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Abstract. We establish new results on the weak containment of quasi-regular
and Koopman representations of a second countable locally compact group G as-
sociated with non-singular G-spaces. We deduce that any two boundary represen-
tations of a hyperbolic locally compact group are weakly equivalent. We also show
that non-amenable hyperbolic locally compact groups with a cocompact amenable
subgroup are characterized by the property that any two proper length functions
are homothetic up to an additive constant. Combining those results with the
work of  L. Garncarek on the irreducibility of boundary representations of discrete
hyperbolic groups, we deduce that a type I hyperbolic group with a cocompact
lattice contains a cocompact amenable subgroup. Specializing to groups acting on
trees, we answer a question of C. Houdayer and S. Raum.

1. Introduction

1.1. Type I groups. According to L. Auslander and C. Moore [AM66, p. 1],

“one of the fundamental questions one can raise about any locally compact
group or C*-algebra is that of determining when it is type I.”

The notion of type I, hailing from the very origins of operator algebras and represen-
tation theory [MvN36], can be seen as a rigorous way to define the class of groups
for which unitary representations can be classified in any meaningful manner. That
notion is of fundamental importance, although the definition may seem technical
at first sight; we refer to the recent book [BdlH20] for a detailed account and a
review of known result. Let us merely mention here that, by a celebrated result of
E. Thoma [Tho64, Tho68], a discrete group is type I if and only if it is virtually
abelian.

In the non-discrete case, the current state of the art is not nearly as complete,
despite numerous results ensuring that various important families of groups are
type I and thus showing that the type I class is much richer than in the discrete
case. What is completely lacking, in contrast to Thoma’s theorem, is a definite
structural consequence of type I. We venture the following.

Conjecture A. Every second countable locally compact group of type I admits a
cocompact amenable subgroup.

The structural property contemplated in this conjecture is a strong one. For in-
stance, hyperbolic unimodular groups with a cocompact amenable subgroup are de-
scribed in detail in [CCMT15]. In the wide setting of non-positively curved (CAT(0))
groups, a classification is obtained in [CM15] using also [CM09, CM13]. These de-
scriptions are in terms of semi-simple groups (Lie or non-Archimedean) and tree
automorphism groups, and it turns out that those classes include most known ex-
amples of type I groups with a trivial amenable radical.

(The study of type I among amenable groups is also interesting and very incom-
plete, but Conjecture A is obviously irrelevant there.)
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A more partial motivation for Conjecture A is that Gelfand pairs (G,K), which are
characterised by a very tameK-spherical dual for a compact subgroupK < G, admit
a cocompact amenable subgroup P < G, indeed even an “Iwasawa decomposition”
G = KP [Mon20].

Conjecture A is further discussed in Section 6. We show that this conjecture
would follow from the simplicity of the C∗-algebra C∗λG/H (G), where H is the stabi-

lizer of a generic point in the Furstenberg boundary of G (see Proposition 6.3 and
Remark 6.10).

The bulk of this article is devoted to a completely different line of attack towards
Conjecture A, in a geometric set-up that fosters a rich interplay between the dy-
namical and geometrical aspects of boundary theory. Namely, one of the conclusions
of this paper is that Conjecture A holds for all hyperbolic locally compact groups
which admit a uniform lattice.

Theorem B. Let G be a hyperbolic locally compact group admitting a uniform lat-
tice.

If G is type I, then G has a cocompact amenable subgroup.

As hinted to above, this result leads to a rather precise description of G thanks
to [CCMT15, Theorem D]:

Corollary C. Let G be a hyperbolic locally compact group admitting a uniform
lattice. Recall that G admits a unique maximal compact normal subgroup W .

If G is type I, then the quotient group G/W satisfies exactly one of the following
descriptions:

(i) G/W is the group of isometries of a rank one symmetric space of non-
compact type, or its identity component, which has index at most 2.
In particular G/W is a simple Lie group of rank one.

(ii) G/W is a closed subgroup of the automorphism group of a locally finite non-
elementary tree T , acting without inversions and with exactly two orbits of
vertices, and acting 2-transitively on the set ∂T of ends.

(iii) G/W is trivial or isomorphic to Z, R, Z o {±1} or R o {±1}.
In all cases, it follows that G has an Iwasawa decomposition G = KP , where K is
a compact subgroup and P an amenable closed subgroup.

It is tempting to believe that Corollary C could lead to a necessary and sufficient
structural characterisation of type I among hyperbolic locally compact group admit-
ting a uniform lattice. Indeed, every group as in (i) or (iii) is known to be type I;
as for case (ii), these groups are conjectured to be type I since [Neb99] (C. Neb-
bia’s conjecture in loc. cit. is formulated for regular trees, and predicts the formally
stronger statement that a group as in (ii) is CCR).

As we shall discuss below (see Remark 5.6), the assumption on the existence of
a uniform lattice can probably be relaxed with further work. Two points should be
emphasized in that relation:

On the one hand, this assumption incidentally ensures that G is unimodular,
which rules out amenable non-elementary hyperbolic groups [CCMT15, Theorem 7.3].
Those can indeed fail to be type I and rule out the most naive converse to Conjec-
ture A, see Proposition 5.8 for an example.

On the other hand, if as we suspect we can replace the assumption on uniform
lattices by the weaker unimodularity assumption, then this stronger version of Corol-
lary C would imply a posteriori that G does contain a uniform lattice. Indeed, this
follows from the Borel–Harish-Chandra theorem [BHC62] in case (i), from the Bass–
Kulkarni theorem [BK90] in case (ii), and is clear in case (iii).
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One of the upshots of Corollary C is that the totally disconnected case is reduced
to the setting of tree automorphism groups. Taking a step back, we note that the
class of compactly generated closed subgroups G of the automorphism group of
any locally finite tree T provides a broad natural source of examples of hyperbolic
locally compact groups. Indeed, the group G then acts cocompactly on the smallest
G-invariant subtree T ′ of T (see [CDM11, Lemma 2.4]), so that G is quasi-isometric
to T ′. In particular G is hyperbolic. By specializing Theorem B and Corollary C to
this setting, we obtain the following.

Corollary D. Let T be a locally finite tree and G ≤ Aut(T ) be a closed non-
amenable subgroup acting minimally on T . If G is type I, then the G-action on the
set of ends ∂T is 2-transitive.

This strengthens Theorem A from [HR19], establishing the weaker property that
the G-action on T is locally 2-transitive, i.e. the stabilizer of every vertex of va-
lency ≥ 3 is 2-transitive on the set of incident edges. Corollary D contributes to
the characterization of the type I property among closed subgroups of the auto-
morphism group of a tree by solving the second part of Problem 1 in [HR19]. It
should also be noted that C. Houdayer and S. Raum establish a stronger result than
their Theorem A mentionned above (see [HR19, Theorem C]), which establishes the
same conclusion under the hypothesis that the group von Neumann algebra L(G) is
amenable, which is formally weaker than the type I condition.

1.2. Boundary representations. Glimm’s theorem [Gli61] characterizes the type I
property for G by the fact that any two weakly equivalent irreducible unitary rep-
resentations of G are equivalent. For this reason, a substantial part of this paper
is a contribution to the unitary representation theory of hyperbolic locally compact
groups. An important source of unitary representations of such a groupG is provided
by the so-called boundary representations, which are the Koopman representa-
tions κν associated with a quasi-invariant probability measure ν supported on the
Gromov boundary ∂G. We shall prove the following.

Theorem E. Any two boundary representations of a non-amenable hyperbolic locally
compact group are weakly equivalent.

For a detailed account of notion of weak containment and weak equivalence of
unitary representations, we refer to [BdlHV08, Appendix F]. Let us simply re-
call here that two unitary representations π1, π2 of a locally compact group G are
weakly equivalent if their C∗-kernel coincide; in other words the respective repre-
sentations of C∗(G) corresponding to π1, π2 have the same kernel. For a discrete
non-elementary hyperbolic group G, it is well-known that every boundary represen-
tation of G is weakly contained in the regular representation (see [Ada94, Theo-
rem 5.1] and [Kuh94]). Using that the kernel of the G-action on ∂G is the amenable
radical R(G), which is finite, the assertion of Theorem E for a discrete hyperbolic
group directly follows from the fact that G/R(G) is C∗-simple, i.e. its the reduced
C∗-algebra is simple, see [dlH88] and [BKKO17, Theorem 6.5]. For non-discrete hy-
perbolic groups, the latter property fails: indeed, every rank one connected simple
Lie group with finite center is hyperbolic, but no such group is C∗-simple (see [dlH07,
App. G]).

The proof of Theorem B combines Theorem E with several other ingredients that
we now proceed to describe. In trying to apply Glimm’s characterization of the type I
condition, it is obviously useful to have a large supply of irreducible representations
of G at one’s disposal, together with a good understanding of their classification
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up to equivalence. In the setting of Theorem B, these representations will be the
boundary representations associated with Patterson–Sullivan measures.

Specifically, consider a locally compact hyperbolic group G. For the purpose of
Theorem B, we can readily reduce ourselves to the case where G is totally discon-
nected. In particular, it admits a Cayley–Abels graph X on the vertex set G/U ,
where U is any given compact open subgroup. More precisely, the edge structure of
the graph X depends on the choice of a compact generating set for G, or equivalently
of a suitable word metric on G; we will crucially use this freedom of choice.

Since X is a locally finite hyperbolic graph, its Gromov boundary is a compact
G-space and supports a canonical family of Patterson–Sullivan measures. For the
time being, recall simply that any choice of a base-point in X determines a measure
ν on ∂X ∼= ∂G and that any other point gives an equivalent measure; in particular,
ν is quasi-invariant under G and defines a Koopman representation κν of G on
L2(∂G, ν), that we call a PS-representation.

Our strategy consists in first using Theorem E to apply Glimm’s criterion to
these representations and then establishing a number of geometric consequences
culminating in the fact that G acts transitively on its boundary ∂G. To this end, we
rely on the groundbreaking work of  L. Garncarek [Gar14], extending earlier results
of Bader–Muchnik [BM11], and solving an important case of the conjecture that
they formulated in loc. cit. The fact that Garncarek’s results are stated and proved
for discrete hyperbolic groups explains our auxiliary hypothesis that G admits a
uniform lattice. On the one hand, Garncarek proves that PS-representations are
all irreducible. On the other hand, he shows that two such representations are
equivalent if and only if the underlying word metrics are roughly similar, which
means that they are homothetic up to an additive constant. Applying these results
to the lattice yields them a fortiori for G, since the representations are already
defined on G.

In summary, relying on Glimm’s and Garncarek’s theorems, our strategy consists
of the following two steps.

The first one, of analytic flavour, is to prove Theorem E. It implies that all PS-
representations (associated to any word metric) are weakly equivalent. We shall
establish such a weak equivalence in a more general context for rather more general
groups G, as stated in Corollary H below.

The second step, of geometric flavour, is to establish that G admits indeed a
cocompact amenable subgroup when any two word metrics on G are roughly similar.
This requires new results on hyperbolic groups, entering Theorem J below.

1.3. Weak containment of Koopman and quasi-regular representations.
The first remaining step for the proof of Theorem E relies on new results on weak
containment of unitary representations in a broad context of locally compact trans-
formation groups, regardless of any hyperbolicity assumption. In order to present
their statements, we recall that a locally compact group H is called regionally
elliptic if every compact subset of H is contained in a compact subgroup. If H
is σ-compact, this is equivalent to requiring that H is a countable ascending union
of compact subgroups. A tdlc group is a locally compact group which is totally
disconnected.

Theorem F. Let G be a second countable tdlc group and (X, ν) be a standard
probability space endowed with a measurable G-action, such that ν is quasi-invariant
under G. Let κ be the Koopman unitary representation of G on L2(X, ν).
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Then there is a co-null set Y ⊆ X such that for every x ∈ Y with regionally
elliptic stabilizer Gx, the quasi-regular representation λG/Gx is weakly contained in
the Koopman representation κ.

Let us point out that for a discrete group, every Koopman representation weakly
contains the quasi-regular representation associated with almost every point stabi-
lizer (see [DG17, Proposition 7]). We do not know whether this result holds in the
non-discrete case; Theorem F provides a special case where this is indeed true.

The relevant weak containment in the opposite direction is established by the fol-
lowing statement, which crucially relies on the work of C. Anantharaman-Delaroche
[AD03].

Theorem G. Let G be a second countable locally compact group, and let X be a min-
imal compact G-space. Let ν be a G-quasi-invariant Radon probability measure on
X such that L2(X, ν) is separable. Assume that the G-action on (X, ν) is amenable
in the sense of Zimmer, and let X1 ⊆ X denotes the conull subset consisting of those
x ∈ X such that Gx is amenable. Then the following assertions hold.

(i) For all x, y ∈ X1, the quasi-regular representations λG/Gx and λG/Gy are
weakly equivalent.

(ii) For all x ∈ X1, the quasi-regular representation λG/Gx weakly contains the
Koopman representation κν.

We emphasize that, if the G-action on X is topologically amenable, then X1 = X.
By combining a topological version of Theorem F, recorded as Theorem 3.1 below,

with Theorem G, we obtain the following consequence.

Corollary H. Let G be a second countable tdlc group and X be a minimal compact
G-space equipped with a G-quasi-invariant Radon probability measure ν such that
L2(X, ν) is separable. Suppose that for some x ∈ X, the stabilizer Gx is regionally
elliptic.

If the G-action on (X, ν) is amenable in Zimmer’s sense, then the Koopman repre-
sentation κ of G on L2(X, ν) is weakly equivalent to the quasi-regular representation
λG/Gy for any y ∈ X such that Gy is amenable.

Thus in particular, in the setting of Corollary H, the weak equivalence class of
the Koopman representation κ is independent of ν.

The regionally elliptic hypothesis appearing in Theorem F and Corollary H may
seem rather restrictive (although the special case where Gx = 〈e〉 is interesting in its
own). Nonetheless, it turns out that the results of this section are general enough
to be applied to the action of a hyperbolic locally compact group G on its Gromov
boundary X = ∂G: that action is indeed topologically amenable (see [Ada96, Theo-
rem 6.8] and [Kai04]). Moreover, we establish new results on the algebraic structure
of amenable subgroups of G which ensure that the regionally elliptic hypothesis of
Corollary H is automatically satisfied in the context of Theorem E (see Section 4.1
below), using a reduction to the tdlc case that relies on [CCMT15].

