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Abstract. Ulam asked whether all Lie groups can be represented faith-
fully on a countable set. We establish a reduction of Ulam’s problem to
the case of simple Lie groups.

In particular, we solve the problem for all solvable Lie groups and
more generally Lie groups with a linear Levi component. It follows that
every amenable locally compact second countable group acts faithfully
on a countable set.

1. Introduction

A group is called countably representable if it can be realised as a
permutation group of a countable set. For obvious cardinality reasons,
this only makes sense for groups that are not larger than the continuum
c = |R| = 2ℵ0 , and it is trivial for countable groups.

Therefore the rich world of Polish groups is a prime location to study
countable representability, even though (or perhaps because) this notion
is non-topological. Some examples and counter-examples are discussed
in [Mon22].

Schreier and Ulam observed in 1935 that the group R is countably repre-
sentable [Ula58]. This prompted the following problem [Ula60], still open
to this day (Problem 15.8.b in [KM22]).

Problem (Ulam). Is every Lie group countably representable?

In 1999, Thomas [Tho99, §2], then Kallman [Kal00] and later Ershov–
Churkin [EC04] proved that this is the case for every linear Lie group.
There are of course many non-linear Lie groups, and although the non-
linearity is in a way caused only by the center, it is well-known that the
center is a fundamental obstruction to such questions, see e.g. [McK71],
[Chu05] and the discussion in [Mon22].

Nonetheless, it was recently established that every nilpotent Lie group
is countably representable [Mon22]. Our first result applies to many non-
linear groups beyond the nilpotent case:

Theorem 1.1. Every solvable Lie group is countably representable.
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Turning now to the most general case of Ulam’s problem, recall that
any Lie group G admits a maximal connected solvable normal subgroup
R = Rad(G), called the radical of G, which is a closed Lie subgroup. More-
over, Levi’s decomposition theorem provides an immersed connected semi-
simple Lie group S in G such that the neutral component G0 of G can be
written G0 = RS with R∩ S central in S, hence countable. By Malcev’s the-
orem [Mal42] (see [HN12, 5.6]), S is unique up to conjugacy and we hence
abusively refer to it as “the” semi-simple Levi component of G. Unlike
the radical, S is not always closed, as witnessed by the following classical
example.

Example 1.2. Let a ∈ SO2(R) be a rotation through an angle incommensu-
rable with π, and let b ∈ S̃L2(R) be a generator of the center of the universal
cover of SL2(R). Set H = SO2(R)× S̃L2(R) and Γ to be the central subgroup
generated by (a,b) in H . Define G = H/Γ .

The radical R of G and the semisimple Levi component S are respectively
the images of SO2(R)×{e} and {e}×S̃L2(R) under the natural homomorphism
H →H/Γ . Since ⟨a⟩ is dense in SO2(R), it follows that S is not closed in G.

The main result of this article is the following strengthening of Theo-
rem 1.1:

Theorem 1.3. A Lie group is countably representable if and only if its semi-
simple Levi factor is countably representable.

A preliminary step in the proof is to consider the easier situation where
the semi-simple Levi factor is linear, in which case it is possible to combine
the proof of Theorem 1.1 and Thomas’s theorem (see Theorem 4.1 below).
This includes notably the case of compact Levi components and therefore
we can apply the solution to Hilbert’s fifth problem and deduce a statement
far beyond Lie groups:

Corollary 1.4. Every locally compact second countable group which is amenable
is countably representable.

(The corollary holds for all groups that are amenable as locally compact
groups, not only for those amenable as abstract groups.)

In conclusion, let us consider the status of Ulam’s general problem in the
light of Theorem 1.3. The semi-simple Levi factor can be further decom-
posed as a commuting product of simple Lie groups. Ulam’s problem re-
mains open because we do not know whether non-linear simple Lie groups
are countably representable. Indeed we show that this is the only obstruc-
tion:

Theorem 1.5. The following statements are equivalent:
(i) every Lie group is countably representable;

(ii) every connected simple Lie group with finite center is countably repre-
sentable.
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2. Preliminaries

A subgroup H < G of a group G is said to have countable index (in G) if
the coset space G/H is countable. The term cocountable is also used in the
literature. We shall constantly use the basic observation that G is countably
representable if and only if it admits a sequence (Hn)n∈N of countable index
subgroups Hn < G whose intersection

⋂
nHn is trivial.

