
LIE GROUPS AS PERMUTATION GROUPS:
ULAM’S PROBLEM IN THE NILPOTENT CASE

NICOLAS MONOD

Abstract. Ulam asked whether every connected Lie group can be repre-
sented on a countable structure. This is known in the linear case. We es-
tablish it for the first family of non-linear groups, namely in the nilpotent
case. Further context is discussed to illustrate the relevance of nilpotent
groups for Ulam’s problem.

1. Introduction

Cayley’s principle states that every group is a permutation group. In
particular, every finite group can be faithfully represented in a symmetric
group Sym(n) for some n ∈N.

For infinite groups, the situation becomes immediately more interesting.
We shall investigate it at the light of the following notion:

Definition. A group is countably representable if it admits a faithful ac-
tion on some countable set.

In other words, G is countably representable if it can be realised as a
subgroup of Sym(ℵ0). This is also equivalent to admitting a faithful linear
representation on some countable vector space.

Of course the question of countable representation only arises for groups
whose cardinality does not exceed the continuum cardinal c = 2ℵ0 since this
is the size of Sym(ℵ0). On the other hand the question is non-trivial only
for uncountable groups.

This leaves us with a very rich landscape of groups to investigate, be-
cause the groups of size c include all (non-discrete) Polish groups, thus in
particular all (non-discrete) locally compact second countable groups, and
still more particularly all (non-trivial) connected Lie groups.

At first sight, the familiar Lie groups have no obvious countable rep-
resentation; such a representation would be non-continuous, even non-
measurable, and indeed in Solovay’s model [Sol70] they do not have any.
But in November 1935, Schreier and Ulam proved the following (see Sec-
tion 2 for the elementary argument):

Proposition 1 (Schreier–Ulam). The group R is countably representable.
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This is Item 95 in the translated Scottish Book [Ula58], although we only
found it as a question in the original version [Scottish].

Ulam later asked a question that remains open to this day:

Problem (Ulam). Is every connected Lie group countably representable?

(See [Ula60, II.7] and [Ula64, V.2].)
This question is really the key to the wider world of locally compact

groups, because the solution to Hilbert’s fifth problem leads to the follow-
ing fact (see Section 4):

Proposition 2. If the answer to Ulam’s Problem is affirmative, then every lo-
cally compact second countable group is countably representable.

On the ominous side, some of the most familiar Polish groups spectac-
ularly fail to be countably representable. For instance, it follows from the
Rosendal–Solecki automatic continuity theorem [RS07] that any action of
G = Homeo(S1) orG = Homeo(R) on a countable set is trivial on the neutral
component of G (which is of index two in this case). This was generalised
to arbitrary compact manifolds by Mann [Man16]. Another very famil-
iar group without any non-trivial action on a countable set is the unitary
group of the infinite-dimensional separable Hilbert space, by Tsankov’s au-
tomatic continuity [Tsa13].

In the positive direction, Proposition 1 can be generalised to show that
in the abelian case there is no obstruction at all beyond the obvious size
restriction (see Section 4 for two proofs):

Proposition 3 (de Bruijn [dB64]). Every abelian group is countably repre-
sentable as long as its cardinality does not exceed c.

Returning to Lie groups and Ulam’s Problem, there is a much stronger
result than Proposition 1, namely:

Theorem 4 (Thomas [Tho99]). Every linear Lie group is countably repre-
sentable.

This was first established in §2 of [Tho99]; the proof was rediscovered by
Kallman [Kal00] and later Ershov–Churkin [EC04]; see Section 3 for the
argument.

Therefore it remains to settle Ulam’s Problem for non-linear Lie groups.
The first example is Birkhoff’s reduced Heisenberg group [Bir36], a central
extension of R2 with center S1. More generally, a connected nilpotent Lie
groups is non-linear unless it is a semi-direct product of a simply connected
group by a torus [HN12, 16.2.7]. Thus nilpotent Lie groups include a large
family of non-linear groups; we can answer Ulam’s question in this case:

Theorem 5. Every nilpotent connected Lie group is countably representable.