1.4. Characterizing non-amenable hyperbolic groups with a cocompact
amenable subgroup. As mentioned above, the proof of Theorem B requires iden-
tifying the non-amenable hyperbolic groups with a cocompact amenable subgroup
with those hyperbolic groups for which any two word metrics are roughly similar.
This is ensured by Theorem J, which supplements [CCMT15, Theorem D and The-
orem 8.1]. Given a point ξ in the Gromov boundary of a hyperbolic locally compact
group G, we denote by G0

ξ the kernel of the Busemann homomorphism βξ : Gξ → R
(see Section 4.1 below).
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Theorem J. Let G be a non-amenable hyperbolic locally compact group and (X, d)
be a proper geodesic metric space on which G acts continuously, properly and co-
compactly by isometries.

The following conditions are equivalent.

(i) G has a cocompact amenable subgroup.
(ii) The G-action on the Gromov boundary ∂X is 2-transitive.

(iii) For all ξ ∈ ∂X, we have G0
ξ 6= Gξ.

(iv) For some continuity point η ∈ ∂X of the stabilizer map, we have G0
η 6= Gη.

(v) There is a constant K such that, for every hyperbolic element γ ∈ G, there ex-
ists a hyperbolic element γ′ ∈ G with asymptotic displacement length |γ′|∞ ≤
K such that γ and γ′ share the same pair of fixed points in ∂X.

(vi) For any word metric d′ on G with respect to a compact generating set, each
orbit map G→ X is a rough similarity.

The equivalence between (i) and (ii) is taken from [CCMT15]. A special instance
of the equivalence between (ii) and (iii) has been observed for specific families of
groups of tree automorphisms by C. Ciobotaru in her PhD thesis [Cio14, Proposi-
tion 2.2.11]. The proof of Theorem B uses the implications (iv) ⇒ (i), (v) ⇒ (i)
and (vi) ⇒ (i), which are all new.

1.5. Epilogue on boundary representations. We finish by recording another re-
sult, established along the way, that has its own interest. We recall that a C∗-algebra
A is called CCR if π(A) consists of compact operators for every irreducible represen-
tation π of A ([Dix96, Definition 4.2.1]). A is called GCR if every non-zero quotient
of A contains a non-zero CCR closed two-sided ideal ([Dix96, Definition 4.3.1]).

We say a unitary representation π of a locally compact group G is CCR (resp.
GCR) if the C*-algebra C∗π(G) := π(C∗(G)) is CCR (resp. GCR). In particular, if
π is an irreducible CCR representation, then C∗π(G) consists of compact operators,
but this need not be the case if π is not irreducible (indeed, a normal operator need
not be compact). It is thus important to underline that the boundary representation
κ in the following theorem is arbitrary, and need not be irreducible a priori.

Theorem K. Let G be a non-amenable hyperbolic locally compact group admitting
a uniform lattice. For any boundary representation κ of G, the following assertions
are equivalent.

(i) C∗κ(G) contains a non-zero CCR closed two-sided ideal.
(ii) κ is GCR.

(iii) κ is CCR.
(iv) C∗κ(G) entirely consists of compact operators.
(v) G has a cocompact amenable subgroup.

The implications (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) in Theorem K are tautological, while
the implication (v)⇒ (iv) follows from the fact that if G has a cocompact amenable
subgroup P , then ∂G can naturally be identified with G/P so that κ becomes
equivalent to the quasi-regular representation λG/P . That the quasi-regular repre-
sentation defined by a cocompact subgroup satisfies the condition (iv) follows by
general principles (compare Proposition 5.1).

The key implication is (i) ⇒ (v). The formally weaker implication (iv) ⇒ (v) is
much more straightforward, and can be established without requiring that G has a
cocompact lattice by invoking Propositions 4.1 and 6.5 below (see also [Neb99] in
the special case of groups acting on trees).
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2. Preliminaries

In this section we gather some general facts which we will use in proofs of our
results.

2.1. Koopman unitary representations. Throughout the paper, by a represen-
tation of a locally compact group G we always mean a continuous unitary represen-
tation. The most commonly used representations in this work are the Koopman uni-
tary representations κν associated to measurable actions of locally compact groups
G on G-quasi-invariant σ-finite measure spaces (X, ν). Recall that κν is defined by

(κν(g)ξ)(x) :=

√
dgν

dν
(x) ξ(g−1x)

for all g ∈ G, ξ ∈ L2(X, ν) and ν-a.e. x ∈ X.
Some care should be taken with regards to the continuity of the action, which is not

guaranteed in this generality (see [BdlHV08, Remark A.6.3]). The representation
κν is a continuous, for instance, when G is σ-compact and L2(X, ν) is separable
([BdlHV08, Proposition A.6.1] and [SvN50, Theorem 2]). Except in some places
in Section 6, we always work with continuous actions of G on metrizable locally
compact spaces X. When ν is a Radon measure on X, then L2(X, ν) is separable.
Also, note that all locally compact hyperbolic groups are σ-compact. In particular,
the continuity issue will only be relevant in some places in the last section, where
we consider general boundary actions. However, in that case, considering those
measures ν whose L2-spaces are separable will suffice for our purposes, and therefore
again we will not have any continuity issue for the Koopman representations.

The following basic facts are well-known. We record them for easy reference in
few places later in the paper.
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Lemma 2.1. Let G be a σ-compact locally compact group and X be a locally compact
G-space. If ν and ν ′ are two equivalent σ-finite Radon measures on X which are
quasi-invariant under G, then the Koopman representations of G on L2(X, ν) and
L2(X, ν ′) are unitary equivalent.

Proof. It is straightforward to see that the map T : L2(X, ν) → L2(X, ν ′) defined

by Tξ =
√

dν
dν′
ξ is a unitary that intertwines κν and κν′ . �

Lemma 2.2. Let G be a locally compact group and X be a locally compact G-space.
Let ν be a Borel probability measure on X which is quasi-invariant under G. Then
for any Borel measure µ on G we have µ ∗ ν ∼ ν.

Proof. Let Y be a Borel subset of X. If ν(Y ) = 0, then ν(gY ) = 0 for all g ∈ G by
quasi-invariance, and therefore µ ∗ ν(Y ) =

∫
G
ν(g−1Y ) dµ(g) = 0.

Conversely, assume µ ∗ ν(Y ) = 0. Then ν(g−1Y ) = 0 for µ-a.e. g ∈ G. Hence,
ν(Y ) = 0 by quasi-invariance. �

We recall from [Dix96, §13.7] that a positive definite measure on a locally

compact group G is a measure µ on G such that
∫
G
f ∗ f̃ dµ ≥ 0 for all f ∈ Cc(G),

where Cc(G) denotes the set of continuous compactly supported complex valued

functions on G and f̃(g) = f(g−1). (The convolution is with respect to a left Haar
measure.) Every such measure µ defines a unitary representation πµ ofG constructed
as follows. The formula 〈f, g〉µ =

∫
G
g̃∗f dµ turns Cc(G) into a pre-Hilbert space; we

define the Hilbert space Hµ to be its separated completion. The representation πµ is
induced by the representation s on Cc(G) defined by (s(g)f)(x) = f(g−1x)∆G(g)1/2,
where ∆G is the modular function of G.

For example, for the Dirac mass δe at the neutral element, we have πδe
∼= λG,

whereas the representation associated with a right Haar measure on G is the trivial
representation. More generally, we have the following result of Blattner.

Theorem 2.3. Let G be locally compact group and H ≤ G be a closed subgroup. Let
αH be a left Haar measure on H, viewed as a measure on G, and define a mesure

µ on G be setting dµ =
√

∆G

∆H
dαH , where ∆G and ∆H are the modular functions

of G and H respectively. Then µ is positive definite and πµ is equivalent to the
quasi-regular representation λG/H := IndGH(1).

Proof. We refer to [Bla63, Theorem 1]; note that Blattner uses the opposite conven-
tion from Dixmier regarding convolution. �

We endow the set of measures on G with the vague topology, which is the
topology of pointwise convergence on Cc(G) (see [Bou65, Chapter III, §1, no. 9]).
In particular, a sequence (µn)n of measures on G vaguely converges to a measure
µ if for every function f ∈ Cc(G), the sequence (

∫
G
fdµn)n converges to

∫
G
fdµ.

Lemma 2.4. Let G be a lcsc group and M be a set of measures on G. Then M
is relatively compact for the vague topology if and only if for each compact subset
K ⊆ G, there is a constant MK such that |µ|(K) ≤MK for all µ ∈M .

Proof. We refer to Proposition 15 in [Bou65, Chapter III, §1, no. 9]. �

The following continuity principle is of fundamental importance for Theorem F.
It is related to Fell’s continuity theorem recalled in Section 2.2 below.

Lemma 2.5. Let G be a lcsc group and (µn) a sequence of positive definite measures
on G. If µn → µ vaguely, then µ is also positive definite and πµn → πµ in Fell’s
topology.
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Proof. The fact that µ is also positive definite is obvious. The definition of Fell
convergence needs only to be checked on a dense subset of vectors (see e.g. [BdlHV08,
Lemma F.1.3]), so we check it using the canonical image of Cc(G) in the Hilbert
spaces Hπµn and Hπµ respectively. Explicitly, given f ∈ Cc(G) and a compact
subset Q ⊂ G, it suffices to show that the matrix coefficient function

g 7−→ 〈f, πµn(g)f〉µn = µn((s(g)f)∼ ∗ f)

converges to µ((s(g)f)∼ ∗ f) uniformly over g ∈ Q. The vague convergence assump-
tion implies that this holds pointwise for each g. However, the set {(s(g)f) ∗ f :
g ∈ Q} is compact in Cc(G) for the topology of uniform convergence on compact
subsets because the orbital map g 7→ s(g)f is continuous. So we only need to recall
that the vague convergence of a sequence is actually uniform on compact subsets of
Cc(G), see Proposition 17(ii) in [Bou65, Chapter III, §1, no. 10]. �

We shall also need the following basic fact.

Lemma 2.6. Let G be a locally compact group and X be a locally compact G-space.
For each x ∈ X and every compact subset K ⊂ G with K ∩Gx = ∅, there exists an
open neighbourhood α of x such that gα ∩ α = ∅ for all g ∈ K.

Proof. Suppose it is not the case. Then for each open neighbourhood α of x, there
exists gα ∈ K and xα ∈ α with gα(xα) ∈ α. The compactness of K ensures that
(gα) subconverges to an element g ∈ K with g(x) = x, contradicting the hypothesis
that K ∩Gx = ∅. �

2.2. URS and Fell’s continuity theorem. We recall Fell’s continuity theorem:

Theorem 2.7 (Fell 1964). The quasi-regular representation λG/H , viewed as map
from the Chabauty space of closed subgroups H < G of a given locally compact group
G to the Fell space of equivalence classes of unitary G-representations, is continuous.

Proof. This is contained in Theorem 4.2 of [Fel64]. �

The relation with Lemma 2.5 is that one can embed the Chabauty space into the
space of Radon measures on G by assigning to H < G a suitably normalized Haar
measure on H, viewed as a measure on G. When both modular functions ∆G and
∆H are trivial on H, this directly gives a proof of Theorem 2.7; we spell out the
arugment for completeness:

Proposition 2.8. Let G be a lcsc group and (Hn) be a sequence of unimodular closed
subgroups, all contained in Ker(∆G), that converges to H ≤ G in the Chabauty
topology. Then λG/Hn converges to λG/H in Fell’s topology.

We note that the assumptions on the modular functions are satisfied in the setting
of Theorem F since it is concerned with regionally elliptic subgroups H. Accordingly,
the proof of that theorem will invoke Lemma 2.5 rather than the full generality of
Theorem 2.7.

Proof of Proposition 2.8. Let V be a compact identity neighbourhood in G. For
each closed subgroup J ≤ G, we fix the left Haar measure αJ on J such that
αJ(J ∩ V ) = 1. We view αJ as a measure defined on G and supported on J .
The map J 7→ αJ defines a homeomorphism of the Chabauty space Sub(G) onto
its image, which is endowed with the vague topology, see [Bou63a, Chapter VIII,
§3 and §6]. Moreover, the set of unimodular closed subgroups is Chabauty closed
by [Bou63a, Chapter VIII, §3, Theorem 1]. It follows that H is unimodular.
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For each n define the measure µn by dµn =
√

∆GdαHn , and define µ by dµ =√
∆GdαH , where ∆G is the modular function of G. Since Hn ≤ Ker(∆G) by hy-

pothesis, we have H ≤ Ker(∆G), and it follows µn = αHn , and µ = αH . Therefore,
we deduce from Theorem 2.3 that παHn (resp. παH ) is equivalent to λG/Hn (resp.
λG/H). By hypothesis, we know that αHn vaguely converges to αH . Hence, the
required conclusion follows from Lemma 2.5. �

Let us now consider a locally compact group G. A uniformly recurrent sub-
group (or URS) is a minimal G-invariant closed subset of Sub(G). We recall
from [GW15] that every minimal compact G-space X yields a URS called the sta-
bilizer URS, defined as the unique URS contained in the closure of the set of
stabilizers {Gx | x ∈ X}. It is denoted by ST G(X). If Sub(G) is metrizable
(which is automatic if G is second countable), then a classical semi-continuity ar-
gument ensures that X contains a dense Gδ-set of points x such that the stabilizer
map x 7→ Gx is continuous (see [Kur28, Theorem VII]). The set of those continuity
points is denoted by X0. For x ∈ X0, we have Gx ∈ ST G(X).

By Fell’s continuity theorem, if Y is a URS of G, then for any two Y1, Y2 ∈ Y , the
representations λG/Y1 , λG/Y2 are weakly equivalent. In particular Y yields a canonical
quotient of the maximal C∗-algebra of G, defined by

C∗(Y) = C∗λG/Y (G),

where Y is an arbitrary element of Y . This fact has recently been observed in the
case of a discrete group G by T. Kawabe [Kaw17] and G. Elek [Ele18].

