Exercise 0
Check that the entire proof of the Banach–Tarski theorem holds more generally in \mathbb{R}^n for all $n \geq 3$. What goes wrong for $n = 2$?

Exercise 1
The Banach–Tarski theorem states that the closed unit ball $B \subseteq \mathbb{R}^3$ is equidecomposable with every subset $A \subseteq \mathbb{R}^3$ that is bounded and of non-empty interior.

(i) Give a precise proof that this fails for every A that is not bounded.

(ii) Give an example to show that this fails for some bounded A with empty interior.

(iii) Give an example to show that this holds for some A with empty interior.

Exercise 2
Let $G = \text{Isom}(\mathbb{R}^4)$. Let $B_3 \subseteq \mathbb{R}^4$ be the closed unit ball of \mathbb{R}^3 viewed as a subset of $\mathbb{R}^4 = \mathbb{R}^3 \oplus \mathbb{R}$; thus B_3 has empty interior.

(i) Explain why it is still true that B_3 is G-equidecomposable to two disjoint copies of B_3 in \mathbb{R}^4.

(ii) Is B_3 G-equidecomposable to the unit ball B_4 of \mathbb{R}^4?