It is fair to ask whether this result just follows formally from the case of
abelian groups by taking successive extensions and invoking a general sta-
bility property of the class of countably representable groups. It turns out
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that there is no such general stability: McKenzie [McK71] has constructed
a nilpotent group M which is not countably representable, but is a central
extension

0 −→ Z −→M −→ B −→ 0

where B is the free Z/2Z-module of rank c. Of course this group is not a
Lie group, but it is nilpotent and of size c. This shows in particular that
countable representability is not preserved by central extensions (see Sec-
tion 5). A close variant of this group was considered by Churkin [Chu05].
As we shall see, these obstructions to representability still hold for the cor-
responding extensions with finite center Z/2Z instead of Z, and for certain
extensions of the form

0 −→ R −→H −→ R −→ 0.

In fact, Churkin conjectured that his group is not a subgroup of any sepa-
rable (Hausdorff) topological group [Chu05, Rem. 3]. We confirm this:

Theorem 6. Any homomorphism from McKenzie’s or Churkin’s nilpotent group
to any separable Hausdorff topological group is trivial on the center.

The same statement holds for homomorphisms to Lindelöf Hausdorff topolog-
ical groups.

This is a strengthening of not being countably representable since Sym(ℵ0)
is Polish, in particular both separable and Lindelöf.

We note that Lindelöf groups include e.g. all compact groups and more
generally any countable product of σ -compact groups, see [Com84, 8.1(ii)].

Besides nilpotent groups, perhaps the best known example of a non-
linear Lie group is Cartan’s example [Car36, §V] of the universal cover
of SL2(R), or already its double cover, the metaplectic group. There, the
methods of the present note seem to fall short:

Problem. Let G = SLn(R) and let G̃ be its universal cover. Is G̃ countably
representable?

Recall that G̃ is a central extension of G by Z/2Z when n ≥ 3 and by Z
when n = 2. We observe below (Remark 14) that the approach used in the
previous cases cannot work for these groups.

Remark 7. Ulam did not explicitly assume connectedness, but this is only
a matter of terminology. Under the convention that Lie groups are sec-
ond countable, they have at most countably many connected components
and hence we are immediately reduced to the connected case (Lemma 11
below).

If on the other hand no such restriction is made, then we can trivially
obtain disconnected Lie groups that are not countably representable by
considering a suitably large group as zero-dimensional Lie group.
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2. Preliminary observations

We call a subgroup H < G cocountable if it is of countable index in G,
i.e. if the coset space G/H is countable.

Then G is countably representable if and only if it admits a sequence of
cocountable subgroups Gn < G (n ∈ N) with trivial intersection

⋂
nGn. In-

deed, given such a sequence, G is represented as a permutation group of
the countable disjoint union

⊔
nG/Gn and the converse follows by taking

Gn to be the point stabilizers in any countable representation. Further-
more, there is no loss of generality in assuming that the sequence Gn is
decreasing, as is seen by considering finite intersections.

We shall often use tacitly the fact that the intersection of a cocountable
group with any subgroup remains cocountable in the latter.

Since the (direct) product of any family of symmetric groups acts faith-
fully on the disjoint union of the corresponding sets, we have:

Lemma 8. The class of countably representable groups is closed under finite
and countable products. �

The class being closed under passing to subgroups, this further implies:

Lemma 9. The class of countably representable groups is closed under taking
inverse limits of countable inverse systems. �

The Schreier–Ulam 1935 proof that R is countably representable was
probably as follows; this argument can also be found in [KS56, p. 65].

Proof of Proposition 1. By Lemma 8, the countable power QN is countably
representable. Since this group is uniquely divisible, it is a Q-vector space.
Its dimension is c and therefore it is isomorphic to R. �

We will establish countable representability for general abelian groups
in Section 4 but already record the following:

Corollary 10. The circle group S1 is countably representable.

Proof. Viewing again R as a Q-vector space, we split off Q and obtain an
isomorphism R/Z � Q/Z ⊕ R; the result now follows from Proposition 1
(and Lemma 8). �
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Another basic hereditary property relies on the technique of induced
actions:

Lemma 11. If G admits a countably representable cocountable subgroup, then
G is itself countably representable.