Remark 2.9. The fact that the set X0 of continuity points of the stabilizer map
X → Sub(G) is a dense Gδ holds more generally, for the same reason, if there is
a closed metrizable subset M ⊆ Sub(G) such that Gx ∈ M for all x ∈ X. This
happens notably in the case where the quotient of G by the kernel W of the G-action
on X is second countable: indeed the closed subset {H ∈ Sub(G) | H ≥ W} ⊆
Sub(G) is homeomorphic to Sub(G/W ), and is thus metrizable.

3. Koopman and quasi-regular representations

This section is devoted to the proofs of Theorems F and G stated in the Intro-
duction. We shall occasionaly use the shorthand π ≺ σ to denote that π is weakly
contained in σ.

3.1. The Koopman representation weakly contains a quasi-regular rep-
resentation. In the setting of Theorem F, we invoke the existence of a compact
model, i.e. a metrizable compact space X ′ with a continuous G-action, and a quasi-
invariant probability measure ν ′ on X ′, such that the G-spaces (X, ν) and (X ′, ν ′)
are measurably isomorphic. This well-known fact follows from [Var63, Theorem 3.2],
which affords the metrizable compact G-space X ′ and a G-equivariant isomorphism
of Borel spaces φ : X → X ′0, where X ′0 is a G-invariant Borel subset. The measure ν ′

can then be defined by setting ν ′ = φ∗(ν). Given the existence of compact models,
Theorem F stated in the introduction directly follows from the topological version
of that result.

Theorem 3.1. Let G be a second countable tdlc group, X be a locally compact G-
space, and ν a G-quasi-invariant σ-finite Radon measure on X such that L2(X, ν)
is separable. Let κ be the Koopman representation of G on L2(X, ν).

If x ∈ X is a point belonging to the support of ν and such that the stabilizer Gx

is regionally elliptic, then the quasi-regular representation λG/Gx is weakly contained
in the Koopman representation κ.
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Proof. We choose a decreasing sequence Un of relatively compact open subsets of
G forming a neighbourhood basis at e. We further choose an increasing sequence
of compact subsets Kn covering G. Finally, let Qn be an increasing sequence of
compact subgroups of Gx covering Gx. Note that Kn and Qn ultimately cover any
compact subsets of G and Gx, respectively. Define K ′n = Kn \ UnGx; this is a
compact set. Therefore, by Lemma 2.6, there is a neighbourhood αn of x such that
K ′nαn ∩ αn = ∅.

For each n, we now choose an open neighbourhood βn of x such that g−1βn ⊆ αn
holds for all g ∈ Qn. This is possible since Qn is compact and Gx fixes x. The
characteristic function 1βn is a non-negative element of L1(X, ν) which is non-zero
since x is in the support of ν. Now the element

ξn = κν(1Qn)1β =

∫
Qn

κν(g)1β dg ∈ L1(X, ν)

is non-negative, non-zero, supported in α, and Qn-invariant.
We now define measures µ′n and µn on G as follows. Let dµ′n(g) = (κ(g)ξn, ξn)dg

for some choice of right Haar measure on G and µn = µ′n/µ
′
n(U0). Note that µn is

invariant under right translation by Qn, and vanishes on K ′n by the choice of ξn.
We first claim that for any compact set Ω ⊂ G, there is m such that for all n ≥ m

we have

Ω ⊆ K ′n ∪ UnQm.

Indeed, take m large enough to have Ω ⊆ Km and Gx ∩ U−1
0 Ω ⊆ Qm. Then any

ω ∈ Ω \K ′n can be written ω ∈ uh for some u ∈ Un and h ∈ Gx. This h is in U−1
n Ω

and hence in Qm, so that ω ∈ UnQm as claimed.
Next, we claim that the sequence µn(Ω) remains bounded for any given compact

set Ω ⊂ G. Fix m as in the first claim and consider any n ≥ m. Since the
sequence Um is decreasing and a basis of relatively compact neighbourhoods, we
can assume Um ⊆ U0 after possibly increasing m. Since the first claim implies in
particular Ω ⊆ K ′n ∪UmQm, it suffices to bound µn(UmQm) independently of n. By
compactness of UmQm, there are q1, . . . qr ∈ Qm (independent of n) such that UmQm

is in the union of the r translates U0qi. Since each µn is (right) Qm-invariant, it
follows µn(UmQm) ≤ rµn(U0) for all n, and the claim follows.

Upon passing to a subsequence, it follows from Lemma 2.4 that (µn) vaguely
converges to a positive definite measure µ. Since µn(U0) = 1 for all n, we have
µ(U) = 1. Since µn(Ω ∩ K ′n) = 0 for all n, it follows that µ is supported on Gx.
Moreover, we observe that µ is (right) Gx-invariant since Gx =

⋃
nQn and since µn

is (right) Qn-invariant for all n. Hence, by [Bou63a, Chapter VIII, §5.1, Lemma 1],
we infer that µ is a Haar measure on Gx. Note that Gx is unimodular since it is
regionally elliptic. Moreover, since every element of Gx is contained in a compact
subgroup, we see that Gx is contained in Ker(∆G), where ∆G is the modular function
of G. Therefore, we have

√
∆Gdµ = dµ, so that the representation πµ is equivalent

to the quasi-regular representation λG/Gx by Theorem 2.3.
Finally, we notice that the unitary representation πµn is contained in κ for all n,

since πµn is the representation associated with the positive definite function g 7→
(κ(g)ξn, ξn) via the GNS construction. From Lemma 2.5, we deduce πµ ≺ κ, which
completes the proof. �

3.2. The Koopman representation is weakly contained in a quasi-regular
representation. In this section we prove Theorem G. We will need the following
general fact which should be of independent interest.
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Proposition 3.2. Let G be a second countable locally compact group, and X a
minimal locally compact G-space. Assume x ∈ X is such that the stabilizer Gx is
amenable. Then λG/Gx ≺ λG/Gy for every y ∈ X.

Proof. Let y ∈ X be arbitrary. Since the G-action on X is minimal, there is a
sequence (gn) in G such that (gny) converges to x. By passing to a subsequence,
we may assume that Ggny Chabauty converges to some subgroup H < Gx. By
Fell’s continuity theorem (Theorem 2.7), the quasi-regular representation λG/Ggny
converges to λG/H . Since λG/Ggny = λG/gnGyg−1

n
is equivalent to λG/Gy for all n, we

deduce λG/H ≺ λG/Gy .
Since Gx is amenable, the trivial representation 1Gx of Gx is weakly contained in

λGx/H (see [Eym72, no 2, § 4]). Inducing up to G, we deduce λG/Gx ≺ λG/H . We have
seen that the latter is weakly contained in λG/Gy . Thus the proof is complete. �

Proof of Theorem G. Denote by X1 ⊆ X the conull subset consisting of those points
x ∈ X whose stabilizer Gx is amenable. Since the G-action on X is minimal by
hypothesis, the assertion (i) follows from Proposition 3.2.

We shall now prove the assertion (ii).
Fix a regular probability measure µ on G in the class of the Haar measures. Then

for every x ∈ X, the measure µx := px∗(µ) is quasi-invariant, where px : G→ G/Gx

is the canonical projection.
We endow the product G ×X with a G-action defined by g ·(h, x) = (hg−1, gx).

This action preserves the class of the measure µ× ν.
Let now Y ⊂ X ×X be the orbit equivalence relation for the G-action on X. We

endow Y with the G-action defined by g ·(x, y) = (gx, y). Consider the Borel map
p : G × X → Y defined by p(g, x) = (x, gx). Observe that p is G-equivariant. We
define νY = p∗(µ × ν), so that νY is quasi-invariant under G. Moreover, we have
νY =

∫
X

(δx× µx) dν(x), where we have identified the G-orbit of x with G/Gx. This
implies that the Koopman representation κνY is equivalent to

∫
X
λG/Gx dν(x).

Since the action of G on (X, ν) is amenable in the sense of Zimmer, we have
ν(X1) = 1. In view of the assertion (i), it follows that

∫
X
λG/Gx dν(x) is weakly

equivalent to λG/Gz for each z ∈ X1. Therefore κνY is weakly equivalent to λG/Gz
for any z ∈ X1.

Now, consider the projection q : Y → X onto the first coordinate. The map q
is Borel measurable and G-equivariant. Moreover, it follows from the definitions
that q∗(νY ) = µ ∗ ν. By Lemma 2.2 we have µ ∗ ν ∼ ν. Since the action of G
on (X,µ ∗ ν) is amenable in the sense of Zimmer (see [ADR00, Proposition 3.3.5],
and [Ada96, Theorem 6.8] or [Kai04]), it follows from [AD03, Proposition 4.3.2
& Theorem 3.2.1] that κνY weakly contains the Koopman representation of G on
L2(X,µ∗ν). Therefore, using Lemma 2.1, we conclude κν ≺ λG/Gz for all z ∈ X1. �

4. Hyperbolic locally compact groups

A locally compact group G is called hyperbolic if it has a compact generating set
with respect to which the word metric on G is Gromov-hyperbolic. By [CCMT15,
Proposition 2.1], this is equivalent to requiring that G has a continuous, proper,
cocompact, isometric action on a locally compact geodesic metric space X that is
Gromov-hyperbolic. This space is automatically proper by the Hopf–Rinow theorem,
since cocompactness ensures completeness.

In this section, we assume that G is locally compact hyperbolic and fix a space
X as above.

We freely refer to Gromov’s typology concerning isometries and isometric group
actions on hyperbolic spaces, as recalled in e.g. [CCMT15, §3.1]. We recall that
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the displacement length of an isometry g is |g| = inf{d(gx, x) : x ∈ X} and its
asymptotic displacement length is |g|∞ = limn→∞

1
n
d(gnx, x), which does not

depend on x. We have |g|∞ ≤ |g| and |g| ≤ |g|∞ + 16δ, where δ is a hyperbolicity
constant for X. Moreover, |g|∞ is positive if and only if g is hyperbolic. For all this,
see [CDP90, Chapter 10 §6].

We also use throughout that given x ∈ X and ξ 6= ξ′ ∈ ∂X, there exists a geodesic
ray from x to ξ and a geodesic line from ξ′ to ξ. See e.g. Proposition 4 in [GdlH90,
Chap. 7] or [BH99, III.H.3.1] for the former and Proposition 6 in [GdlH90, Chap. 7]
or [BH99, III.H.3.2] for the latter.

Whenever a constant can be chosen depending only on X, we shall call it an
X-constant; most of the time it even depends only on the hyperbolicity constant
of X.

4.1. The structure of relatively amenable subgroups. Our goal is to describe
the algebraic structure of (relatively) amenable closed subgroups of the hyperbolic
locally compact group G. Similar results for groups acting properly cocompact on
proper CAT(0) spaces can be found in [CM13]. We first describe the geometric
features of the action of a relatively amenable subgroup, and then derive algebraic
information.

Proposition 4.1. For any closed subgroup H ≤ G, the following assertions are
equivalent.

(i) H is amenable.
(ii) H is relatively amenable in G.

(iii) H is compact, or H fixes a point ξ ∈ ∂X, or H stabilizes a pair {ξ, ξ′} ⊆ ∂X.

Proof. That (i) implies (ii) is true in full generality.
Assume that H is relatively amenable. If the H-action on X is bounded, then

H is compact since the G-action is proper and H is closed by hypothesis. If the
H-action is horocyclic or focal (resp. lineal), then H fixes a point ξ ∈ ∂X (resp.
H stabilizes a pair {ξ, ξ′} ⊆ ∂X). Therefore, in order to show that (iii) holds, it
suffices to prove that the H-action on X cannot be of general type. Suppose for a
contradiction that it is. Then H contains a Schottky subgroup Λ (see [CCMT15,
Lemma 3.3]). The action of a Schottky subgroup Λ on ∂X is minimal and strongly
proximal, so that Λ, and hence also H, does not fix any probability measure on ∂X.
This implies that H is not relatively amenable in G, thereby confirming that (ii)
implies (iii).

That (iii) implies (i) is a consequence of a well-known result of S. Adams, cited
as Lemma 3.10 in [CCMT15], ensuring that the stabilizer of each point ξ ∈ ∂X in
the full isometry group of X is amenable. �

Our next goal is to describe the algebraic structure of the stabilizer Gξ of a bound-
ary point ξ, or the stabilizers G{ξ,ξ′} of a boundary pair. To that end, we shall use the
Busemann character βξ : Gξ → R afforded by [CCMT15, Corollary 3.9]. It is a
continuous homomorphism whose kernel is denoted by G0

ξ . Moreover, by [CCMT15,

Lemma 3.8], the subgroup G0
ξ consists of those elements g ∈ Gξ that act as elliptic

or parabolic isometries on X; in other words an element g ∈ Gξ satisfies βξ(g) 6= 0
if and only if it is a hyperbolic isometry of X.

Lemma 4.2. Let ξ 6= ξ′ ∈ ∂X. Then G0
ξ,ξ′ := G0

ξ ∩ Gξ′ = Gξ ∩ G0
ξ′ is a compact

normal subgroup of G{ξ,ξ′}. Moreover, the quotient group G{ξ,ξ′}/G
0
ξ,ξ′ is trivial or

isomorphic to Z, Z o {±1}, R or R o {±1}.
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Proof. Notice that G0
ξ ∩ Gξ′ consists of the elements of Gξ ∩ Gξ′ that are not hy-

perbolic. The same description applies to Gξ ∩ G0
ξ′ . Hence G0

ξ ∩ Gξ′ = Gξ ∩ G0
ξ′ .

Denoting that subgroup by W , we may complete the proof by invoking the same
argument as in the proof of [CCMT15, Proposition 5.6]. �

Following [CM13, §4.1], we say that a subgroup A ≤ G is compactible with limit
K if K ≤ G is a compact subgroup such that for any neighbourhood U of K in G
and every finite subset F ⊆ A, there is α ∈ Aut(G) with α(F ) ⊆ U . If this is the
case, we say that a sequence (gn) in G is a compacting sequence for A if for all
a ∈ A, the sequence (gnag

−1
n ) is bounded and each of its accumulation point belongs

to K.

