Exercise 0. Do the verifications/exercises given during the lecture.

Exercise 1. Let G be a group endowed with a topology. Prove that G is a topological group if (and only if) the map $G^2 \to G$ defined by $(x, y) \mapsto xy^{-1}$ is continuous.

Exercise 2. Give an example of a group G and of two closed subsets $A, B \subseteq G$ such that AB is not closed.
Hint: for G, you can take \mathbb{R}^2 or even \mathbb{R}.

Exercise 3. Choose an identification between \mathbb{R}^4 and the space of all 2×2-matrices. Prove that the group $G = \text{GL}_2(\mathbb{R})$ is a topological group for the induced topology.
Write down your proof carefully and in detail, so that you can adapt it to $\text{GL}_n(\mathbb{R})$ with $n \in \mathbb{N}$.

Exercise 4. Consider the space $\mathbb{N}^\mathbb{N}$ of all maps $\mathbb{N} \to \mathbb{N}$ with the topology of pointwise convergence. Prove that the group $\text{Bij}(\mathbb{N})$ of all bijections is not a closed subset of $\mathbb{N}^\mathbb{N}$.