Proof. Suppose that the group G admits a cocountable subgroup G0 < G
which acts faithfully on a countable set X. Define Y = (G ×X)/G0, where
G0 acts diagonally on G×X, from the left on G. Then Y is countable since it
admits a bijection with (G0\G)×X. We endow Y with a G-action by letting
G act by right multiplication onG and trivially on Y , noting that this action
on G ×X descends indeed to Y . The resulting action is faithful. �

3. Proof of Theorem 5

We begin by recalling Thomas’s proof for linear Lie groups:
Let K be the field of Puiseux series over Q endowed with its valuation

v : K → Q∪ {∞}; let V be its valuation ring. Then SLn(V ) is a cocountable
subgroup of SLn(K), see [Tho99, Thm. 2.5]. The argument for that is a
refinement of the fact that discrete valuations give rise to an action on the
Bruhat–Tits building, which is countable: here v is not discrete on K , but
K is the countable union of the subfields Q((t1/q)) of Laurent series on t1/q,
on each of which v is discrete.

By the Newton–Puiseux theorem, K is algebraically closed. Since more-
over K has characteristic zero and cardinality c, there is a field isomor-
phismK � C. We denote by VC the image in C of the valuation ring ofK and
by LC the corresponding maximal ideal. Define the congruence subgroup
SLm(VC;LC) to be the kernel of the reduction map SLm(VC) → SLm(Q).
Then SLm(VC;LC) is a cocountable subgroup of SLm(C) since SLm(Q) is
countable.

At this point it follows already that PSLm(C) is countably representable
(since it is simple); finally, any linear Lie group can be embedded into some
PSLm(C).

Now we give a more explicit expansion of this argument in order to be
able to adapt it for some non-linear groups.

Define the decreasing sequence of ideals Ln < VC by {x : v(x) > n} under
the chosen isomorphism K � C. Thus the decreasing sequence of groups
SLm(VC;Ln) has trivial intersection.

Lemma 12. The congruence subgroups SLm(VC;Ln) are cocountable in SLm(C).

Proof. As recalled above, SLm(VC) is cocountable in SLm(C) by Thm. 2.5
in [Tho99]. Therefore it suffices to show that SLm(VC;Ln) is cocountable in
SLm(VC), i.e. that the ring VC/Ln is countable. This is the case because any



6 NICOLAS MONOD

given element of this ring is represented by a finite sum
qn∑
j=0

λjt
j/q

for some choice of denominator q ∈ N>0 and elements λj ∈ Q indexed by
j ∈N; here t is the formal variable of Puiseux series. �

We will need the following additional observation:

Lemma 13. Let C < C be a finitely generated subgroup and let z ∈ C be an
element not in C. Then there is n such that Ln does not meet the coset z+C.

Proof. Viewing everything in K rather than in C, the claim is that v is uni-
formly bounded over z +C; note that this coset does not contain 0. Letting
D be the group generated by C and z, it suffices to prove the following
claim:

For every finitely generated subgroup D < K , the valuation v is uni-
formly bounded over the non-zero elements of D.

The group D is free abelian of finite rank r ≥ 1. We shall prove by induc-
tion on r that v takes at most r + 1 distinct values on D. The base case r = 1
holds because v(px) = v(x) for all x ∈ K and all non-zero p ∈ Z; this gives
the two values v(x) and v(0) =∞ on D in rank one.

We turn to the induction step for r ≥ 2. Let x1, . . . ,xr be a basis of D. We
order the basis so that for some 1 ≤ s ≤ r we have

v(x1) = · · · = v(xs) < v(xj ) ∀ j > s.
Given any element x = p1x1 + · · ·+ prxr in D (with pi ∈ Z), write x′ = p1x1 +
· · ·+psxs and consider its residueω ∈Q at v(x1), i.e. the coefficient of tv(x1) in
x′. We have v(x) = v(x′) = v(x1) unless ω vanishes. However, ω = 0 defines
a subgroup D0 of D; this subgroup is still free abelian but of smaller rank
since x 7→ω defines a non-trivial torsion-free quotient of D. Therefore, the
induction hypothesis limits at r the number of distinct values on D0, which
completes the induction step once we add the value v(x1). �

(In fact we will only use the case where C is cyclic, but this is still rank
r = 2 in the above proof.)