Lemma 4.3. Let ξ ∈ ∂X. There exists a sequence (gn) in G and a pair η 6= η′ in
∂X such that G0

ξ is compactible with limit G0
η,η′, and (gn) is a compacting sequence

for G0
ξ.

Proof. Fix a geodesic ray r : R+ → X with endpoint ξ. Let gn ∈ G be such that the
sequence gn(r(n)) is bounded. Upon extracting, we may assume that gnr(ψ(n) + t)
converges for every t ∈ R, where ψ : N→ N is a strictly increasing function. More
precisely, note that for any fixed t, the point r(ψ(n) + t) is defined when n is large
enough and gnr(ψ(n)+t) remains in a bounded set. Finding a common subsequence
for all t ∈ R can be achieved e.g. by applying a diagonal argument for t ∈ Q and then
using that r is uniformly continuous. We can further assume that gn(ξ) converges
to a point η ∈ ∂X and that gn(r(0)) converges to η′ ∈ ∂X. There is now a geodesic
line ` joining η′ to η, namely `(t) = limn gnr(ψ(n)+ t). In particular we have η 6= η′.
It now follows from the definition that for each a ∈ G0

ξ , the sequence (gnag
−1
n ) is

bounded (because the sequence n 7→ d(ag−1
n (`(0)), g−1

n (`(0))) is bounded), and that
each of its accumulation points belongs to Gη,η′ .

We claim that each accumulation point of (gnag
−1
n ) actually belongs to G0

η,η′ .
To prove that claim, we shall use the existence of an X-constant K such that for
each g ∈ G0

ξ , we have d(gr(n), r(n)) ≤ K for all sufficiently large n (see [BMW12,

Lemma 21]). Let now t ∈ Gη,η′ and a subsequence (gφ(n)ag
−1
φ(n)) converging to t and

such that
(
gφ(n)(r(n))

)
converges to some point x ∈ X. For each integer N , the

sequence (gφ(n)a
Ng−1

φ(n)) converges to tN . We have

d(tN(x), x) = lim
n
d(gφ(n)a

Ng−1
φ(n)(x), x)

= lim
n
d(aNg−1

φ(n)(x), g−1
φ(n)(x))

= lim
n
d(aNr(n), r(n))

≤ K.

This ensures that the isometry t is elliptic, thereby proving the claim.
Since G0

η,η′ is compact by Lemma 4.2, we conclude that (gn) is indeed a compacting

sequence for G0
ξ , and that G0

ξ is compactible with limit G0
η,η′ . �

Proposition 4.4. Assume that G is totally disconnected. Then, for each ξ ∈ ∂X,
the group G0

ξ is regionally elliptic.

Proof. In view of Lemma 4.3, this is a direct consequence of [CM13, Proposition 4.2].
�

We close this subsection by recording the following result from [CCMT15]. It will
be used repeatedly to various questions on hyperbolic locally compact groups to the
totally disconnected case.
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Proposition 4.5. Let G be a non-amenable hyperbolic locally compact group. Then
G has a largest compact normal subgroup W and the quotient G/W is either a
virtually connected rank one simple Lie group, or a totally disconnected group.

Proof. Since a non-amenable hyperbolic locally compact group is of general type by
Proposition 4.1, the result follows from [CCMT15, Proposition 5.10]. �

Remark 4.6. In a σ-compact locally compact group G, every identity neighbour-
hood contains a compact normal subgroup N such that G/N is second countable,
see [KK44]. In particular the quotient G/W appearing in Proposition 4.5 is second
countable. Since W acts trivially on the Gromov boundary of G, it follows from
Remark 2.9 that the set of continuity points of the stabilizer map ∂G → Sub(G)
is a dense Gδ, although the group G itself need not be second countable. We shall
frequently use this fact without further notice.

4.2. Ballistic boundary points. The structure of hyperbolic locally compact groups
with a cocompact amenable subgroup has been described in [CCMT15]. If the
group is elementary, it is either compact, or 2-ended, in which case it is described
by [CCMT15, Proposition 5.6]. If the group is non-elementary, it is described by
Theorem A or D in [CCMT15], depending on whether the group is amenable or
not. For a non-amenable locally compact hyperbolic group G, the existence of a
cocompact amenable subgroup is equivalent to the fact that G acts 2-transitively
on its Gromov boundary (see [CCMT15, Theorem 8.1]).

The following theorem establishes an additional powerful criterion, namely it suf-
fices to verify G0

ξ 6= Gξ for suitable points at infinity ξ. We shall call ξ a ballistic

point when G0
ξ 6= Gξ is satisfied.

Theorem 4.7. Let G be a non-amenable hyperbolic locally compact group and X be a
proper geodesic metric space on which G acts continuously, properly and cocompactly
by isometries.

The following conditions are equivalent.

(i) G has a cocompact amenable subgroup.
(ii) The G-action on the Gromov boundary ∂X is 2-transitive.

(iii) For all ξ ∈ ∂X, we have G0
ξ 6= Gξ.

(iv) For some continuity point η ∈ ∂X of the stabilizer map, we have G0
η 6= Gη.

(v) There is a constant K such that, for every hyperbolic element γ ∈ G, there ex-
ists a hyperbolic element γ′ ∈ G with asymptotic displacement length |γ′|∞ ≤
K such that γ and γ′ share the same pair of fixed points in ∂X.

As indicated above, the equivalence between (i) and (ii) is taken from [CCMT15].
A special instance of the equivalence between (ii) and (iii) has been observed for
specific families of groups of tree automorphisms by C. Ciobotaru in her PhD the-
sis [Cio14, Proposition 2.2.11].

Before embarking on the proof, we record the following classical criterion to iden-
tify hyperbolic isometries.

Lemma 4.8. Let g be an isometry of a δ-hyperbolic metric space and fix any a > 0.
If there exists a point x with d(g−1x, gx) ≥ d(x, gx) + 2δ + a, then g is hyperbolic

with |g|∞ ≥ a.

Proof. The fact that g is hyperbolic is proved in [CDP90, Chapter 9, Lemma 2.2].
The proof given there proceeds by establishing d(gnx, x) ≥ na for all positive integers
n, which yields also the estimate on |g|∞. �

There is a sort of converse upon replacing g by a power:
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Lemma 4.9. If g is hyperbolic and a > 0, then for every x there is n ≥ 1 with
d(g−nx, gnx) ≥ d(x, gnx) + 2δ + a.

Proof. Fix g, a and x and suppose there is no such n. Then, plugging the inequality

d(x, g2nx) = d(g−nx, gnx) < d(x, gnx) + 2δ + a

in the definition of |g|∞ shows |g|∞ ≤ 1
2
|g|∞, hence |g|∞ = 0 and g is not hyperbolic.

�

We also have the following behaviour with respect to limits in Isom(X).

Lemma 4.10. The set of hyperbolic elements is open in Isom(X).
Moreover, given a sequence (gn) converging to g ∈ Isom(X), we have lim supn |gn| ≤

|g| and lim supn |gn|∞ ≤ |g|∞ + 16δ.

Proof. Suppose first that (gn) converges to a hyperbolic isometry g. By Lemma 4.9,
we can choose x and n0 such that d(g−n0(x), gn0(x)) ≥ d(x, gn0(x)) + 2δ + 2. It
follows that for all n large enough we have d(g−n0

n (x), gn0
n (x)) ≥ d(x, gn0

n (x))+2δ+1.
Now Lemma 4.8 implies that gn0

n is hyperbolic, and hence so is gn.
Regardless of the type of isometries, the first estimate follows from the definition

of the displacement length and the second from the estimates between | · | and | · |∞
recalled earlier. �

Within the stabilizer of a point at infinity, we have more continuity because the
asymptotic displacement length can be read on the (continuous) Busemann character
as follows.

Proposition 4.11. Let g be an isometry fixing ξ ∈ ∂X. Then |g|∞ = |βξ(g)|.

Just like the three above lemmas, this proposition holds for any geodesic hyper-
bolic space X; however, we should recall that if one applies it beyond the proper
case (to which locally compact groups reduce us here), then βξ is a priori only a con-
tinuous homogeneous quasimorphism rather than a homomorphism (cf. [CCMT15,
§3]). This does not affect the proposition nor its proof, which relies on the following.

Lemma 4.12. Let g be an isometry fixing ξ ∈ ∂X and let x ∈ X. If g is not
parabolic, then the difference n|βξ(g)| − d(gnx, x) remains bounded over n ≥ 0.

Proof of Lemma 4.12. Since βξ(g) vanishes if and only if g is non-hyperbolic [CCMT15,
Lemma 3.8], we can assume g hyperbolic. Upon replacing g with its inverse, we can
further assume that ξ is the attracting point of g, or equivalently βξ(g) > 0 (see
again [CCMT15, Lemma 3.8]). Upon enlarging the desired bound, we suffer no loss
of generality when replacing g by a (fixed) power of itself before varying n. There-
fore, using Lemma 4.9, we can assume d(g2x, x) ≥ d(gx, x) + 2δ+ 1. Then the orbit
(gnx) is quasigeodesic, see e.g. the proof of Lemma 2.2 in [CDP90, Chap. 9]. By sta-
bility of quasigeodesics (Theorem 25(i) in [GdlH90, Chap. 5]), it follows that there
is a constant D such that (gnx)n≥0 remains at distance at most D from a geodesic
ray r. Note that r(+∞) = ξ since gnx→ ξ, and upon increasing D we can assume
r(0) = x. We choose sn ≥ 0 such that d(r(sn), gnx) ≤ D for all n.

According to Proposition 3.7 in [CCMT15], we can write βξ(g) = limn
1
n
h(x, gnx)

where the function h(x, y) of x, y is any accumulation point (for the pointwise con-
vergence) of d(x, r(s)) − d(y, r(s)) as s → ∞. Note that d(x, r(s)) = s, while∣∣d(gnx, r(s))−|s−sn|

∣∣ is bounded by D. Letting s→∞, we deduce that |h(x, gnx)−
sn| is bounded by D. Using one more time d(r(sn), gnx) ≤ D, we conclude∣∣∣h(x, gnx)− d(x, gnx)

∣∣∣ ≤ 2D.
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It is also shown in Proposition 3.7 of [CCMT15] that the difference
∣∣h(x, gnx) −

βξ(g
n)
∣∣ is bounded independently of n; now the lemma follows since βξ(g

n) = nβξ(g).
�

Proof of Proposition 4.11. We can assume that g is hyperbolic thanks to [CCMT15,
Lemma 3.8]. The proposition then follows from Lemma 4.12 by dividing by n and
letting n→∞. �

As mentionned in the proof of Lemma 4.12, it is well-known that the orbits of
hyperbolic isometries are quasigeodesic. We can now stregthen this conclusion as
follows, removing any multiplicative error factor.

Corollary 4.13. Let g by an isometry of a geodesic hyperbolic space X and let
x ∈ X. If g is not parabolic, then the difference

|g|∞ · |n−m| − d(gnx, gmx)

remains bounded over n,m ∈ Z.

Proof. Since g is isometric, it suffices to show the statement for m = 0 and n ≥ 0.
We can again assume that g is hyperbolic; in particular it fixes some ξ ∈ ∂X. Now
the statement follows by combining Lemma 4.12 with Proposition 4.11. �

Lemma 4.14. Let G and X be as in Theorem 4.7 and assume that (iv) holds. There
is a constant K such that for each ξ ∈ ∂X, there exists a hyperbolic isometry t ∈ Gξ

with |t|∞ ≤ K.

Proof. Since G0
η 6= Gη, there is γ ∈ Gη hyperbolic. We can take any K > |γ|∞+16δ.

Let indeed ξ ∈ ∂X be arbitrary. By hypothesis, the group G is non-amenable,
hence the G-action on X is of general type. This implies that the G-action on
∂X is minimal. Therefore, there exists (gn) in G such that the sequence (gnξ)
converges to η. By the choice of η, we know that the sequence (gnGξg

−1
n ) Chabauty

converges to Gη. Therefore there exist tn ∈ Gξ such that the sequence (gntng
−1
n )

converges to γ. For all n large enough, it follows from Lemma 4.10 that gntng
−1
n is

hyperbolic, with asymptotic displacement length at most K. Since the asymptotic
displacement length is invariant under conjugation, we deduce that tn is hyperbolic
with |tn|∞ ≤ K. �

We shall use the notion of duality due to Chen and Eberlein (compare [Bal95,
III.1]). We say that a pair (ξ, ξ′) in ∂X×∂X is G-dual if there exist a sequence (γn)
in G such that γn(x0)→ ξ and γ−1

n (x0)→ ξ′ for some (hence any) x0 ∈ X. Since G is
supposed to be non-amenable, its action on X is of general type by Proposition 4.1.

Lemma 4.15. If the G-action on X is of general type, then every pair (ξ, ξ′) ∈
∂X × ∂X is G-dual.

Proof. There exists at least some G-dual pair (ξ, ξ′), for instance the attracting and
repelling points of some hyperbolic isometry. For this given ξ′ ∈ ∂X, the non-empty
collection of those ξ ∈ ∂X such that (ξ, ξ′) is G-dual is closed and G-invariant.
Since the G-action on ∂X is minimal, we deduce that the pair (ξ, ξ′) is G-dual for
all ξ ∈ ∂X. By symmetry, it follows that every pair (ξ, ξ′) is G-dual. �

We now establish two strengthenings of Lemma 4.14.

Lemma 4.16. Let G and X be as in Theorem 4.7. If the assertion (iv) from the
latter statement holds, then (v) holds as well.
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Proof. Since G0
η 6= Gη, there is γ ∈ Gη hyperbolic. Let ξ ∈ ∂X be the repelling

fixed point of γ. By Lemma 4.14, the group Gξ contains a hyperbolic element t with
|t|∞ ≤ K. Notice that the sequence (γntγ−n) is bounded in G. Upon extracting,
it converges to an element γ′ ∈ Gξ. Since the Busemann character βξ : Gξ → R is
continuous and βξ(γ

ntγ−n) = βξ(t), we have βξ(γ
′) = βξ(t). Thus Proposition 4.11

implies |γ′|∞ = |t|∞, which shows both that γ′ is hyperbolic (since this length is
positive) and that |γ′|∞ ≤ K.

