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The group of piecewise projective homeomorphisms of the line pro-
vides straightforward torsion-free counter-examples to the so-called
von Neumann conjecture. The examples are so simple that many
additional properties can be established.

Introduction
In 1924, Banach and Tarski accomplished a rather paradoxical
feat. They proved that a solid ball can be decomposed into
five pieces which are then moved around and reassembled in
such a way as to obtain two balls identical with the original
one [6]. This wellnigh miraculous duplication was based on
Hausdorff’s 1914 work [18].

In his 1929 study of the Hausdorff–Banach–Tarski para-
dox, von Neumann introduced the concept of amenable
groups [37]. Tarski readily proved that amenability is the only
obstruction to paradoxical decompositions [34, 35]. However,
the known paradoxes relied more prosaically on the existence
of non-abelian free subgroups. Therefore, the main open prob-
lem in the subject remained for half a century to find non-
amenable groups without free subgroups. Von Neumann’s
name was apparently attached to it by Day in the 1950s.
The problem was finally solved around 1980: Ol′shanskĭı
proved the non-amenability of the Tarski monsters that he
had constructed [28, 29, 30]; Adyan showed that his work
on Burnside groups yields non-amenability [3, 4]. Finitely
presented examples were constructed another twenty years
later by Ol′shanskĭı–Sapir [27]. There are several more re-
cent counter-examples [15, 31, 32].

Given any subring A < R, we shall define a group G(A)
and a subgroup H(A) < G(A) of piecewise projective trans-
formations. Those will provide concrete, uncomplicated new
examples with many additional properties. Perhaps ironically,
our short proof of non-amenability ultimately relies on basic
free groups of matrices, as in Hausdorff’s 1914 paradox, even
though the Tits alternative [36] shows that the examples can-
not be linear themselves.

Construction
I saw the pale student of unhallowed arts kneeling
beside the thing he had put together.

Mary Shelley, Frankenstein
(introduction to the 1831 edition)

Consider the natural action of the group PSL2(R) on
the projective line P1 = P1(R). We endow P1 with its R-
topology making it a topological circle. We denote by G the
group of all homeomorphisms of P1 which are piecewise in
PSL2(R), each piece being an interval of P1, with finitely
many pieces. We let H < G be the subgroup fixing the point
∞ ∈ P1 corresponding to the first basis vector of R2. Thus
H is left-orderable since it acts faithfully on the topological
line P1 \{∞}, preserving orientations. It follows in particular
that H is torsion-free.

Given a subring A < R, we denote by PA ⊆ P1 the collec-
tion of all fixed points of all hyperbolic elements of PSL2(A).
This set is PSL2(A)-invariant and is countable if A is so. We
define G(A) to be the subgroup of G given by all elements
that are piecewise in PSL2(A) with all interval endpoints in

PA. We write H(A) = G(A)∩H, which is the stabilizer of ∞
in G(A).

The main result of this article is the following, which relies
on a new method for proving non-amenability.

Theorem 1. The group H(A) is non-amenable if A 6= Z.

The next result is a sequacious generalization of the corre-
sponding theorem of Brin–Squier about piecewise affine trans-
formations [7] and we claim no originality.

Theorem 2. The group H does not contain any non-abelian free
subgroup. Thus, H(A) inherits this property for any subring
A < R.

Thus already H = H(R) itself is a counter-example to
the von Neumann conjecture. Writing H(A) as the directed
union of its finitely generated subgroups, we deduce:

Corollary 3. For A 6= Z, the groups H(A) contain finitely gen-
erated subgroups that are simultaneously non-amenable and
without non-abelian free subgroups.

Further properties The groups H(A) seem to enjoy a number
of additional interesting properties, some of which are weaker
forms of amenability. In the last section, we shall prove the
following five propositions (and recall the terminology). Here
A < R is an arbitrary subring.

Proposition 4. All L2-Betti numbers of H(A) and of G(A) van-
ish.