We recall from Lemma 11 in [Mon22] that if G admits a countable in-
dex subgroup that is countably representable, then G itself is countably
representable.

We shall routinely reduce ourselves from Lie groups to the case of con-
nected Lie groups. Indeed, since Lie groups are second countable and lo-
cally connected, they have at most countably many connected components.
Therefore the connected component of the identity G0 has countable index
in G, and we can apply the above principle.

For general locally compact groups (Corollary 1.4), our statement as-
sumes second countability to ensure that the cardinality does not exceed
c.

One could counter that this sufficient condition seems not to be neces-
sary: there are locally compact groups of cardinality ≤ c which are not sec-
ond countable, e.g. discrete ones. However, that generality would allow for
amenable groups that are not countably representable, such as McKenzie’s
example [McK71].

3. The solvable case

The goal of this section is to prove that every solvable Lie group is count-
ably representable, as announced in Theorem 1.1.

The main tool for this case is as follows. Recall that polycyclic groups in-
clude notably all finitely generated nilpotent groups, see for instance [Seg83,
Chap. 1].

Proposition 3.1. Let m be a positive integer and Γ <GLm(R) a polycyclic sub-
group. There exists a countable index subgroup H <GLm(R) which intersects Γ
trivially.

This statement will easily be reduced to the case where Γ is cyclic, which
is the object of the following lemma.

Lemma 3.2. Let m be a positive integer and γ ∈ SLm(R) any element. There
exists a countable index subgroup H < SLm(R) which intersects trivially the
cyclic subgroup generated by γ .

The proof of this lemma will use a field isomorphism between C and the
field

⋃
q≥1Q((t1/q)) of Puiseux series over Q, as did Thomas’s proof. This

provides a valuation C→Q∪{∞}with the property that the group SLm(VC)
associated to the corresponding valuation ring VC in C has countable index
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in SLm(C), see Theorem 2.5 in [Tho99]. It will be important for us to choose
the field isomorphism suitably.

Proof of Lemma 3.2. We can argue in the larger group SLm(C) since all con-
clusions are preserved when taking the intersection of a countable index
subgroup H < SLm(C) with SLm(R).

We choose the identification of C with Puiseux series in the indetermi-
nate t in such a way that if γ has any transcendental Eigenvalue, then t is one
such Eigenvalue. This is possible since the automorphism group of C acts
transitively on transcendentals.

Let LC < VC be the maximal ideal and denote the corresponding congru-
ence subgroup by SLm(VC;LC). In other words, SLm(VC;LC) is the kernel
of the reduction morphism SLm(VC)→ SLm(Q) since Q is the residue field.
In particular, SLm(VC;LC) also has countable index in SLm(C) since Q is
countable.

We now proceed to choose H as a suitable conjugate of SLm(VC;LC), as
follows. Since C is algebraically closed, γ admits a Jordan normal form.
Therefore, after a conjugation we may assume that γ is in Jordan normal
form and we take H = SLm(VC;LC) in that conjugation.

We now claim that if γp ∈H for any p ∈ Z, then γp is the identity.
Suppose first that some Eigenvalue of γ is transcendental. Then the same

holds for γp whenever p , 0. Since γ is upper triangular, the eigenvalues of
γp appear as diagonal matrix coefficients. This excludes γp ∈H because the
diagonal coefficients of elements in H have valuation zero by the definition
of congruence subgroups, whereas some Eigenvalue of γp is tp, which has
valuation p.

We are now in the case where all Eigenvalues of γ are algebraic. Assume
γp ∈ H . It follows that all diagonal coefficients of γp are 1. Supposing
for a contradiction that γp is not the identity, it follows that γ itself was
not diagonal. Consider now any non-trivial Jordan block of γ with corre-
sponding Eigenvalue λ ∈Q. Recall that the first subdiagonal of the Jordan
block consists of 1s, and that consequently the corresponding coefficients
on the first subdiagonal of γp are pλp−1. This is a non-zero algebraic num-
ber, which contradicts γp ∈H because off-diagonal coefficients of elements
of H must be in the valuation ideal.