Finally, if ξ′ denotes the attracting fixed point of γ and η the fixed point of t
different from ξ, we have limn γ

nη = ξ′, so that γ′ fixes ξ′. �

Proposition 4.17. Let G and X be as in Theorem 4.7 and suppose that the asser-
tion (v) from the latter statement holds.

There is a constant L such that, for any pair (ξ, ξ′) in ∂X×∂X with ξ 6= ξ′, there
is a hyperbolic isometry γ ∈ G with |γ|∞ ≤ L fixing ξ and ξ′.

The following general lemma will be needed in the proof and again later.

Lemma 4.18. Let X be a geodesic δ-hyperbolic space; there exist constants H, J
depending only on δ with the following property.

Let ` ⊆ X be a geodesic line (the image of a geodesic Z→ X) and choose a map
P : X → ` such that d(P (x), x) minimizes the distance from x to ` for any x ∈ X.

If x, y ∈ X satisfy d(P (x), P (y)) ≥ J , then any choices of geodesic segments

[x, P (x)] ∪ [P (x), P (y)] ∪ [P (y), y]

remain within distance less than H from any geodesic segment [x, y].

Proof of Lemma 4.18. We recall that a (λ,C, J)-local quasigeodesic segment is
a path satisfying the (λ,C)-quasigeodesic conditions for parameters less than J
apart [GdlH90, Chap. 5 §1]. According to Theorem 21 in [GdlH90, Chap. 5], there
are constants H and J depending only on δ, λ and C such that any (λ,C, J)-local
quasigeodesic remains at distance less than H from any geodesic segment between
its endpoints. Thus we can obtain the constants H, J of the lemma by applying this
result to λ = 1 and C depending only on δ.

By hyperbolicity, the minimizing property of P (x) implies that any z ∈ [P (x), P (y)]
satisfies d(x, z) ≥ d(x, P (x))+d(P (x), z)−C for some C depending only on δ; indeed,
this follows by comparing [x, P (x)] ∪ [P (x), P (y)] with a tripod in a tree, as can be
done by Theorem 12 in [GdlH90, Chap. 2]. We deduce that [x, P (x)] ∪ [P (x), P (y)]
is a (1, C)-quasigeodesic. The same holds for [P (x), P (y)] ∪ [P (y), y]. Thus, as
long as d(P (x), P (y)) ≥ J , the concatenation [x, P (x)]∪ [P (x), P (y)]∪ [P (y), y] is a
(1, C, J)-local quasigeodesic as required. �

Proof of Proposition 4.17. We choose some point x0 ∈ X. Since G is non-amenable,
its action on X is of general type by Proposition 4.1. By Lemma 4.15, the pair
(ξ, ξ′) is G-dual, so that there exists (γn) in G with γnx0 → ξ and γ−1

n x0 → ξ′.
By the definition of convergence to ξ and ξ′ in terms of Gromov products, every

geodesic segment joining γ−1
n x0 to γnx0 passes through a ball around x0 of radius R

independent of n. Thus, d(γ−1
n x0, γnx0) is at least 2d(γnx0, x0)− 2R.

By Lemma 4.8, this implies in particular that γn is hyperbolic for all sufficiently
large n with |γn|∞ →∞ since d(γnx0, x0) goes to infinity. We denote by ξ+

n and ξ−n
its attracting (resp. repelling) fixed point; that is, limk→±∞ γ

k
nx = ξ±n for all x, and

ξ+
n 6= ξ−n .

Consider the union An of all geodesic lines from ξ−n to ξ+
n ; note that γn pre-

serves An. Any two such lines remain at distance less than an X-constant D from
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each another; for instance, this follows by applying the tree approximation theorem
(Theorem 12(ii) in [GdlH90, Chap. 2]) to the union of the two geodesics.

We claim that the distance d(x0, An) is bounded independently of n.
Indeed, pick one of the lines ` defining An and let P , H and J be as in Lemma 4.18.

Hyperbolicity implies that all choices for P are within some D′ from each other,
where D′ depends only on the hyperbolicity constant. Since |γ2

n|∞ = 2|γn|∞ → ∞
and hence also |γ2

n| → ∞, we can assume that γ2
n moves every point by more than

J + D + D′. Note that the point γ2
nP (γ−1

n x0) of γ2
n` minimizes the distance from

any point z ∈ γ2
n` to γnx0 because d(γ2

nP (γ−1
n x0), γnx0) = d(P (γ−1

n x0), γ−1
n x0) ≤

d(γ−2
n z, γ−1

n x0) since γ−2
n z ∈ `. Therefore, since ` and γ2

n` remain within distance D,
we see that d(γ2

nP (γ−1
n x0), P (γnx0)) ≤ D+D′ and hence d(P (γ−1

n x0), P (γnx0)) ≥ J .
Thus Lemma 4.18 applied to

S = [γ−1
n x0, P (γ−1

n x0)] ∪ [P (γ−1
n x0), P (γnx0)] ∪ [P (γnx0), γnx0]

shows that x0 is at distance at most H+R of some p ∈ S. To reach our claim, it re-
mains only to justify that p does not belong to [γ−1

n x0, P (γ−1
n x0)] nor to [P (γnx0), γnx0],

and it suffices by symmetry to show the latter. The image of [P (γnx0), γnx0] un-
der P has diameter bounded by some X-constant E; this follows e.g. from Propo-
sition 2.1 in of [CDP90, §10]). Therefore, using that P is non-expanding up to
another additive X-constant E ′ (Corollary 2.2 loc. cit.), p ∈ [P (γnx0), γnx0] would
imply d(P (x0), P (γnx0)) ≤ E + E + H + R′. Finally, comparing ` and γn`, we see
that d(P (γnx0), γnP (x0)) is bounded by an X-constant and hence we contradict

d(P (x0), γnP (x0)) ≥ |γn| ≥ |γn|∞ →∞,

thus establishing the claim.
Since the assertion (v) holds by hypothesis, there exists a hyperbolic element

γ′n ∈ G with |γ′n|∞ ≤ K such that γ′n and γn have the same attracting (resp.
repelling) fixed point.

We claim that for any choice bn ∈ An, the distance d(γ′nbn, bn) is bounded byK+C,
where C is an X-constant. Since An is γ′n-invariant and D-close to a geodesic, it
suffices to prove this for some choice bn ∈ An, upon increasing C. Let δ be the
hyperbolicity constant of X. There is yn ∈ X such that d(γ′nyn, yn) ≤ |γ′n| + δ,
which implies d(γ′nyn, yn) ≤ |γ′n|∞ + 17δ ≤ K + 17δ. Define bn = P (yn) ∈ ` ⊆ An,
with ` and P as in the first claim. Noting once again that γ′nbn is within an X-
constant of P (γ′yn) and that P is non-expanding up to an X-constant, we conclude
that d(γ′nbn, bn) is bounded by d(γ′ny, y) plus an X-constant; the claim follows.

Since the first claim allows us to choose all bn within a bounded set, the second
claim implies that the sequence (γ′n) is bounded in G, and subconverges to a hyper-
bolic isometry γ with |γ| ≤ L = K + C, and hence also |γ|∞ ≤ L. It remains to
show that γ fixes ξ and ξ′.

Since γ′n fixes ξ±n , it suffices to show that ξ−n converges to ξ′ and ξ+
n to ξ; it is enough

to show the latter. In terms of Gromov products, we need to show 〈ξ+
n , ξ〉x0 → ∞.

The hyperbolicity constant δ of X satisfies

〈ξ+
n , ξ〉x0 + δ ≥ min

(
〈ξ+
n , γnx0〉x0 , 〈γnx0, ξ〉x0

)
(see e.g. [CDP90, 2§1]). Thus, since γnx0 → ξ, it suffices to show 〈ξ+

n , γnx0〉x0 →∞.
This follows by representing ξ+

n by a ray within An because d(γnx0, An) = d(x0, An)
and this distance is bounded independently of n by the first claim, while d(x0, γnx0)
goes to infinity. �

The following ingredient is again general.
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Lemma 4.19. There is an X-constant R such that for every ξ ∈ ∂X and every
x ∈ X there is a geodesic σ : R → X with σ(+∞) = ξ and passing within distance
R of x.

Proof. Let λ : R → X be some geodesic. By cocompactness, we can arrange that
λ(0) is at distance less than D from x, where D is the codiameter of X. Let further
τ : R+ → X be geodesic ray pointing to ξ with τ(0) = λ(0). We obtain two maps
σ± : R → X by letting σ±(t) = τ(t) for t ≥ 0 and σ±(t) = λ(±t) for t < 0. If
X were a metric tree, one of σ− or σ+ would already be geodesic. For general X,
the tree approximation theorem (Theorem 12(ii) in [GdlH90, Chap. 2]) gives an X-
constant C such that one of σ− or σ+ is a (1, C)-quasi-geodesic. By Theorem 25(ii)
in [GdlH90, Chap. 5], there is therefore a constant H depending only on X such that
the corresponding σ± is at distance less than H of a true geodesic σ. The statement
follows with R = D +H. �

We turn to the proof of Theorem 4.7.

Proof of Theorem 4.7. The equivalence between (i) and (ii) follows from [CCMT15,
Theorem 8.1]. The latter result also implies that (ii) implies (iii), whereas the
implication from (iii) to (iv) is obvious. We next observe that (iv) implies (v) by
Lemma 4.16. It remains to prove that (v) implies (i).

Assuming (v), we shall prove that the stabilizer Gξ acts cocompactly on X for
every ξ ∈ ∂X. This indeed implies that (i) holds since Gξ is amenable by Proposi-
tion 4.1.

Let thus x0, x1 ∈ X be two arbitrary points.
Lemma 4.19 provides two geodesic lines σ0, σ1 with σi passing within R of xi and

with σi(+∞) = ξ. This common endpoint implies that there are points yi of σi with
d(y0, y1) ≤ R′ for some X-constant R′; this follows e.g. from the tree approximation
theorem (Theorem 12(ii) in [GdlH90, Chap. 2]).

Proposition 4.17 implies the existence of a hyperbolic isometry γ0 of asymptotic
displacement length ≤ L, having the endpoints of σ0 as its pairs of fixed points
in ∂X. The orbit {γn0 x0} remains at distance at most R + C of σ0 for some X-
constant C; choose zn on σ0 with d(γn0 x0, zn) ≤ R + C. As already observed in
the proof of the second claim of that proposition, γ0 will move any point of σ0 by
at most L + C ′ for some X-constant C ′. Since d(γ0zn, zn + 1) is bounded by an
X-constant by the choice of zn, it follows that the sequence zn has gaps bounded
by L + C ′′ for some X-constant C ′′. In conclusion, there is n0 with d(γn0

0 x0, y0) ≤
d(γn0

0 x0, zn0) + d(zn0 , y0) ≤ R + L+ C + C ′′.
We find likewise γ1 and n1 with d(γn1

1 x1, y1) ≤ R + L + C + C ′′. In conclusion,
γ−n1

1 γn0
0 is an element of Gξ which maps x0 to within R′ + 2(R + L + C + C ′′)

of x1. This witnesses that Gξ acts cocompactly on X and concludes the proof of
Theorem 4.7. �

Combining Propositions 4.4 and Theorem 4.7, we now deduce the following.

Corollary 4.20. Let G be a non-amenable hyperbolic locally compact group. Let F
be the stabilizer URS for the G-action on its Gromov boundary.

If G does not have any cocompact amenable subgroup, then every H ∈ F is re-
gionally elliptic.

Proof. By Theorem 4.7, for every continuity point η ∈ ∂X of the stabilizer map, we
have G0

η = Gη.
The corollary is unaffected by replacing G with its quotient by a compact normal

subgroup, and such a quotient cannot be a virtually connected simple Lie group
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of rank one, since in that case parabolic subgroups are cocompact and amenable.
Therefore, by Proposition 4.5, we can assume that G is totally disconnected.

Let now H ∈ F . Then H ≤ Gξ for some ξ ∈ ∂X, and there is a sequence (gn)
in G such that (gnGηg

−1
n ) Chabauty converges to H. In view of Proposition 4.4,

it suffices to show H ≤ G0
ξ . Suppose for a contradition that this is not the case;

then X contains a hyperbolic isometry t. By Chabauty convergence, we can choose
tn ∈ Gη such that (gntng

−1
n ) converges to t. We then deduce from Lemma 4.10 that

tn is hyperbolic for all large n. This is impossible since Gη = G0
η. �

4.3. Roughly similar word metrics. The goal of this section is to complete the
proof of Theorem J. In view of Proposition 4.5, we shall focus on totally disconnected
groups.

Let (X, dX) and (Y, dY ) be metric spaces. Recall that a map ϕ : X → Y is a
quasi-isometric embedding if there exist constants L > 0 and C ≥ 0 such that

1

L
dX(x, x′)− C ≤ dY (ϕ(x), ϕ(x′)) ≤ LdX(x, x′) + C.

We say that ϕ is a roughly homothetic embedding if there exist constants L > 0
and C ≥ 0 such that

LdX(x, x′)− C ≤ dY (ϕ(x), ϕ(x′)) ≤ LdX(x, x′) + C.

Thus Corollary 4.13 states precisely that every orbit of a hyperbolic isometry of a
hyperbolic geodesic metric space is a rough embedding of Z into that space, where
Z is endowed with the Euclidean metric.

A quasi-isometric (resp. roughly homothetic) embedding ϕ : X → Y is called
a quasi-isometry (resp. a rough similarity) if Y is contained in a bounded
neighbourhood of ϕ(X).

It is easy to see that any two word metrics on Z given by finite generating sets
are roughly similar (this can also be considered as a trivial case of Corollary 4.13).
This contrasts with the free group F2, which has numerous pairs of finite generating
sets giving rise to word metrics that are quasi-isometric, but not roughly similar.