Proposition 5. The group H(A) is inner amenable.

Proposition 6. The group H is bi-orderable and hence so are
all its subgroups. It follows that there is no non-trivial homo-
morphism from any Kazhdan group to H.

Proposition 7. Let E ⊆ P1 be any subset. Then the subgroup of
H(A) which fixes E pointwise is co-amenable in H(A) unless
E is dense (in which case the subgroup is trivial).

Proposition 8. If H(A) acts by isometries on any proper
CAT(0) space, then either it fixes a point at infinity or it
preserves a Euclidean subspace.

One can also check that H(A) satisfies no group law and
has vanishing properties in bounded cohomology (see below).

Non-amenability
An obvious difference between the actions of PSL2(A) and of
H(A) on P1 is that the latter group fixes∞ whilst the former
does not. The next proposition shows that this is the only
difference as far as the orbit structure is concerned.
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Proposition 9. Let A < R be any subring and let p ∈ P1 \{∞}.
Then

PSL2(A) · p ⊆ {∞} ∪H(A) · p.

Thus, the equivalence relations induced by the actions of
PSL2(A) and of H(A) on P1 coincide when restricted to
P1 \ {∞}.

Proof. We need to show that given g ∈ PSL2(A) with
gp 6= ∞, there is an element h ∈ H(A) such that hp = gp.
We assume g∞ 6= ∞ since otherwise h = g will do. Equiva-
lently, we need an element q ∈ G(A) fixing gp and such that
q∞ = g∞, writing h = q−1g. It suffices to find a hyperbolic
element q0 ∈ PSL2(A) with q0∞ = g∞ and whose fixed points
ξ± ∈ P1 separate gp from both ∞ and g∞, see Figure 1. In-
deed, we can then define q to be the identity on the component
of P1 \ {ξ±} containing gp, and define q to coincide with q0
on the other component.

r∞
rgp

rg∞rξ+
rξ−

Fig. 1. The desired configuration of ξ±

Let

(
a b
c d

)
be a matrix representative of g; thus,

a, b, c, d ∈ A and ad − bc = 1. The assumption g∞ 6= ∞
implies c 6= 0 and thus we can assume c > 0. Let q0 be

given by

(
a b+ ra
c d+ rc

)
with r ∈ A to be determined later;

thus q0∞ = g∞. This matrix is hyperbolic as soon as |r| is
large enough to ensure that the trace τ = a+ d+ rc is larger
than 2 in absolute value. We only need to show that a suit-
able choice of r will ensure the above condition on ξ±. Notice
that ∞ and g∞ lie in the same component of P1 \ {ξ±} since
q0 preserves these components and sends ∞ to g∞. In con-
clusion, it suffices to prove the following two claims: (1) as
|r| → ∞, the set {ξ±} converges to {∞, g∞}; (2) changing
the sign of r (when |r| is large) will change the component of
P1 \{∞, g∞} in which ξ± lie (we need it to be the component
of gp). The claims can be proved by elementary dynamical
considerations; we shall instead verify them explicitly.

The fixed points ξ± are represented by the eigenvectors(
x±
c

)
, where x± = λ± − d − rc and where λ± = (τ ±

√
τ2 − 4)/2 are the eigenvalues. Now limr→+∞ λ+ = +∞

implies limr→+∞ λ− = 0 since λ+λ− = 1 and therefore
limr→+∞ x− = −∞. Similarly, limr→−∞ x+ = +∞ (Figure 1
depicts the case r > 0). This already proves claim (2) and
half of claim (1). Since g∞ = [a : c], it only remains to verify
that both limr→+∞ x+ and limr→−∞ x− converge to a, which
is a direct computation. �

We recall that a measurable equivalence relation with
countable classes is amenable if there is an a.e. defined mea-
surable assignment of a mean on the orbit of each point in such
a way that the means of two equivalent points coincide. We
refer e.g. to [12] and [20] for background on amenable equiva-
lence relations. It follows from this definition that any relation
produced by a measurable action of a (countable) amenable
group is amenable, by push-forward of the mean [33, 1.6(1)].