This contradiction proves the claim and hence the lemma. □

Proof of Proposition 3.1. Note that in our statement GLm(R) can be replaced
by SLm(R) since GLm(R) embeds into SLm+1(R).

By definition, Γ admits a subnormal series

1 = Γ0 ◁ Γ1 ◁ · · ·◁ Γd = Γ

with cyclic quotient Γj /Γj−1 for each j = 1, . . . ,d. We proceed by induction
on the minimal length d of such a subnormal series.

The base case d = 0 holds trivially. We now suppose that the statement
has been established for all minimal lengths ≤ d and consider length d +
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1. Let γ be a generator of the cyclic group Γ1. By Lemma 3.2, there is a
countable index subgroup H1 < SLm(R) intersecting Γ1 trivially. We now
consider the group ∆ = Γ ∩H1. This is a polycyclic subgroup of SLm(R) and
in fact a subnormal series witnessing polycyclicity is given by ∆j = Γj ∩H1
since ∆j /∆j−1 embeds into Γj /Γj−1.

However, the length d+1 of this series is not minimal; indeed ∆1 = ∆0 by
the choice of H1. Therefore, we can apply the inductive hypothesis to ∆ and
obtain a countable index subgroup H0 < SLm(R) intersecting ∆ trivially.
Now the group H = H0 ∩H1 satisfies the desired conclusion. □

Combining Proposition 3.1 with Thomas’s theorem for linear groups, we
obtain:

Theorem 3.3. Let m be a positive integer, G <GLm(R) any subgroup and Γ ◁G
a polycyclic normal subgroup of G.

Then the quotient group G/Γ is countably representable.

Proof. Proposition 3.1 provides a countable index subgroup H < GLm(R)
which intersects Γ trivially. Since GLm(R) is countably representable ([Tho99,
§2]), so is H . Now H ∩G has countable index in G and is countably rep-
resentable. Since H intersects Γ trivially, the image J of H ∩ G in G/Γ is
isomorphic to H ∩G and hence J is countably representable. Since J has
countable index in G/Γ , we can apply Lemma 11 in [Mon22] and conclude
that G/Γ itself is countably representable. □

We can now handle all solvable Lie groups:

Proof of Theorem 1.1. Let G be a solvable Lie group; as explained in Sec-
tion 2, we shall assume without loss of generality that G is connected. Let
π : G̃ ↠ G be the universal covering map. Recall that the kernel kerπ =
π1(G) is a finitely generated abelian group, see Corollary 14.2.10(iv) in [HN12].
By a Theorem of Malcev, G̃ is a linear group, see [OV94, 2§7]. Therefore,
G is a quotient as those considered in Theorem 3.3 and it follows from that
theorem that G is countably representable. □

For future reference, we also record a straightforward bootstrap of Propo-
sition 3.1:

Proposition 3.4. Let m be a positive integer, G <GLm(R) any subgroup, Γ ◁G
a polycyclic normal subgroup of G and ∆ < G/Γ any polycyclic subgroup of the
quotient.

Then there is a countable index subgroup H < G/Γ which meets ∆ trivially.

Proof. The pre-image ∆̃ of ∆ in G is also polycyclic. Therefore Proposi-
tion 3.1 ensures that G contains a countable index subgroup K < G with
K ∩ ∆̃ trivial. It now suffices to take for H the image of K in G/Γ . □
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4. Linear Levi component and amenable groups

We recall the Levi decomposition, see [OV94, 1§4] for references:
Let G be any connected Lie group, let R = Rad(G) be its radical, i.e. the

maximal connected solvable normal subgroup of G, which is automatically
a closed Lie subgroup.

By Levi’s decomposition theorem, there exists an immersed (not neces-
sarily closed) connected semi-simple Lie group S in G such that G = RS
with R∩ S countable.

In the special case where G is simply connected, the following hold:

(i) both R and S are simply connected [Mos50, §5];
(ii) any connected semi-simple Lie subgroup of G is closed [Mos50, §6];

(iii) R∩S is trivial and therefore we have a semi-direct product decompo-
sition [OV94, 1§4].

