Analysis on groups

Problem Set 7 3 November 2021

Exercise 0
Let \(G \) be a group, \(f \in \ell^\infty(G) \) and \(h \in \ell^1(G) \). Show that the following are equal for all \(x \in G \) (and pay attention to absolute convergence).

\[
\sum_{y \in G} f(xy^{-1}) h(y), \quad \sum_{y \in G} f(y) h(y^{-1}x), \quad \sum_{\{y,z \in G : yz=x\}} f(y) h(z).
\]

Exercise 1
Let \(f,g,h \) be functions on a group \(G \) and let \(x,y \in G \).

(i) Verify that \(f \ast (g \ast h) = (f \ast g) \ast h \) holds (as soon as all these sums are absolutely convergent).

(ii) Compute \(\delta_x \ast \delta_y, \delta_x \ast f \) and \(f \ast \delta_x \).

(iii) Find a formula for \((f \ast g)^\vee \), where for any function \(h \) we write \(h^\vee(x) := h(x^{-1}) \).

(iv) Let \(1 \leq p \leq \infty \) and suppose \(f \in \ell^p(G), g \in \ell^1(G) \). Verify \(\|g \ast f\|_p \leq \|f\|_p \cdot \|g\|_1 \). Deduce \(\|f \ast g\|_p \leq \|f\|_p \cdot \|g\|_1 \). (You might want to separate the case \(p = \infty \).)

(v) For \(f \in \ell^1(G) \), write \(\Sigma f := \sum_{x \in G} f(x) \). Assuming \(f,g \in \ell^1(G) \), prove \(\Sigma(f \ast g) = \Sigma f \Sigma g \). Deduce that \(f,g \in \text{Prob}(G) \) implies \(f \ast g \in \text{Prob}(G) \).

Exercise 2
On the group \(\mathbb{Z} \) with the probability measure \(\mu = \frac{1}{3} \delta_{-1} + \frac{2}{3} \delta_1 \), determine all \(\mu \)-harmonic functions.

Exercise 3
In class, we found a function \(f : F_2 \to \mathbb{R} \) on \(F_2 = \langle a,b \rangle \) that is \(\mu \)-harmonic for

\[
\mu = \frac{1}{4}(\delta_a + \delta_b + \delta_{a^{-1}} + \delta_{b^{-1}}).
\]

Find your own \(\mu \)-harmonic function on \(F_2 \) for the same measure \(\mu \); try not to choose simply a linear combination of \(f \) and \(1_G \).