An a.e. free action of a countable group is amenable in Zim-
mer’s sense [40, 4.3] if and only if the associated relation is
amenable; see [2, Thm. A].

Proof of Theorem 1. Let A 6= Z be a subring of R. Then
A contains a countable subring A′ < A which is dense in R.
Since H(A′) is a subgroup of H(A), we can assume that A
itself is countable dense. Now H(A) is a countable group and
Γ := PSL2(A) is a countable dense subgroup of PSL2(R).

It is proved in Théorème 3 of [10] that the equivalence
relation on PSL2(R) induced by the multiplication action of
Γ is non-amenable; see also Remarks 10 and 11 below. Equiv-
alently, the Γ-action on PSL2(R) is non-amenable. Viewing
P1 as a homogeneous space of PSL2(R), it follows that the
Γ-action on P1 is non-amenable. Indeed, amenability is pre-
served under extensions, see [39, 2.4] or [2, Cor. C]. This
action is a.e. free since any non-trivial element has at most
two fixed points. Thus the relation induced by Γ on P1

is non-amenable. Restricting to P1 \ {∞}, we deduce from
Proposition 9 that the relation induced by the H(A)-action is
also non-amenable. (Amenability is preserved under restric-
tion [20, 9.3], but here {∞} is a null-set anyway.) Thus H(A)
is a non-amenable group. �

Remark 10. We recall from [10] that the non-amenability of the
Γ-relation on PSL2(R) is a general consequence of the exis-
tence of a non-discrete non-abelian free subgroup of Γ. Thus
the main point of our appeal to [10] is the existence of this
non-discrete free subgroup, but this is much easier to prove
directly in the present case of Γ = PSL2(A) than for general
non-discrete non-soluble Γ.

Remark 11. Here is a direct argument avoiding all the above
references in the examples of A = Z[

√
2] or A = Z[1/`], where

` is prime. We show directly that the Γ-action on P1 is not
amenable. We consider Γ as a lattice in L := PSL2(R) ×
PSL2(R) in the first case and in L := PSL2(R) × PSL2(Q`)
in the second case, both times in such a way that the Γ-action
on P1 extends to the L-action factoring through the first fac-
tor. If the Γ-action on P1 were amenable, so would be the
L-action (by co-amenability of the lattice). But of course L
does not act amenably since the stabilizer of any point contains
the (non-amenable) second factor of L.

The non-discreteness of A was essential in our proof, thus
excluding A = Z.

Problem 12. Is H(Z) amenable?

The group H(Z) is related to Thompson’s group F , for
which the question of (non-)amenability is a notorious open
problem. Indeed F seems to be historically the first candidate
for a counter-example to the so-called von Neumann conjec-
ture. The relation is as follows: if we modify the definition of
H(Z) by requiring that the breakpoints be rational, then all
its elements are automatically C1 and the resulting group is
conjugated to F . The corresponding relation holds between
G(Z) and Thompson’s group T . These facts are attributed to
a remark of Thurston around 1975 and a very detailed expo-
sition can be found in [22].

H is a free group free group
We shall largely follow [7, § 3], the main difference being that
we replace commutators by a non-trivial word in the second
derived subgroup of a free group on two generators.

The support supp(g) of an element g ∈ H denotes the set
{p : gp 6= p}, which is a finite union of open intervals. Any
subgroup of H fixing some point p ∈ P1 has two canonical
homomorphisms to the metabelian stabilizer of p in PSL2(R)
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given by left and right germs. Therefore, we deduce the fol-
lowing elementary fact, wherein 〈f, g〉 denotes the subgroup
of H generated by f and g.