Theorem 4.1. Let G be a connected Lie group. If the semi-simple Levi compo-
nent of G is linear, then G is countably representable.

Proof. Let π : G̃↠ G be the universal covering map of G and recall that its
kernel Γ = π1(G) is a finitely generated abelian group (Corollary 14.2.10(iv)
in [HN12]). In particular Γ is central since G̃ is connected. Denote by
G̃ = R̃ S̃ a Levi decomposition of G̃. Since Levi decompositions of connected
Lie groups are determined by Levi decompositions of the corresponding
Lie algebra, we can assume that π restricts to covering maps R̃ ↠ R and
S̃↠ S for a Levi decomposition G = RS of G. Moreover, since both R̃ and S̃
are simply connected as recalled above, they are in fact the universal covers
of R and S respectively, justifying the notation.

Define N = Γ ∩ S̃. Note that N is normal in G̃ because Γ is central. Hence
we can consider the connected Lie group L = G̃/N , which is a cover of
G. For the reasons indicated in the first paragraph of the proof, a Levi
decomposition L = R′S ′ of L is given by the images of R̃ and S̃ in L.

We claim that R′ is linear. Since R̃ ∩ S̃ is trivial, the map R̃ ↠ R′ is an
isomorphism and hence R′ is simply connected. Thus the claim follows
from Malcev’s linearity criterion for solvable Lie groups, see [OV94, 2§7].

Next we claim that S ′ is linear. The kernel of the covering map S̃ ↠ S
is the intersection between S̃ and the kernel Γ of G̃ ↠ G. Therefore the
quotient group S̃/N is isomorphic to both S ′ and S. Since S is linear by
assumption, S ′ is linear as claimed.

It now follows that L = R′S ′ is linear by a theorem of Malcev, see [OV94,
1§5.4]. Finally, since G is the quotient of L by the finitely generated abelian
group Γ /N , we can apply Theorem 3.3 and deduce that G is countably rep-
resentable. □

Corollary 4.2. Every amenable Lie group is countably representable.
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Proof. Let G be an amenable Lie group; we can assume G connected. Let
G = RS be a Levi decomposition. In view of Theorem 4.1, it suffices to
prove that S is linear.

Note that the quotient S/Z(S) by the center of S is a quotient of G/R,
which is amenable as a quotient of G. Thus S/Z(S) is amenable center-
free connected semi-simple Lie group, which implies that it is compact,
see Theorem 1.6 in [Fur63]. Since S is a cover of the compact semi-simple
group S/Z(S), Weyl’s theorem [Kna02, Theorem 4.69] implies that S itself
is compact. It is therefore linear by an application of Peter–Weyl [Kna02,
Corollary 4.22]. □

Proof of Corollary 1.4. It was exposed in Proposition 2 of [Mon22] how a
positive solution to Ulam’s problem would imply that every locally compact
second countable group G would be countably representable. The reduc-
tion to Lie groups through the solution of Hilbert’s fifth problem used in
that proof (specifically: the approximation theorem as stated in §4.6, p. 175
in [MZ55]) produces a family of Lie groups that are all quotients of an open
subgroup G1 of G. In particular, when G is amenable, all those Lie groups
are amenable and hence we can apply Corollary 4.2 instead of relying on a
hypothetical solution to Ulam’s problem. □

5. A reduction to simple groups

We finally turn to the most substantial result of this article, namely that
an arbitrary Lie group is countably representable if and only if its semi-
simple Levi component is countably representable (Theorem 1.3).

To prepare for the proof, recall that given any connected Lie group L,
the lineariser of L, denoted by Λ(L), is the intersection of the kernels of all
finite-dimensional linear representations of L [Hoc60]. The fundamental
property of the lineariser (apparently due to Goto, see [HM57, §7]) is that
L/Λ(L) is a linear Lie group, see Theorem 16.2.7 in [HN12] for a proof.

Lemma 5.1. Let G be a connected Lie group and L any immersed (not necessary
closed) connected Lie subgroup. Then the lineariser Λ(L) of L is central in G.

