Exercise 1
Consider a tree X (connected graph without circuit) such that every vertex has three neighbours. In particular, this tree is infinite. Draw (a piece of) X; it is very similar to the tree of Problem Set 9. Remind yourself why we can consider X as a CAT(0) space. Describe ∂X.

(i) Give an example of an elliptic isometry of X. You can describe it in words (but precisely, please) rather than formulas.

(ii) Same question for a hyperbolic isometry.

(iii) Prove that every hyperbolic isometry has a unique axis.

(iv) Prove that X does not admit any parabolic isometry.

Exercise 2
Given two sets A and B, we define the “join”

$$A \ast B = A \times B \times [0, \pi/2] / \sim,$$

where \sim is the equivalence relation identifying $(a, b, 0)$ with $(a', b, 0)$ for all $a, a' \in A, b \in B$ and identifying $(a, b, \pi/2)$ with $(a, b', \pi/2)$ for all $a \in A, b, b' \in B$.

Given CAT(0) spaces X and Y, describe a bijection of $\partial (X \times Y)$ with $\partial X \ast \partial Y$.

Remark: the particular case of $X = \mathbb{R}^{n+1}$ and $Y = \mathbb{R}^{m+1}$ gives $S^n \ast S^m \simeq S^{n+m+1}$. Make sure you agree with the latter fact about spheres!