Lemma 13. If f, g ∈ H have a common fixed point p ∈ P1,
then any element of the second derived subgroup 〈f, g〉′′ acts
trivially on a neighbourhood of p. �

Theorem 2 is an immediate consequence of the following
more precise statement.

Theorem 14. Let f, g ∈ H. Either 〈f, g〉 is metabelian or it
contains a free abelian group of rank two.

Proof. We suppose that 〈f, g〉 is not metabelian, so that
there is a word w in the second derived subgroup of a free
group on two generators such that w(f, g) ∈ H is non-trivial.
We now follow faithfully the proof of Theorem 3.2 in [7], re-
placing [f, g] by w(f, g). For the reader’s convenience, we
sketch the argument; the details are on page 495 of [7] (or
[8, p. 232]). Applying Lemma 13 to all endpoints p of the
connected components of supp(f) ∪ supp(g), we deduce that
the closure of supp(w(f, g)) is contained in supp(f)∪ supp(g).
This implies that some element of 〈f, g〉 will send any con-
nected component of supp(w(f, g)) to a disjoint interval. The
needed element might depend on the connected component.
However, upon replacing w(f, g) by another non-trivial ele-
ment w1 ∈ 〈f, g〉′′ with minimal number of intersecting com-
ponents with supp(f)∪supp(g), some element h of 〈f, g〉 sends
the whole of supp(w1) to a set disjoint from it. The corre-
sponding conjugate w2 := hw1h

−1 will commute with w1 and
indeed these two elements generate freely a free abelian group.

�

As pointed out to us by Cornulier, the above argument
can be pushed so that w1 and h generate a wreath product
Z o Z, compare [17, Thm. 21] for the piecewise linear case.

Lagniappe
Proof of Proposition 4. We refer to [11] for the L2-Betti num-
bers βn

(2), n ∈ N. Fix a large integer n and let Γ = G(H) or

H(A). Choose a set F ⊆ PA of n + 1 distinct points and let
Λ < Γ be the pointwise stabilizer of F . Any intersection Λ∗

of any (finite) number of conjugates of Λ is still the pointwise
stabilizer of a finite set F ∗ containing m ≥ n+ 1 points. The
definition of G(A) shows that Λ∗ is the product of m infinite
groups. The Künneth formula [11, § 2] implies βi

(2)(Λ
∗) = 0

for all i = 0, . . . ,m − 1. In this situation, Theorem 1.3 of [5]
asserts βi

(2)(Γ) = 0 for all i ≤ m− 1. �

A subgroup K of a group J is called co-amenable if there
is an J-invariant mean on J/K. Equivalent characterizations,
generalizations and unexpected examples can be found in [16]
and [25].

Recall that a group J is inner amenable if there is a
conjugacy-invariant mean on J\{e}. It is equivalent to exhibit
such a mean that is invariant under the second derived sub-
group J ′′ since the latter is co-amenable in J . Thus, Propo-
sition 5 is a consequence of the stronger fact that H(A) is
“{asymptotically commutative}-by-metabelian” in a sense in-
spired by [38] as follows.

Proposition 15. Let A < R be any subring. For any finite set
S ⊆ H(A)′′ there is a non-trivial element hS ∈ H(A) com-
muting with each element of S.

Indeed, any accumulation point of this net of point-masses
at hS is H(A)′′-invariant.

Proof of Proposition 15. By the argument of Lemma 13,
there is a neighbourhood of ∞ on which all elements of S are
trivial. Thus is suffices to exhibit a non-trivial element hS

of H(A) which is supported in this neighbourhood. Notice
that PSL2(Z) contains hyperbolic elements with both fixed
points ξ± arbitrarily close to ∞, and on the same side. For

instance, conjugate

(
2 1
1 1

)
by

(
1 n
0 1

)
for sufficiently large

n ∈ N. We choose such an element h0 with ξ± in the given
neighbourhood and define hS to be trivial on the component
of P1 \ {ξ±} containing ∞ and to coincide with h0 on the
other component. �

A group is called bi-orderable if it carries a bi-invariant
total order. The construction below is completely standard,
compare e.g. [8, p. 233] for a first-order version of our second-
order argument.