Proof of Lemma 5.1. Since G is connected, the adjoint representation

G −→ G/Z(G) −→ Aut(G)

descends to a faithful representation on the quotient of G by its center Z(G),
see Lemma 9.2.21 in [HN12]. However, the Lie group automorphism group
Aut(G) is linear, see Theorem 1 in [Hoc52]. Therefore, the adjoint represen-
tation is trivial on the subgroup Λ(L), which means that Λ(L) is contained
in Z(G) as claimed. □

We are now ready for the proof of Theorem 1.3, a significant part of
which is devoted to circumventing the intersection R ∩ S in the Levi de-
composition G = RS.
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Proof of Theorem 1.3. We can assume that our arbitrary Lie group G is con-
nected. Let G = RS be a Levi decomposition of G. Assuming S is countably
representable, we will deduce that G is countably representable. The other
implication is obvious.

Set Λ = Λ(S), the lineariser of S. By Lemma 5.1, Λ is central in G and
we can thus consider the quotient group G/Λ. Its semi-simple Levi com-
ponent is the linear group S/Λ. Therefore G/Λ is countably representable
on account of Theorem 4.1. Hence there is a sequence of countable index
subgroups Gn < G whose intersection is Λ. Indeed, such a sequence can
be found by taking pre-images in G of a sequence of countable index sub-
groups of G/Λ whose intersection is trivial.

In order to prove the theorem, it now suffices to find another sequence
of countable index subgroups Hn < G such that the intersection of all Hn
meets Λ trivially.

Since Λ is central in the semi-simple group S, it is a finitely generated
abelian group. In particular it is countable, and therefore it suffices to find
for any given λ0 , e in Λ some countable index subgroup H < G avoiding
λ0. The assumption made on S implies that there is a countable index
subgroup S0 < S avoiding λ0. The remainder of the proof will deal with
the fact that the naive candidate RS0 < G might nonetheless contain λ0,
and therefore we need to choose a smaller subgroup H < RS0.

Denote by Γ < G the intersection R∩S. Since Γ is a normal solvable sub-
group of the connected semi-simple group S, it is central in S. In particular,
Γ is a finitely generated abelian group.

We use the conjugation S-action on R to form the semi-direct product
Ĝ := R ⋊ S, which is a connected Lie group with a natural quotient map
Ĝ ↠ G given by the multiplication in G. The kernel of this map is the
group {(γ−1,γ) : γ ∈ Γ } isomorphic to Γ . Thus the pre-image Λ̂ of Λ in Ĝ is

Λ̂ = {(γ−1,γλ) : γ ∈ Γ ,λ ∈Λ}.
By construction this is a finitely generated metabelian group; in fact, abelian
because Λ acts trivially on R.

Viewing Λ in Ĝ (as {e} ×Λ), we can consider the quotient group Ĝ/Λ =
R ⋊ (S/Λ), using again Lemma 5.1. Since its Levi component S/Λ is a lin-
ear group, we are again in the situation of Theorem 4.1. As explained in
the proof of that theorem, the group Ĝ/Λ = R⋊ (S/Λ) admits a linear (con-
nected) cover of the form L = R̃ ⋊ (S/Λ). The kernel of the quotient map
L↠ Ĝ/Λ is finitely generated abelian (as a subgroup of the fundamental
group of Ĝ/Λ, Corollary 14.2.10(iv) in [HN12])) and therefore we can in-
voke Proposition 3.4 to find a subgroup of countable index J in Ĝ/Λ which
meets trivially the image in Ĝ/Λ of the finitely generated abelian group Λ̂.

The pre-image Ĵ in Ĝ of J is a countable index subgroup of Ĝ such that
Ĵ ∩ Λ̂ is {e} ×Λ.
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We claim that the image H < G of the group Ĵ ∩ (R ⋊ S0) < Ĝ under the
map Ĝ↠ G has the desired property of avoiding λ0.