Let now G be a compactly generated tdlc group and U ≤ G be a compact open
subgroup. Given a compact generating set Σ ⊂ G, the graph with vertex set G/U
and edge set defined by gU ∼ hU ⇔ h−1g ∈ UΣU ∪ UΣ−1U , is connected, locally
finite, and preserved by the natural G-action. It is called the Cayley–Abels graph
associated with the pair (U,Σ).

Proposition 4.21. For a non-amenable hyperbolic tdlc group G, the following as-
sertions are equivalent.

(i) G has a cocompact amenable subgroup.
(ii) Considering any Cayley–Abels graph G for G and endowing G with the word

metric associated to any compact generating set, each orbit map G→ V G is
rough similarity.

(iii) For some compact open subgroup U ≤ G, the identity on G/U is a rough
similary between the Cayley–Abels graphs associated with (U,Σ1) and (U,Σ2),
for any pair of compact generating sets Σ1,Σ2.

Proof. (i) ⇒ (ii). Let x ∈ V G. Since the orbit map g 7→ gx is G-equivariant, it
suffices to show that there exist constants A,C > 0 such that

A|g| − C ≤ dG(x, gx) ≤ A|g|+ C (∀ g ∈ G)

where |g| is the length of g in the chosen word metric. We invoke [CCMT15, Theo-
rem 8.1], which ensures that up to a compact kernel G is a tree automorphism group
acting 2-transitively on the boundary of that tree. In particular, there is a compact
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subset K ⊆ G and an element a ∈ G acting as a hyperbolic isometry of that tree
such that the Cartan-like decomposition G = K{an : n ∈ N}K holds. Given g ∈ G,
we denote by ng some choice of integer with g ∈ KangK.

We recall that the Cayley graph associated to the generating set defining | · |,
although unlike G it is far from locally finite, is a hyperbolic geodesic metric space
(compare [CCMT15, §2]). Moreover, a is a hyperbolic isometry of this space be-
cause its displacement length does not vanish. Since Corollary 4.13 is valid in that
generality, the difference |an| − nA0 remains bounded independently of n, where A0

is the asymptotic displacement length of a in that Cayley graph.
Since the word length is bounded over K, there is a constant C0 with

|ang | − C0 ≤ |g| ≤ |ang |+ C0

for all g, and hence

ngA0 − C1 ≤ |g| ≤ ngA0 + C1

for some C1. Similarly, since K has bounded orbits in G, let C2 be a bound for
dG(kx, x) over k ∈ K. Then, writing g = k1a

ngk2, the triangle inequality gives

d(x, angx)− 2C2 ≤ d(x, gx) ≤ d(x, angx) + 2C2

because d(x, gx) = d(k−1
1 x, angk2x). We apply again Corollary 4.13 but to the action

of a on G and deduce that the difference d(x, angx)− ngA1 remains bounded, where
A1 is the asymptotic displacement length of a in G. Putting everything together,
we obtain the required conclusion with A = A1/A0.

(ii) ⇒ (iii). Obvious.

(iii) ⇒ (i). Fix a compact generating set Σ and let G0 denote the Cayley–Abels
graph for G with respect to (U,Σ). The distance function on V G0 = G/U given by
that graph structure is denoted by d0.

For each geodesic line τ : Z→ V G0, we choose a map Pτ : V G0 → τ(Z) such that
for all v ∈ V G0 = G/U , we have d0(v, Pτ (v)) = min{d0(v, τ(n)) | n ∈ Z}. Thus Pτ is
a nearest-point-projection on the geodesic line τ . By [CDP90, Proposition 10.2.1],
there exists an X-constant C such that

d0(Pτ (x), Pτ (y)) ≤ max{C,C + d0(x, y)− d0(x, Pτ (x))− d0(y, Pτ (y))}

for all vertices x, y.
Let a ∈ G be a hyperbolic element. Denote by ξ, ξ′ ∈ ∂G its fixed points at

infinity. Fix a geodesic line σ : Z → V G0 with endpoints (ξ, ξ′). We also consider
the union A of all geodesic lines from ξ to ξ′. As in the proof of Proposition 4.17,
any two such lines are at distance less than some X-constant D from one another.

We claim that for any geodesic line τ : Z → V G0 and any L > 0, there exists
gL ∈ G such that the diameter of Pτ (gL(A)) is larger than L.

Suppose for a contradiction that the claim fails for some geodesic line τ . Hence
there exists L0 > 0 such that, for any g ∈ G, the diameter of Pτ (g(A)) is at most
L0. Upon enlarging L0, we may assume that L0 ≥ C + 1.

Let now L > L0 be an even integer and choose an element hL ∈ G be mapping σ(0)
to σ(L). Set ΣL = Σ ∪ {hL}, let GL be the Cayley–Abels graph for G with respect
to (U,ΣL) and dL be the associated distance function on G/U . By construction we
have dL(x, y) ≤ d0(x, y) for all x, y ∈ G/U since every edge of G0 is also an edge of
GL. Moreover, every edge of GL that is not in G0 is of the form {gσ(0), gσ(L)} for
some g ∈ G. Following the terminology introduced in [BF09], every G-translate of
the geodesic segment σ|[0,L] in G0 is called an expressway.
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By the hypothesis (iii), there exist constants AL, CL such that

ALdL(x, y)− CL ≤ d0(x, y) ≤ ALdL(x, y) + CL.

Apply that inequality with x = σ(0) and y = an(x), divide by n and let n tend
to infinity. We deduce that AL = |a|∞,0/|a|∞,L, where |a|∞,0 and |a|∞,L denote the
asymptotic displacement length of a with respect to the metrics d0 and dL. Observe
that any point of the 〈a〉-orbit of σ(0) remains D-close to σ(Z) in the metric d0.
Since dL ≤ d0, we deduce from the definition of the metric dL that the asymptotic
displacement length |a|∞,L tends to 0 as L tends to infinity. We may therefore
assume, upon taking L large enough, that AL > 2L0.

Let now N > CL(1 + AL
L0

) be an integer and consider a GL-geodesic segment

(v0 = τ(0), v1, . . . , vM = τ(N))

joining τ(0) to τ(N). We have M ≤ N since dL(x, y) ≤ d0(x, y) for all x, y. For
each pair of vertices vi, vi+1, either {vi, vi+1} is an edge of G0, or there exists an
expressway with endpoints {vi, vi+1}. By concatenating those edges and express-
ways, we obtain a continuous path [v0, v1] ∪ [v1, v2] ∪ . . . in the graph G0. By the
definition of L0, we know that for each i such that [vi, vi+1] is an expressway, we
have d(Pτ (vi), Pτ (vi+1)) ≤ L0. If [vi, vi+1] is an edge, then by the defining property
of the constant C, we have d(Pτ (vi), Pτ (vi+1)) ≤ 1 + C ≤ L0.

Since (v0 = Pτ (v0), Pτ (v1), . . . , Pτ (vM) = vM) defines a path from v0 to vM , we
deduce from the triangle inequality that

N = d0(τ(0), τ(N)) = d0(v0, vM) ≤
M∑
i=1

d0(Pτ (vi−1), Pτ (vi)) ≤ L0M.

On the other hand, by the hypothesis (iii), we have

ALM − CL = ALdL(v0, vM)− CL ≤ d0(τ(0), τ(N)) = N.

Since AL > 2L0, we obtain

2L0M − CL < L0M,

so that M < CL
L0

. The hypothesis (iii) also implies that

N = d0(τ(0), τ(N)) ≤ ALdL(v0, vM) + CL = ALM + CL,

so that

N <
ALCL
L0

+ CL.

This contradicts the choice of N , thereby establishing the claim.

Let now b ∈ G be a hyperbolic element with attracting and repelling fixed points
η+, η− ∈ ∂G. Fix a geodesic line τ : Z → V G0 with η+ = τ(∞) and η− = τ(−∞).
For each even integer L > 0, the claim ensures the existence of an element gL ∈ G be
such that Pτ (gL(A)) has diameter strictly greater than 2C + 2D+ 2L. Let x, y ∈ A
with d0(Pτ (gL(x)), Pτ (gL(y))) > 2C+2D+2L. Pick x′, y′ ∈ σ(Z) with d0(x, x′) ≤ D
and d0(y, y′) ≤ D. In particular we have d0(Pτ (gL(x′)), Pτ (gL(y′))) > 2L. We now
apply Lemma 4.18 to obtain constants H, J and henceforth consider only L large
enough to have L ≥ 2 max{C,H, J}. Thus, the piecewise geodesic segment

[gL(x′), Pτ (gL(x′))] ∪ [Pτ (gL(x′)), Pτ (gL(y′))] ∪ [Pτ (gL(y′)), gL(y′)]

lies in an H-neighbourhood of the subsegment of the geodesic line gL(σ) join-
ing gL(x′) to gL(y′). Let nL be an integer such that d0(Pτ (gL(x′)), gL(σ(nL))) ≤
H, and n′L ≥ 0 be an integer such that d0(Pτ (gL(y′)), gL(σ(nL + n′L))) ≤ H.
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By the definition of nL and n′L, we have d0(gL(σ(nL)), Pτ (gL(σ(nL)))) ≤ H and
d0(gL(σ(nL + n′L)), Pτ (gL(σ(nL + n′L)))) ≤ H. Therefore,

d0(gL(σ(nL)), gL(σ(nL + n′L))) ≥ d0(Pτ (gL(x′)), Pτ (gL(y′)))− 2H

> 2L− 2H

> L.

This ensures that n′L > L. In particular, the Hausdorff distance between the geodesic
segments gL ◦ σ|[nL,nL+L] and [Pτ (gL(x′)), Pτ (gL(y′))] is bounded by an X-constant.
Therefore it lies in a bounded neighbourhood of τ(Z), where the bound is indepen-
dent of L.

Using Corollary 4.13, we may find suitable integers s, t such that the element
hL = bsgLa

t maps the pair {σ(−L/2), σ(L/2)} at uniformly bounded distance from
{τ(−L/2), τ(L/2)}. In particular d0(hL(σ(0)), τ(0)) is bounded independently of L.
Therefore the sequence (hL) is bounded in G, and thus subconverges to an element
h ∈ G. By construction h maps the pair {ξ, ξ′} to the pair {η+, η−}.

Notice that hah−1 is a hyperbolic element with the same asymptotic displacement
length as a, and with the same pair of fixed points in ∂X as b. Fixing a and
letting b vary over the collection of all hyperbolic isometries in G, we deduce that
the assertion (v) from Theorem 4.7 is satisfied, which therefore yields the required
conclusion. �

Proof of Theorem J. The equivalences between the assertions (i)–(v) are established
by Theorem 4.7. Their equivalence with (vi) follows from Proposition 4.21 in case
G is totally disconnected.

In general, since G is non-amenable it is of general type, we see from [CCMT15,
Proposition 5.10] that, after dividing out a compact normal subgroup, it is either
a virtually connected rank one simple Lie group, or a totally disconnected group.
Since every connected Lie group has a cocompact solvable subgroup, it suffices to
show that a virtually connected rank one simple Lie group satisfies (vi). This follows
from the KAK-decomposition as in the first part of the proof of Proposition 4.21;
we omit the details. �

5. Boundary representations of hyperbolic groups and the type I
property

The goal of this section is to complete the proofs of the remaining results from
the introduction.

5.1. Quasi-regular representations defined by cocompact subgroups. In the
special case where P is unimodular, the following result can be extracted from the
proof of [DE14, Theorem 9.2.2].

Proposition 5.1. Let G be a tdlc group and P be a closed cocompact subgroup.
Then every element of C∗λG/P (G) is a compact operator. In particular, it splits as a

direct sum of irreducible CCR representations.

Proof. Let U be a compact open subgroup ofG and ν be a quasi-invariant probability
measure on G/P . By Lemmas 2.2 and 2.1, we may replace ν by µ ∗ ν, where µ
is a U -invariant probability measure on G, so as to ensure that ν is U -invariant.
For any open subgroup V ≤ U , the dimension of the space of V -invariant vectors
in L2(G/P, ν) equals the cardinality |V \G/P | of the set of double cosets modulo
(V, P ). Since P is cocompact and V is open, that number is finite. It follows
that the orthogonal projection pV on the space of V -invariant vectors, is a compact
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operator. Observe moreover that pV = 1
µG(V )

λG/P (1V ), where µG denotes a left

Haar measure on G and 1V is the characteristic function of V . Hence the operators
(pV ), where V runs over the compact open subgroups of U , form an approximate
unit in C∗λG/P (G), consisting entirely of compact operators. This implies that every

element of C∗λG/P (G) is a compact operator. The required conclusions then follow

from [Arv76, Theorem 1.4.4]. �

In [Rau16, Theorem A] Raum proved that a locally compact second countable
unimodular C∗-simple group G does not admit any cocompact amenable closed
subgroups. Using the above proposition we give a simple proof of this fact for
general locally compact groups G, dropping the assumptions of second countability
and unimodularity.

We need the following fact which is certainly known to the experts. We include a
proof for the sake of completeness.

Recall that a C∗-algebra is called elementary if it is isomorphic to the C∗-algebra
of compact operators on some Hilbert space.

Lemma 5.2. If G is a non-trivial locally compact group, then the C∗-algebra C∗r (G)
is non-elementary.

Proof. Suppose C∗r (G) is elementary. Then it follows from [Run08, Proposition 4.3]
that L1(G) has a unique C∗-norm. In particular, we have C∗(G) = C∗r (G), which
implies C∗r (G) admits a character. Since the C∗-algebra of compact operators is
simple, it follows G is trivial. �

Theorem 5.3. Let G be a non-trivial locally compact group containing a cocompact
amenable closed subgroup. Then C∗r (G) is not simple.

Proof. Assume G contains a cocompact amenable closed subgroup P , and C∗r (G) is
simple. By [Rau19, Theorem 6.1], G is totally disconnected. Since P is amenable,
λG weakly contains λG/P , therefore they are weakly equivalent by C∗-simplicity.
Then Proposition 5.1 implies C∗r (G) is CCR, and since it is also simple, it follows it
is elementary. Hence, G is trivial by Lemma 5.2. �

5.2. Weak equivalence of boundary representations.

Proof of Theorem E. Let us first observe that the required assertion holds in the
special case where G has a cocompact amenable subgroup P . Then, by Theo-
rem 4.7, the G-action on ∂G is transitive, so that there is a unique G-invariant
measure class on ∂G, see [BdlHV08, Theorem B.1.4] and [CCMT15, Lemma 8.1].
Hence, by Lemma 2.1, any two boundary representations are unitarily equivalent.
In particular, they are weakly equivalent.