End of proof of Theorem 5. Let G be a nilpotent connected Lie group. We re-
fer to [HN12, §11.2] (especially Thm. 11.2.10 therein) for background on
the structure of G. We recall in particular the following. The fundamental
group of G is a free abelian group of finite rank d ≥ 0. Moreover, denoting
by G̃ the universal cover of G, there is a discrete central subgroup Γ < G̃
isomorphic to π1(G) with G̃ → G̃/Γ � G implementing the covering mor-
phism. In addition, Γ is a lattice in a central subgroup Z � Rd of G̃, so that
T = Z/Γ is a central d-dimensional torus in G.

Our proof is by induction on d. The base case d = 0 holds by Thomas’s
result since G is then simply connected and hence linear [HN12, 16.2.7].
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The case d = 1 is the main case because the general case is easily re-
duced to it; hence we treat it separately. Since Z is connected, the quotient
H = G/T � G̃/Z is simply connected. Therefore, by the case d = 0, there
is a countable family of cocountable subgroups Hn < H such that every
non-trivial element of H is outside some Hn. Taking pre-images gives co-
countable subgroups Gn < G such that every element of G not in T lies
outside Gn for some n. It therefore suffices to produce another sequence of
cocountable subgroups Kn < G such that every non-trivial element of T lies
outside some Kn.

Since G̃ is simply connected, it is linear; more precisely, by the Lie–
Kolchin theorem, we can identify it with a Lie subgroup of the upper uni-
triangular subgroup Um of SLm(R) for some m. We define K̂n < G̃ by taking
the intersection of G̃with the congruence subgroup SLm(VC;Ln) under such
an embedding; thus K̂n is cocountable in G̃ by Lemma 12. Let Kn < G be
the image of K̂n in G, which is cocountable.

Let us reformulate for K̂n < G̃ the desired property of Kn: we need to
show that every element ζ ∈ Z < G̃ which is not in Γ lies outside the group
Γ K̂n for some n. Indeed, Γ K̂n is the pre-image of Kn in G̃. Equivalently, we
need to prove that ζΓ ∩ K̂n = ∅.

The lower central series U i
m of Um is defined by U0

m = Um and U i+1
m =

[U i
m,Um]. Concretely, the (p,q)-entry of a matrix in U i

m vanishes when p <
q ≤ p + i. Consider the largest i such that ζ ∈ U i

m; since ζ is non-trivial,
i ≤ m− 2. Moreover, the evaluation map ε : Um→ R at a (p,p + i + 1)-entry
is a group homomorphism on U i

m, namely one of the canonical coordinates
of U i

m/U
i+1
m � Rm−i−1. By maximality of i, we can choose p such that ε(ζ) is

non-zero. Recalling that Z has dimension d = 1, it follows that ε restricts to
an isomorphism ε|Z : Z → R. In conclusion, z = ε(ζ) lies outside C = ε(Γ ).
By Lemma 13, there is n such that z+C does not meet Ln. This implies that
ζΓ does not meet K̂n, as was to be shown.

Finally, we perform the induction step for d ≥ 2. We choose two distinct
elements γ1,γ2 of some basis of Γ , write Γi = 〈γi〉 for the group generated by
γi and Zi < Z for the one-parameter subgroup containing γi . The quotient
Ti = Zi/Γi is a central circle group in G and thus we can form Hi = G/Ti .
Then the fundamental group of Hi is isomorphic to Γ /Γi , e.g. because G̃/Zi
is a universal cover of Hi since Zi is connected.