Proof of Proposition 6. Choose an orientation of P1 \{∞}
and define a (right) germ at a point p to be positive if either
its first derivative is > 1 or if it is = 1 but the second deriva-
tive is > 0. Then define the set H+ of positive elements of H
to consist of all transformations whose first non-trivial germ
(starting from∞ along the orientation) is positive. Now H+ is
a conjugacy invariant sub-semigroup and H \{e} is H+tH−1

+ ;
this means that H+ defines a bi-invariant total order.

Suppose now that we are given a homomorphism from
a Kazhdan group to H. Its image is then a Kazhdan sub-
group K < H. Kazhdan’s property implies that K is finitely
generated. It has been known for a long time that any non-
trivial finitely generated bi-orderable group has a non-trivial
homomorphism to R: this follows ultimately from Hölder’s
1901 work [19] by looking at maximal convex subgroups and
is explained in [21, § 2]. But this is impossible for a Kazhdan
group. �

Lemma 16. For any p ∈ P1 \ {∞} there is a sequence {gn} in
H(Z) such that gnq converges to∞ uniformly for q in compact
subsets of P1 \ {p}.

Proof. It suffices to show that for any open neighbour-
hoods U and V of p and ∞ respectively in P1, there is
g ∈ H(Z) which maps P1 \ U into V . Since the collection of
pairs of fixed points of hyperbolic elements of PSL2(Z) is dense
in P1×P1, we can find hyperbolic matrices h1, h2 ∈ PSL2(Z)
with repelling fixed points ri in U \ {p} and attracting fixed
points ai in V \ {∞} and such that the cyclic order is
∞, a1, r1, p, r2, a2. Now we define g to be a sufficiently high
power of h1 on the interval [a1, r1] (for the above cyclic order),
of h2 on the interval [r2, a2] and the identity elsewhere. �

Proof of Proposition 7. Let K be the pointwise stabilizer
of a non-dense subset E ⊆ P1; it suffices to find a mean in-
variant under H(A)′′. Let {gn} be the sequence provided by
Lemma 16 for p an interior point of the complement of E. Any
accumulation point of the sequence of point-masses at gnK in
H(A)/K will do. Indeed, since any g ∈ H(A)′′ is trivial in a
neighbourhood of∞, we have g−1

n ggn ∈ K for n large enough.
�

The existence of two (or more) commuting co-amenable
subgroups is also a weak form of amenability. It is the key in
the argument cited below.

Proof of Proposition 8. Consider two disjoint non-empty
open sets in P1. The pointwise stabilizers of their complement
commute with each other and are co-amenable by Proposi-
tion 7. In this situation, Corollary 2.2 of [9] yields the desired
conclusion. �

The properties used in this section show immediately that
H(A) fulfills the criterion of [1, Thm. 1.1] and thus satisfies
no group law.
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Combining Theorems 1 and 2 with the main result of [24],
we conclude that the wreath product Z o H is a torsion-free
non-unitarisable group without free subgroups. We can re-
place it by a finitely generated subgroup upon choosing a
non-amenable finitely generated subgroup of H. This pro-
vides some new examples towards Dixmier’s problem, un-
solved since 1950 [13, 14, 26].

Finally, we mention that our argument from Proposi-
tion 6.4 in [23] applies to show that the bounded cohomology

Hn
b(H(A), V ) vanishes for all n ∈ N and all mixing unitary

representations V . More generally, it applies to any semi-
separable coefficient module V unless all finitely generated
subgroups of H(A)′′ have invariant vectors in V (see [23]
for details and definitions). This should be contrasted with
the fact that amenability is characterized by the vanishing of
bounded cohomology with all dual coefficients.
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