We next invoke Proposition 4.5 and denote by W the compact normal subgroup
afforded in that way. Since W acts trivially on the Gromov boundary ∂G, and
is thus contained in the kernel of every boundary unitary representation, there is
no loss of generality in assuming that W is trivial. Hence, either G is a virtually
connected rank one simple Lie group, or G is totally disconnected.

In the former case, the group G has a cocompact amenable subgroup, and the
required conclusion follows by the first paragraph. We assume henceforth that G is
totally disconnected and that G does not have any cocompact amenable subgroup.
Therefore, Corollary 4.20 ensures that some point ξ ∈ ∂G has a regionally elliptic
stabilizer. Since the G-action on ∂G is topologically amenable (see [Ada96], [Kai04]),
all points have an amenable stabilizer, and the G-action on (∂G, ν) is Zimmer-
amenable with respect to quasi-invariant probability measure ν (see Proposition 3.3.5
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in [ADR00]). Therefore the hypotheses of Corollary H are fulfilled. The required
conclusion follows. �

5.3. Type I hyperbolic groups. It remains to prove Theorems B and K. As
announced in the introduction, we shall rely on Garncarek’s work [Gar14], which
concerns the boundary representations of discrete hyperbolic groups associated with
Patterson–Sullivan measures.

For our purposes, it is sufficient to consider those measures in the setting of hyper-
bolic locally finite graphs with a vertex transitive automorphism group. Given such
a graph X, the Patterson–Sullivan construction (developed by M. Coornaert [Coo93]
in the general hyperbolic setting) yields a canonical measure class on the Gromov
boundary ∂X, which is invariant under the full automorphism group Aut(X). The
probability measures in that class can be defined by Hausdorff measures associated
with visual metrics or, alternatively, as weak*-limits of normalized counting mea-
sures on balls around a fixed vertex of the graph X. The Koopman representation
defined by any probability measure in the Patterson–Sullivan class is called the PS-
representation associated with X. We denote it by κX . It is well defined up to
equivalence (see Lemma 2.1). Its domain is the full automorphism group Aut(X).

In order to clarify how Garncarek’s work comes into play, we introduce the fol-
lowing two conditions on a hyperbolic tdlc groups G and compact open subgroup
U ≤ G:

(G1): For any Cayley–Abels graph X on G/U , the PS-representation κX is an
irreducible representation of G.

(G2): For any two Cayley–Abels graphs X1, X2 on G/U , if the PS-representations
κX1 , κX2 are unitarily equivalent, then the identity on G/U , viewed as a map
from V X1 to V X2, is a rough similarity.

The main results of [Gar14] state notably that every non-elementary discrete
hyperbolic group satisfies (G1) and (G2). Applying this to a uniform lattice in the
non-discrete case, we obtain the following.

Theorem 5.4 (Garncarek). Let G be a non-amenable hyperbolic tdlc group. If G
has a cocompact lattice, then for every compact open subgroup U ≤ G, the conditions
(G1) and (G2) are satisfied.

Proof. Let U ≤ G be any compact open subgroup. Let also Γ ≤ G be a co-
compact lattice. For any Cayley–Abels graph X on G/U , the restriction of the
PS-representation κX to Γ is irreducible by [Gar14, Theorem 6.2]. In particular, it
is irreducible as a representation of G, so (G1) holds.

Given two Cayley–Abels graphsX1, X2 onG/U , if the PS-representations κX1 , κX2

are unitarily equivalent, then their restrictions to Γ are equivalent. It then follows
from (the proof of) [Gar14, Theorem 7.4] that the identity on Γ defines a rough
similarity of (Γ, d1) to (Γ, d2), where di is the pseudo-metric on Γ induced by the
orbit map Γ→ V Xi = G/U : γ 7→ γU . Let V ′i be the image of that map.

Since Γ is cocompact in G, we have G = ΓK for some compact subset K of G.
Since K is covered by finitely many left U -cosets, it follows that Γ acts with finitely
many orbits on V Xi. In particular, by choosing for each v ∈ V Xi a vertex pi(v) ∈ V ′i
that is at minimal distance from v, we obtain a map pi : V Xi → V ′i such that the
distance from v to pi(v) is uniformly bounded.

By the very definition, the orbit map Γ → V Xi defines a rough similarity of
(Γ, di) to V ′i . It follows that the identity on ΓU/U , viewed as a map ϕ′ : V ′1 → V ′2 ,
is a rough similarity. By the triangle inequality, it follows that the map ϕ : V X1 →
V X2 : v 7→ ϕ′(p1(v)) is a rough similarity. Let ψ : V X1 → V X2 be the map defined
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by the identity on G/U . By construction the maps ϕ and ψ coincide on V ′1 . Since ψ
is a quasi-isometry, it follows that the distance from ψ(v) to ψ(p1(v)) is uniformly
bounded. Therefore, the maps ϕ and ψ are within bounded distance of each other.
Since ϕ is a rough similarity, it follows that ψ has also this property. Thus (G2)
holds. �

To complete the proofs of the results announced in the introduction, it remains
to establish the following.

Theorem 5.5. Let G be a non-amenable hyperbolic tdlc group and U ≤ G be a com-
pact open subgroup satisfying (G1) and (G2). If for some boundary representation
κ of G, the C*-algebra C∗κ(G) contains a non-zero CCR two-sided ideal, then G has
a cocompact amenable subgroup.

Proof. Set A = C∗κ(G) and let I be a non-zero CCR two-sided ideal in A. By
Theorem E, any two boundary representations of G are weakly equivalent. Thus, it
follows that for every boundary representation π of G, we have C∗π(G) ∼= A.

Let now X be any Cayley–Abels graph on G/U . By (G1), the representation κX
is irreducible. Since C∗κX (G) ∼= A, we deduce that C∗κX (G) contains a non-zero CCR
two-sided ideal, which acts irreducibly on HκX by [Arv76, Theorem 1.3.4]. Since
that ideal is CCR, it entirely consists of compact operators. Since this is valied
for any Cayley–Abels graph X, we deduce from [Dix96, Corollary 4.1.10] that, for
any two Cayley–Abels graphs X1, X2 on G/U , the representations κX1 and κX2 are
unitary equivalent. Since the pair (G,U) satisfies (G2), we infer that the identity
on G/U , viewed as a map from V X1 to V X2, is a rough similarity. Proposition 4.21
now ensures that G has a cocompact amenable subgroup. �

Proof of Theorem K. The implications (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) are obvious. If (v)
holds, we see as in the proof of Theorem E that any two boundary representations
are unitarily equivalent (and not only weakly equivalent). Moreover, by [CCMT15,
Theorem 8.1], we may assume that G is either a virtually connected rank one simple
Lie group, or a closed subgroup of the automorphism group of a non-elementary
locally finite tree, acting without inversion, with exactly 2 orbits of vertices, and
acting 2-transitively on the set of ends. In the former case, the assertion (iii) follows
from known results on unitary representations theory of simple Lie groups. Indeed κ
is the representation unitarily induced from the trivial representation of a parabolic
subgroup and therefore it is admissible, see Proposition 8.4 in [Kna86]. For the fact
that an admissible representation maps every element of the group C*-algebra to a
compact operator, we refer e.g. to the proof of (i) and (ii) in Lemma 15.5.1 in [Dix96]
or to the proof of Proposition 6.E.11 in [BdlH20]. In the totally disconnected case,
the assertion (iv) follows from Proposition 5.1.

Assume finally that (i) holds; we shall show (v). We may assume that G is non-
amenable. By Proposition 4.5 we may further assume that G is totally disconnected,
since every connected Lie group has a cocompact solvable subgroup. The required
conclusion then follows from Theorems 5.4 and 5.5. �

Proof of Theorem B. If G is type I, then since G is σ-compact, every unitary rep-
resentation of G is GCR (see [BdlH20, Theorem 8.F.3]). If G is amenable, there is
nothing to prove; otherwise, the theorem follows from the implication (ii) ⇒ (v) in
Theorem K. �

Remark 5.6. We strongly believe that Theorems B and K hold without the require-
ment that G contains a uniform lattice. This would follow from Theorem 5.5 by the
same reasoning as above, provided one shows that for every non-amenable hyper-
bolic tdlc group G, there is a compact open subgroup U such that (G1) and (G2) are



28 P.-E. CAPRACE, M. KALANTAR, AND N. MONOD

satisfied. Whether this non-discrete generalization of Garncarek’s results [Gar14]
holds is a highly interesting question in its own. This question can be envisaged
in the context of a wide-ranging conjecture of Bader and Muchnik [BM11]. That
conjecture predicts that the Koopman representation associated with the Poisson
boundary of the random walk defined by a spread-out probability measure µ on
an arbitrary locally compact is irreducible. (Recent results by Björklund–Hartman–
Oppelmayer [BHO20] suggest that the measure µ should be assumed to be symmetric
in the Bader–Muchnik conjecture.)

Proof of Corollary C. If G is compact or 2-ended, then (iii) holds by [CCMT15,
Proposition 5.6]. We assume henceforth that this is not the case, so G is non-
elementary. The existence of a lattice implies that G is unimodular, hence G is non-
amenable by [CCMT15, Theorem 7.3]. It then follows from [CCMT15, Theorem D]
that (i) or (ii) holds. �

Proof of Corollary D. If G were compactly generated, then it would act cocompactly
on T by [CDM11, Lemma 2.4], hence it would be Gromov hyperbolic. If moreover
G were unimodular, then it would contain a uniform lattice by the main result
of [BK90]. Hence, in that situation, we may invoke Corollary C. Although the tree
given by Corollary C need not be T itself, its boundary is canonically identified with
∂T as a G-space by cocompactness of the G-action on T . The required conclusion
follows.

We now present two different approaches to finish the proof. The first one con-
sists in invoking [HR19, Theorem A], which ensures that, after discarding vertices of
degree 2 of T , the action of every vertex stabilizer in G is 2-transitive on the neigh-
bouring edges. It is easy to deduce that G acts edge-transitively on T , that G is
compactly generated, and that G is unimodular (because it is generated by compact
subgroups). The hypotheses required by the argument of the first paragraph above
are fulfilled, and we are done.

We may alternatively avoid invoking the full strength of [HR19, Theorem A], as
follows. Let G+ be the open subgroup of index at most 2 preserving the canonical
bipartition of T . Then G+ acts without inversion. If the quotient graph G+\T is not
a tree, then G cannot be a type I group by [HR19, Proposition 4.1 and 4.2]. Since
G, hence also G+, is of type I (see [Kal73, Proposition 2.4]), we infer that G+ is
the fundamental group of a tree of profinite groups. In particular it is generated by
compact subgroups, hence it is unimodular. Let us write G+ as an ascending union
of compactly generated open subgroups G+ =

⋃
nHn. Without loss of generality we

assume that H0 is not compact. For each n let Tn ⊂ T be a minimal Hn-invariant
subtree of T . By [CDM11, Lemma 2.4], the group Hn acts cocompactly on Tn, so
that Hn is hyperbolic. As an open subgroup of G+, the group Hn is unimodular.
Applying Corollary C to Hn, we invoke that the Hn-action is 2-transitive on the
ends of Tn. Let now v ∈ V (T0) be a vertex and set K = G+

v . For n large enough
we have K ≤ Hn. Since T0 is contained in Tn, we have Hn = K〈an〉K for a suitable
hyperbolic element an ∈ Hn. It follows that K is a maximal subgroup of Hn.
Similarly K is maximal in Hm for all m ≥ n. Since K ≤ Hn ≤ Hm, we infer that
Hn = Hm for all m ≥ n. Hence G+ = Hn, which implies that G+ is compactly
generated. This confirms again that the hypotheses required by the argument of the
first paragraph above are fulfilled. �

Remark 5.7. We note that in proving Theorem B we only used that boundary
representations of G are GCR. This is formally weaker than type I property, which
is equivalent to all representations of G being GCR. In fact, for every almost invari-
ant measure ν on ∂G, the G-space (∂G, ν) is amenable by [Ada96, Theorem 6.8],
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so that every boundary representation κν of G is weakly contained in the regular
representation λG of G by [AD03, Corollary 3.2.2]. Hence, it follows that if λG is
GCR, then G has a cocompact amenable subgroup.

In non-discrete setting, the GCR property for the group and its regular rep-
resentation are not equivalent, see [Mac61]. Examples of locally compact groups
whose regular representation is GCR include all linear algebraic groups over a non-
archimedean local field k of characteristic zero [GK79].

We finish this section by mentioning an example of an amenable hyperbolic group
that is not type I.

Proposition 5.8. Let F be a non-abelian finite simple group. Then the semi-
restricted wreath product

G = (
⊕
Z<0

F )⊕ (
∏
Z≥0

F ) o Z

is an amenable hyperbolic locally compact group that is not type I.

Proof. That G is amenable and hyperbolic follows from [CCMT15, Theorem A] (the
amenability is obvious since G is {regionally elliptic}-by-abelian). The regionally
elliptic subgroup G0 = (

⊕
Z<0

F ) ⊕ (
∏

Z≥0
F ) has the compact group K =

∏
Z≥0

F

as an open normal subgroup. The quotient G0/K is the discrete group
⊕

Z<0
F .

The latter is not virtually abelian since F is non-abelian simple. Hence it is not
type I by Thoma’s theorem [Tho68]. Therefore G0 is not type I, hence G is not
type I either, since the type I property is inherited by open subgroups, see [Kal73,
Proposition 2.4]. �

6. Conjectures and relation to C∗-simplicity

In this section, we wish to relate Conjecture A with another conjecture, pertaining
to C∗-simplicity. Important recent results from [KK17] ensure that if a discrete group
G has a (topologically) free action on its Furstenberg boundary, then its reduced
C∗-algebra is simple. It is currently unknown whether the same result holds for
non-discrete locally compact groups:

Conjecture 6.1. Let G be a second countable locally compact group. If some point
of the Furstenberg boundary of G has a trivial stabilizer, then C∗r (G) is simple.

