is the class of all complete

CAT(0)-spaces of dimension n.

Observation: suppose that X =
⋃

n∈N
X (n) and the group Gn

has FP(X (n)), n ∈ N. If Q is a common quotient of
{Gn | n ∈ N} then Q has FP(X ).
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Consequence: the affine reflection group Ãn+1 has

FPiso(C
(n)
0 ), where C

(n)
0 is the class of all complete

CAT(0)-spaces of dimension n.

Observation: suppose that X =
⋃

n∈N
X (n) and the group Gn

has FP(X (n)), n ∈ N. If Q is a common quotient of
{Gn | n ∈ N} then Q has FP(X ).

Problem: the only non-trivial common quotient of the family
{Ãn+1 | n ∈ N} is Z/2Z.
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Thm. A. Any countable family of non-elem. (rel.) hyp. gps.
possesses an infinite common quotient.
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(The proof is based on Small Cancellation Theory over (rel.)
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Thm. A. Any countable family of non-elem. (rel.) hyp. gps.
possesses an infinite common quotient.

(The proof is based on Small Cancellation Theory over (rel.)
hyp. gps.)

Thm. B. ∀ prime p and ∀ n ∈ N there is a non-elem. hyp. gp.
Gn,p s.t. Gn,p = 〈S〉, |S| = n + 2 and ∀ P & S, 〈P 〉 is a finite
p-sbgp. of Gn,p.
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(The proof is based on Small Cancellation Theory over (rel.)
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c = {X ∈ Xc | dim(X) = n}.
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Main components

Thm. A. Any countable family of non-elem. (rel.) hyp. gps.
possesses an infinite common quotient.

(The proof is based on Small Cancellation Theory over (rel.)
hyp. gps.)

Thm. B. ∀ prime p and ∀ n ∈ N there is a non-elem. hyp. gp.
Gn,p s.t. Gn,p = 〈S〉, |S| = n + 2 and ∀ P & S, 〈P 〉 is a finite
p-sbgp. of Gn,p.

(The gps. Gn,p are constructed as non-positively curved
simplices of finite gps.)

Xc =
⋃

n X
(n)
c , where X

(n)
c = {X ∈ Xc | dim(X) = n}.

Thm. C. The group Gn,p , as above, has FPhom(X
(n)
c ).

(The proof uses Smith Theory together with a cohomological
version of Helly’s Thm.)
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Thm. 1. (A.-B.-J.-L-M.-Ś.) There exists an infinite f.g. gp. Q

with FPhom(Xc). Moreover, for any countable gp. C, Q can be
chosen to satisfy the following:
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Main Results

Thm. 1. (A.-B.-J.-L-M.-Ś.) There exists an infinite f.g. gp. Q

with FPhom(Xc). Moreover, for any countable gp. C, Q can be
chosen to satisfy the following:

(a) Q is simple;
(b) Q has Kazhdan’s property (T);
(c) C →֒ Q.

Thm. 2. (A.-B.-J.-L-M.-Ś.) There exists an infinite f.g. gp. Q

with FPhom(Xc). such that
(a) Q is simple;
(b) Q has Kazhdan’s property (T);

(c)′ Q is periodic.
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Thm. 1. (A.-B.-J.-L-M.-Ś.) There exists an infinite f.g. gp. Q

with FPhom(Xc). Moreover, for any countable gp. C, Q can be
chosen to satisfy the following:

(a) Q is simple;
(b) Q has Kazhdan’s property (T);
(c) C →֒ Q.
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Some remarks

Thm. 1. (A.-B.-J.-L-M.-Ś.) There exists an infinite f.g. gp. Q

with FPhom(Xc). Moreover, for any countable gp. C, Q can be
chosen to satisfy the following:

(a) Q is simple;
(b) Q has Kazhdan’s property (T);
(c) C →֒ Q.

Remark 1. Any infinite hyp. gp. G acts without global fixed
points on some finite-dimensional contractible simplicial
complex (Rips Complex).
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Thm. 1. (A.-B.-J.-L-M.-Ś.) There exists an infinite f.g. gp. Q

with FPhom(Xc). Moreover, for any countable gp. C, Q can be
chosen to satisfy the following:

(a) Q is simple;
(b) Q has Kazhdan’s property (T);
(c) C →֒ Q.

Remark 2. Any gp. G acts on the space M(G) of
finitely-additive probability measures on G. The space M(G) is
contractible, compact and Hausdorff. This G-action has a fixed
point iff G is amenable.
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Some remarks

Thm. 1. (A.-B.-J.-L-M.-Ś.) There exists an infinite f.g. gp. Q

with FPhom(Xc). Moreover, for any countable gp. C, Q can be
chosen to satisfy the following:

(a) Q is simple;
(b) Q has Kazhdan’s property (T);
(c) C →֒ Q.

Remark 2. Any gp. G acts on the space M(G) of
finitely-additive probability measures on G. The space M(G) is
contractible, compact and Hausdorff. This G-action has a fixed
point iff G is amenable.

Remark 3. Any infinite amenable gp. acts isometrically without
global fixed points on the Hilbert space.
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Some remarks

Thm. 1. (A.-B.-J.-L-M.-Ś.) There exists an infinite f.g. gp. Q

with FPhom(Xc). Moreover, for any countable gp. C, Q can be
chosen to satisfy the following:

(a) Q is simple;
(b) Q has Kazhdan’s property (T);
(c) C →֒ Q.

Remark 4. Let Q be a simple gp. with FPhom(Xc). Then for any
proper metric space X ∈ Xc any isometric action of Q on X is
trivial.
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Open questions

Question 1. Does there exist a non-trivial torsion-free f.g. gp.
having FPhom(Xc)?
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having FPhom(Xc), or, at least, FPiso(C0)?
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Open questions

Question 1. Does there exist a non-trivial torsion-free f.g. gp.
having FPhom(Xc), or, at least, FPiso(C0)?

Question 2. Does there exist an infinite finitely presented gp.
with FPiso(C0) ( FPhom(Xc) )?
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