Thus the fundamental group of Hi has rank d − 1. By the induction hy-
pothesis, there are two countable familiesHi,n of cocountable subgroups of
H1 respectively H2 such that any non-trivial element of Hi lies outside Hi,n
for some n. Taking pre-images, we obtain cocountable subgroups Gi,n < G
such that every g < Ti lies outside some Gi,n. Since T1 ∩ T2 is trivial, this
completes the induction step. �

Remark 14. Consider the question whether the double cover G̃ of G =
SL3(R) is countably representable. Since G is countably representable, it
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all amounts to finding a cocountable subgroup of G̃ which meets trivially
the kernel of the covering map. Equivalently, the question is:

Does G itself contain a cocountable subgroup that can be lifted to G̃?
This cannot be proved by using as above a cocountable congruence sub-

group Gn = G∩SL3(VC;Ln). Indeed we claim that Gn does not lift to G̃.
The reason is as follows. The set 1 + Ln meets R densely because Ln ∩R

is a cocountable subgroup of R. Therefore, 1 + Ln contains a negative real
number x. It follows that Gn contains the diagonal matrices with entries
(x,x−1,1) and (x,1,x−1) (noting that 1 + Ln is a multiplicative subgroup of
V ×C ). The classical relation between Steinberg symbols and central exten-
sions of G, as explained e.g. on p. 95 of Milnor’s book [Mil71], shows that
these two diagonal matrices do not admit commuting lifts in G̃. This is be-
cause the Steinberg symbol for G̃ is the Hilbert quadratic residue symbol
(see p. 104 in [Mil71]), but x < 0 means that the Hilbert symbol is non-
trivial. This excludes a minori any lift of the group Gn.

4. Auxiliary proofs

The reduction from general locally compact second countable groups to
connected Lie groups is standard:

Proof of Proposition 2. Let G be a locally compact second countable group.
Denoting the neutral component of G by G0, the quotient G/G0 is locally
compact and totally disconnected; therefore, van Dantzig’s theorem [vD31,
p. 18] implies that G/G0 contains a compact-open subgroup K . We denote
by G1 < G the pre-image of K in G; thus G1/G0 is compact.

Since G is second countable, we can choose a countable base U of neigh-
bourhoods U ⊆ G1 of the identity in G1. By the solution of Hilbert’s fifth
problem (see e.g. [MZ55, 4.6]), there is a compact normal subgroupNUCG1
contained in U such that G1/NU is a Lie group. Note that G1/NU has
finitely many connected components; therefore, since we assumed that the
answer to Ulam’s Problem is affirmative,G1/NU is countably representable.

On the other hand, G1 is the inverse limit of the system (G1/NU )U∈U .
Since U is countable, Lemma 9 implies that G1 is countably representable.
Finally, we use again that G is second countable to deduce that G/G1 is
countable since G1 is open in G. Applying Lemma 11, we conclude that G
itself is countably representable. �

Next, we propose two proofs that every abelian group is countably rep-
resentable, unless its cardinality is too large. Yves Cornulier informed me
that the second proof below was already known to de Bruijn, see Thm. 4.3
in [dB64].

Analytic proof of Proposition 3. Let G be an abelian group with |G| ≤ c. We
consider G as a discrete group, so that its Pontryagin dual Ĝ = Hom(G,S1)
is a compact group. Then the topological weight of Ĝ, namely the smallest
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cardinality of a base for its topology, is also ≤ c, see [HM06, 7.76]. It now
follows from Engelking’s theorem [Eng65, Thm. 10] that Ĝ is separable; the
fact that Engelking’s theorem applies to compact groups is due to the fact
that they are dyadic spaces, see e.g. [HM06, 10.40]. We can therefore choose
a sequence of characters fn : G→ S1 that is dense in Ĝ.

Since S1 is countably representable by Corollary 10, there is a sequence
of morphisms hm from S1 to countable quotients hm(S1) such that the in-
tersection of the kernels of all hm is trivial. It now suffices to verify that
for every non-trivial g ∈ G there is a pair (n,m) such that hm(fn(g)) is non-
trivial.