If not, then there is (r, s) ∈ Ĵ∩(R⋊S0) with rs = λ0. In particular, r = λ0s
−1

implies r ∈ Γ and then s = r−1λ0 implies (r, s) ∈ Λ̂. The choice of Ĵ now
implies (r, s) ∈ {e} ×Λ. It follows (r, s) = (e,λ0), which contradicts (r, s) ∈
R⋊S0 by the choice of S0. This confirms the claim and hence completes the
proof. □

It remains to establish Theorem 1.5. This requires two additional obser-
vations recorded in the lemmata below.

Lemma 5.2. Let G be a connected Lie group. If every finite-sheeted cover of G
is countably representable, then every cover of G is so too.

Proof. Let G̃ be the universal cover of G and Γ < Z(G̃) be the fundamental
group of G viewed as a finitely generated abelian subgroup of G̃ (Corol-
lary 14.2.10(iv) in [HN12]).

Let Ĝ an arbitrary cover of G, so that Ĝ = G̃/Λ for some subgroup Λ <
Γ . Since Γ /Λ is finitely generated abelian, it admits a nested sequence of
finite index subgroups with trivial intersection. Taking pre-images in Γ , we
obtain a nested sequence of finite index subgroups Γn < Γ with

⋂
n Γn = Λ.

Recalling that Γ is central since G̃ is connected, we can define the groups
Gn := G̃/Γn, which are finite-sheeted covers of G and quotients of Ĝ. They
form an inverse system with a natural morphism from Ĝ to the inverse
limit lim←−−nGn. This morphism is injective because

⋂
n Γn = Λ.

Our assumption implies that each Gn is countably representable. Since
we realised Ĝ as a subgroup of an inverse limit of a countable system of
countably representable groups, it follows from Lemma 9 in [Mon22] that
Ĝ is itself countably representable. □

Next, recall that every connected semi-simple group S is a (not neces-
sarily direct) product S = S1 · · ·Sk of finitely many connected normal sub-
groups S1, . . . ,Sk having simple Lie algebra, and such that for all i , j the
subgroups Si ,Sj commute (elementwise). These subgroups Si are referred
to as the simple factors of S. This decomposition follows from the decom-
position of any semi-simple Lie algebra into a direct sum of simple ideals,
see for instance Proposition 5.5.11 in [HN12].

Lemma 5.3. Let S be a connected semi-simple Lie group and assume that the
center Z(S) is finite. If all the simple factors of S are countably representable,
then so is S.

Proof. Let S1, . . . ,Sk be the simple factors of S. By assumption each Si ad-
mits a sequence of countable index subgroups Si,n < Si with trivial inter-
section.

The center Z(S) is equal to the product of the centers Z(Si) since the
factors commute elementwise. In particular, all simple factors have finite
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center. Therefore, there is no loss of generality in assuming that Si,n∩Z(Si)
is trivial for all i,n.

The set of products Hn = S1,n · · ·Sk,n is a subgroup of S since the factors
Si commute elementwise, and this subgroup has countable index in S for
that same reason.

We claim that Hn is the direct product of the groups Si,n. Indeed, any
element z ∈ Si,n ∩ Sj,n with i , j is centralised by Sj,n. Since the latter is
dense in Sj , it follows that z is centralised by Sj . But z being in Sj , the
choice of Sj,n shows that z is trivial as claimed.

It now follows that the intersection of all Hn is trivial, completing the
proof. □

End of the proof of Theorem 1.5. Under the hypothesis that every connected
simple Lie group with finite center is countably representable, we need to
show that an arbitrary Lie group G is countably representable. We can sup-
pose G connected and we consider a Levi decomposition G = RS. Thanks
to Theorem 1.3, it suffices to show that S is countably representable.

Since S is a cover of the group S/Z(S), Lemma 5.2 shows that it suffices to
show that every finite-sheeted cover of S/Z(S) is countably representable.
Such a finite-sheeted cover is a connected semi-simple Lie group with fi-
nite center, and therefore Lemma 5.3 reduces the question to the simple
factors of S/Z(S). Each of these factors still has finite center and therefore
is accommodated by our hypothesis. □

Despite our reduction of Ulam’s general problem to simple factors, there
is a slight disharmony between the statements of Theorem 1.3 and Theo-
rem 1.5. Namely, it is unclear to the authors whether for each given Lie
group it suffices to consider the simple factors of its semi-simple Levi com-
ponent.
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