To this end, Pontryagin duality ensures that there is a character f ∈ Ĝ
such that f (g) is non-trivial. By density of (fn), we can fix n such that fn(g)
is non-trivial in S1, and it remains only to choose hm in terms of fn(g). �

The above use of dyadic spaces and of Engelking’s general theorem is
convenient but perhaps an overkill. It has been observed already in the
1940s that continum powers of separable spaces are separable (the Hewitt–
Marczewski–Pondiczery theorem [Hew46, Mar47, Pon44]); this applies to
(S1)G. The fact that this still holds for the subspace Ĝ ⊆ (S1)G is a very spe-
cial case of Engelking’s generalization of the Hewitt–Marczewski–Pondiczery
theorem.

Algebraic proof of Proposition 3. Let G be an abelian group with |G| ≤ c. The
injective hull D of G contains G, and its construction shows that D still has
size ≤ c (see e.g. the proof of Thm. 17 in [Gri70, III]). It therefore suffices
to consider divisible abelian groups such as D. By the structure theory of
divisible abelian groups (see e.g. [Fuc70, Thm. 23.1]), D is a sum of a Q-
vector space and of p-torsion parts, where p ranges over all primes. It suf-
fices to consider each piece individually because of Lemma 8. The Q-vector
space is handled by the argument of Proposition 1 since it has dimension
at most c.

The p-torsion part is of the form
⊕

κZ(p∞) for some cardinal κ, where
Z(p∞) is the Prüfer p-group (see again [Fuc70, Thm. 23.1]); upon enlarging
it we can assume κ = c = 2ℵ0 . It is therefore contained in Z(p∞)ℵ0 , see Ex. 3
in [Fuc70, §23]. We conclude again by Lemma 8 since Z(p∞) is countable.

�

5. On McKenzie’s and Churkin’s examples

Churkin [Chu05] defines a group G by generators and relations as fol-
lows. Let I be an index set of cardinality c.

G =
〈
ai ,bi , c (i ∈ I) : all generators commute, except [ai ,bi] = c (∀ i)

〉
Earlier, McKenzie defined an almost identical group M with the same no-
tation as above but imposing in addition that all ai and bi have order two
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(proof of Thm. 4 in [McK71]). We shall work with G, but the arguments
work equally well for M.

Observe that there is an epimorphism from G to a free abelian group A
of continuum rank c. Indeed define A to be free on a set {āi , b̄i : i ∈ I} and
map ai 7→ āi , bi 7→ b̄i . The kernel of this epimorphism is generated by c. In
particular, G is nilpotent and of size c. (In the case of M, replace A by the
free Z/2Z-module B on {āi , b̄i : i ∈ I}.)

Theorem 15 (McKenzie, Churkin). Every homomorphism from G or M to
Sym(ℵ0) factors through A, respectively B.

Since we found library access to [Chu05] difficult, we reproduce its beau-
tiful argument:

Churkin’s proof of Theorem 15. Let X be a countable set with a G-action. We
need to show that c fixes any given x ∈ X. Consider the map I → X, i 7→ aix.
Since I is uncountable, it contains an uncountable subset J such that aix is
constant over i ∈ J . For the same reason, there is an uncountable subset
K ⊆ J such that bix is constant over i ∈ K . Choose three distinct indices
i, j,k all in K . Since both a−1

j ai and b−1
k bi fix x, so does [a−1

j ai ,b
−1
k bi]. On the

other hand, this commutator is c because aj commutes with ai ,bk ,bi and bk
commutes with aj , ai ,bi . The same proof works for M. �

To deduce that G is not countably representable, it remains of course to
prove that the subgroup generated by c in G is not trivial. Unfortunately
the argument given in [Chu05], aiming to map G onto the integral Heisen-
berg group, does not work — and indeed Theorem 15 rules out witnessing
the non-triviality of c in any countable quotient.

There is nonetheless a direct argument. Consider the central extension

0 −→ Z −→ E −→ A −→ 0

given by the following two-cocycle (factor set) f : A × A → Z. Denote by
αi : A → Z the coefficient map of āi and likewise βi for b̄i . Then define
f (x,y) =

∑
i∈I αi(x)βi(y), noting that the sum is finite for each x,y ∈ A. This

is a normalised two-cocycle and hence defines an extension E as above (see
e.g. Ex. IV.3.8 and V.6.5 in [Bro82] for the connection between Z-bilinear
maps and two-cocycles on abelian groups). Explicitly, recall that the un-
derlying set for E is Z×A with multiplication

(n,x) · (m,y) =
(
n+m+ f (x,y),x+ y

)
.

The presentation of G implies that there is an epimorphism G → E map-
ping c to (1Z,0A) and compatible with the epimorphismsG→ A and E→ A.
The latter property ensures that this map G → E is actually an isomor-
phism G � E. By construction, (1Z,0A) is non-trivial in E and indeed has
infinite order.
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This confirms that G is not countably representable and further implies
that for all n ≥ 2 the quotient of G by 〈cn〉 gives an extension of A by Z/nZ
which is not countably representable either.

The above explicit construction can also be used as follows. The cocycle
f extends by bilinearity to a Q-valued cocycle on the free Q-module on
{āi , b̄i : i ∈ I}, which is isomorphic to R. We therefore obtain an extension

0 −→Q −→ F −→ R −→ 0

containing Churkin’s group. Defining H = F ×R, this further implies the
following curiosity, in marked contrast to our Theorem 5:

Corollary 16. There exists a nilpotent group H given by a central extension

0 −→ R −→H −→ R −→ 0

which is not countably representable. �

Finally, we present the proof of Theorem 6, establishing thatG andM do
not admit any faithful representation to any Hausdorff topological group
that is separable or Lindelöf. This contains Theorem 15 since Sym(ℵ0) is a
Polish group.

Proof of Theorem 6. We keep the notation introduced above for Churkin’s
group G and for its explicit construction as central extension E (the proof
for M is the same).

We claim that if G is covered by countably many left translates of some
subsetW ⊆ G, then the central generator c is a commutator of two elements
of the product set W −1W .

Indeed there is an uncountable subset J ⊆ I such that all aj with j ∈ J
belong to a fixed translate of W , say rW for some r ∈ G. Likewise there is
K ⊆ J infinite and s ∈ G such that bk ∈ sW for all k ∈ K . As in Theorem 15,
we observe that c = [a−1

j ai ,b
−1
k bi] whenever i, j,k are distinct. Taking all

three indices in K , both a−1
j ai and b−1

k bi belong to W −1W , confirming the
claim.

Consider now a group homomorphism π : G→ H to some separable or
Lindelöf topological group H . It suffices to show that π(c) belongs to every
neighbourhood U ⊆H of the identity in H .

To that end, choose a symmetric neighbourhood V of the identity in H
such that V 16 ⊆U . There exists a sequence {hn} inH such that {hnV } covers
H . Indeed, in the Lindelöf case this holds by definition of that property. In
the separable case, we can take any sequence {hn} that is dense in H since
then for any h ∈H the sequence h−1

n h must meet V .
In particular, π(G) is covered by {hnV } and upon extracting we assume

that moreover hnV meets π(G) for every n. We then choose gn ∈ G with
π(gn) ∈ hnV . It now follows

hnV ⊆ π(gn)V −1V = π(gn)V 2.



12 NICOLAS MONOD

Thus π(G) is covered by the sequence π(gn)V 2 and we conclude that G is
covered by countably many left translates of π−1(V 2).

We now apply the initial claim to W = π−1(V 2) and deduce that c is a
commutator of two elements of W −1W = π−1(V 4). Therefore, π(c) is the
product of four elements of V 4 and thus belongs indeed to V 16 ⊆ U , com-
pleting the proof. �

The reader will have noticed that this proof is inspired by two sources:
Churkin’s proof above and the use of the Steinhaus property made in the
separable case by Rosendal and Solecki in Prop. 2 of [RS07].

Remark 17. Our proof makes almost no distinction between the separable
and the Lindelöf cases, but they are formally independent. On the one
hand, there obviously are non-separable Lindelöf groups since there is no
limit to the cardinality of a compact group (while separable regular spaces
have cardinality ≤ 2c [HNV04, a-3]). The reverse question is more delicate
and was notably asked by Wilansky in 1968 for normal groups [ST74]. An
example conditional to the continuum hypothesis was provided in [HJ76],
and then an unconditional example in [HvM85].
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