A few comments relevant to Conjecture 6.1 may be found in the introduction
of [CBB21].

Known results in the discrete case make it natural to strengthen that conjecture as
follows. Let A be the stabilizer URS associated with the G-action on its Furstenberg
boundary. It is not difficult to see that A is the unique largest URS of G consisting
of relatively amenable subgroups. Moreover, that URS is reduced to the trivial
subgroup if and only if some point of the Furstenberg boundary of G has a trivial
stabilizer. This is in turn equivalent to the condition that the Chabauty closure of
the conjugacy class of each relatively amenable closed subgroup of G contains the
trivial subgroup.

Conjecture 6.2. Let G be a second countable locally compact group and ∂FG be
its Furstenberg boundary. For any continuity point z ∈ ∂FG of the stabilizer map
∂FG→ Sub(G), the C∗-algebra C∗λG/Gz (G) is simple.

In other words, using the notation of Section 2.2, this conjecture predicts that
C∗(A) is simple, where A is the stabilizer URS for the G-action on its Furstenberg
boundary.
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Conjecture 6.2 is known to hold if G is discrete, see [Kaw17, Corollary 8.5]
and [KS20, Theorem 5.8]. Moreover, that conjecture is formally stronger than Con-
jecture 6.1: indeed, the latter is the special case of the former when Gz is trivial
(equivalently A = {〈e〉}). In the setting of hyperbolic groups, Conjecture 6.2 would
imply that for any boundary representation π of a non-amenable hyperbolic group
G, the C∗-algebra C∗π(G) is simple, while Theorem E ensures that this algebra does
not depend on the choice of π.

The following result highlights a link between Conjecture 6.2 and Conjecture A.

Proposition 6.3. Let G be a second countable tdlc group satisfying the conclusion
of Conjecture 6.2. If G is a type I group, then it has a cocompact amenable subgroup.

The proof will be presented at the end of this section. The argument relies on the
following two propositions of independent interest.

Proposition 6.4. For every locally compact group G, the following assertions are
equivalent.

(i) G has a cocompact amenable subgroup.
(ii) G acts transitively on its Furstenberg boundary.

Proof. Suppose that the topological group G has a homogeneous Furstenberg bound-
ary ∂FG and write ∂FG ∼= G/P for a subgroup P < G which is necessarily cocom-
pact. The universal property of ∂FG shows that P is relatively amenable in G, but
by cocompactness it is actually amenable. This latter point is proved e.g. in the
Proposition in [Mon20].

Conversely, suppose that G contains a cocompact amenable subgroup P . Since
P must fix a point in the space ∆G of probability measures on ∂FG, it follows that
G has a compact orbit in ∆G. By the converse to Krein–Milman’s theorem [DS58,
V.8.5], this orbit contains all extremal points of ∆G and hence ∂FG is a single orbit
(see [Gla76] for details). �

Proposition 6.5. Let G be a σ-compact locally compact group, let Z be a G-
boundary, let ν be a G-quasi-invariant Radon probability measure on Z such that
L2(Z, ν) is separable. Let κ denote the associated Koopman representation, and let
U ≤ G be a compact open subgroup that fixes the measure ν. If the image of the
convolution algebra Cc(U\G/U) under κ is finite-dimensional, then the G-action on
Z is transitive.

We need the following elementary fact.

Lemma 6.6. Let G be a locally compact group with left Haar measure µ, let U ≤ G
be a compact open subgroup and π be a unitary representation of G. For each g ∈ G,
the characteristic function 1UgU belongs to Cc(G) and we have

π(1UgU) = µ(UgU)pUπ(g)pU ,

where pU is the orthogonal projection on the subspace of U-invariant vectors in Hπ.

Proof. The identity is unaffected by renormalizing µ, so we can assume µ(U) = 1.
The integral expression pU = π(1U) for pU is well-known and easy to see. It follows
that the right hand side of the identity to establish is µ(UgU)π(1U ∗ 1gU) and it
suffices to check the convolution equation 1UgU = µ(UgU) · 1U ∗ 1gU . By definition,
(1U ∗ 1gU)(z) =

∫
U

1gU(y−1z) dµ(y) = µ(U ∩ zUg−1). Since U is compact open,
it is partitioned into m ≥ 1 cosets ui(U ∩ gUg−1) of measure 1/m, with ui ∈ U .
Writing U =

⊔m
i=1 U ∩ uigUg−1, it follows that µ(U ∩ zUg−1) is 1/m or 0 according

to whether z ∈ UgU or not. This implies

1UgU = m · 1U ∗ 1gU . (∗)
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It remains to check m = µ(UgU), which can be derived from integrating both sides
of (∗). �

Proof of Proposition 6.5. Suppose that κ(Cc(U\G/U)) is finite-dimensional. Then
there exist elements g0, g1, . . . , gk ∈ G such that κ(Cc(U\G/U)) is spanned by the
images of the characteristic functions 1Ug0U , . . . , 1UgkU . Suppose for a contradiction
that there exist points x, y ∈ Z in distinct G-orbits. Since U is compact, it follows
that there exists a compact neighbourhood α of x such that y 6∈

⋃k
i=0 UgiUα. Since

the set
⋃k
i=0 UgiUα is closed, there exists also a neighbourhood β of y with β ∩

(
⋃k
i=0 UgiUα) = ∅. In particular β ∩ UgiUα = ∅ for all i, so that

〈κ(1UgiU)1α,1β〉 = 0

for all i, in the space L2(Z, ν).
Choose neighbourhoods α′ ( α of x and β′ ( β of y such that U ′ := {g ∈ U |

g(α′) ⊆ α, g(β′) ⊆ β} is an identity neighbourhood in G. Upon replacing U ′ by
U ′ ∩ (U ′)−1 we shall assume that U ′ is symmetric.

Since Z is a G-boundary, there exists t ∈ G such that ν(tα′) > 1 − ν(β′).
By the definition of g0, . . . , gk, there exist λ0, . . . , λk ∈ C such that κ(1UtU) =∑k

i=0 λiκ(1UgiU). By the above, it follows that 〈κ(1UtU)1α,1β〉 = 0.Using Lemma 6.6,
we deduce that

0 = 〈pUκ(t)pU1α,1β〉
= 〈κ(t)pU1α, pU1β〉

=

∫
Z

(pU1α)(t−1z)(pU1β)(z)

√
dtν

dν
(z)dν(z).

Therefore the non-negative map z 7→ pU1α(t−1z)pU1β(z)
√

dtν
dν

(z) vanishes ν-almost

everywhere. Since tν is in the same measure class as ν, the Radon-Nikodym de-
rivative dtν/dν is non-zero ν-a.e. Therefore, the map z 7→ pU1α(t−1z)pU1β(z) also
vanishes ν-a.e. Moreover, by Lemma 6.6 we have

pU1β(z) =
1

µ(U)

∫
U

1β(u−1z)dµ(u)

≥ 1

µ(U)

∫
U ′

1β(u−1z)dµ(u)

≥ 1

µ(U)

∫
U ′

1β′(z)dµ(u)

=
µ(U ′)

µ(U)
1β′(z).

Similarly, we have pU1α(z) ≥ µ(U ′)
µ(U)

1α′(z). It follows that

0 =

∫
Z

(pU1α)(t−1z)(pU1β)(z)dν(z)

≥ µ(U ′)2

µ(U)2

∫
Z

1α′(t
−1z)1β′(z)dν(z)

=
µ(U ′)2

µ(U)2
ν(tα′ ∩ β′).

Therefore ν(tα′ ∩ β′) = 0 so that ν(tα′) ≤ 1− ν(β′). This contradicts the definition
of t. �
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Proof of Proposition 6.3. Let G be a second countable tdlc group of type I and Z
be its Furstenberg boundary. Let z ∈ Z be a continuity point of the stabilizer map
Z → Sub(G), so that Gz belongs to the URS A. Let ν0 be a G-quasi-invariant
Radon probability measure on G/Gz, and ν denote the push-forward of ν0 along
the orbit map G/Gz → Z. Then L2(Z, ν) is separable since L2(G/Gz, ν0) is, and by
construction the Koopman representation κ on L2(Z, ν) is unitarily equivalent to
the quasi-regular representation λG/Gz . Let U ≤ G be a compact open subgroup. By
Lemma 2.2, there exists a U -invariant probability measure ν ′ in the measure-class
of ν. In view of Lemma 2.1, we may replace ν by ν ′ and assume henceforth that ν
is U -invariant.

By construction, we have C∗κ(G) ∼= C∗λG/Gz (G) = C∗(A). It follows by hypoth-

esis that C∗κ(G) is simple. Since moreover G is a type I group by assumption, we
infer that κ is CCR. Let π be an irreducible representation of C∗κ(G) (considered
also as a unitary representation of G). Then since the operator π(1U) is compact,
π
(
Cc(U\G/U)

)
is finite-dimensional. Therefore κ

(
Cc(U\G/U)

)
is finite-dimensional

since C∗π(G) = C∗κ(G). This ensures that all the hypotheses of Proposition 6.5 are
satisfied. Hence G acts transitively on Z, so that G has a cocompact amenable
subgroup by Proposition 6.4. �

Remark 6.7. Proposition 6.3 does not require any hypothesis of irreducibility of
boundary representations. Hence, for a hyperbolic group G satisfying the conclusion
of Conjecture 6.2, it provides a conceptually different approach to the existence of
a cocompact amenable subgroup, in comparison with the proof Theorem B.

We conclude this discussion by showing that, in order to establish Conjecture A,
it suffices to prove it in the special case of unimodular tdlc groups. We first record
the following observation.

Proposition 6.8. Let Q0 C Q be an open normal subgroup of a locally compact
group Q and assume that Q/Q0 is amenable. If Q0 admits a cocompact amenable
subgroup, then so does Q.

Proof. According to (the proof of) Proposition 6.4, the Furstenberg boundary of
Q0 is of the form Q0/P0 for a cocompact amenable subgroup P0 < Q0. Moreover,
the action of Q0 on its Furstenberg boundary can be extended to a Q-action by
homeomorphisms, see Proposition II.4.3 and page 32 in [Gla76]. This Q-action is
continuous because Q0 is open in Q. It is moreover transitive since already Q0 is
transitive. Therefore, Q admits a cocompact subgroup P < Q with P ∩ Q0 = P0.
This subgroup is amenable since it is an extension of P0 by a subgroup of the
amenable discrete group Q/Q0. �

Proposition 6.9. If every (second countable) unimodular tdlc group satisfies the
conclusion of Conjecture A, then every (second countable) locally compact group
does as well.

Proof. Let G be an arbitrary (second countable) locally compact group of type I. Let
RCG be its amenable radical, that is, the largest normal (topologically) amenable
subgroup, which is automatically closed and unique. It follows from structure theory
and Lie theory that G/R admits a finite index open subgroup H < G/R which splits
as a direct product H = S×Q, where S is a connected semi-simple Lie group and Q
is totally disconnected. This is proved as Theorem 3.3.3 in [BM02] (see also [Mon01,
11.3.4]). Finally, let Q0 be the kernel of the modular function of Q.

Recall first that Q0 is unimodular: it is actually the maximal unimodular closed
normal subgroup of Q, see [Bou63b, VII §2 No 7]. Moreover Q0 is second countable
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if G is so. Observe next that Q0 is open in Q because it contains every compact
subgroup of Q and there are open compact subgroups by van Dantzig’s theorem.
Finally, we claim that Q0 is of type I. Indeed, the type I condition passes to quotients
by definition, and is also passes to open subgroups, see e.g. Proposition 2.4 in [Kal73]
(this reference assumes second countability but it is not used in 2.4). Applying each
of these hereditary properties twice, we can pass from G to Q0.

By hypothesis, the group Q0 satisfies the conclusion of Conjecture A, hence it
contains a cocompact amenable subgroup P0. In view of Proposition 6.8, we now
know that Q admits a cocompact amenable subgroup PQ < Q. On the other hand,
S also admits a cocompact amenable subgroup PS < S, namely a minimal parabolic
subgroup. The amenable group PQ × PS is still cocompact in G/R since S ×Q has
finite index in the latter. It follows that the pre-image P < G of PQ × PS in G is
cocompact in G. On the other hand, P is amenable since it is an extension of R by
PQ × PS. �

Remark 6.10. Combining Propositions 6.3 and 6.9, we see that if Conjecture 6.2
holds for all second countable unimodular tdlc groups, then Conjecture A is true.
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[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. 13

[BHC62] Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of
Math. (2) 75 (1962), 485–535. 2

[BHO20] Michael Björklund, Yair Hartman, and Hanna Oppelmayer, Random walks on dense
subgroups of locally compact groups, 2020, Preprint, arXiv:2006.15705. 28

[BK90] Hyman Bass and Ravi Kulkarni, Uniform tree lattices, J. Amer. Math. Soc. 3 (1990),
no. 4, 843–902. 2, 28



34 P.-E. CAPRACE, M. KALANTAR, AND N. MONOD

[BKKO17] Emmanuel Breuillard, Mehrdad Kalantar, Matthew Kennedy, and Narutaka Ozawa,
C∗-simplicity and the unique trace property for discrete groups, Publ. Math. Inst.
Hautes Études Sci. 126 (2017), 35–71. 3

[Bla63] Robert J. Blattner, Positive definite measures, Proc. Amer. Math. Soc. 14 (1963),
423–428. 8

[BM02] Marc Burger and Nicolas Monod, Continuous bounded cohomology and applications to
rigidity theory, Geom. Funct. Anal. 12 (2002), no. 2, 219–280. 32

[BM11] Uri Bader and Roman Muchnik, Boundary unitary representations—irreducibility and
rigidity, J. Mod. Dyn. 5 (2011), no. 1, 49–69. 4, 28
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[Ele18] Gábor Elek, Uniformly recurrent subgroups and simple C∗-algebras, J. Funct. Anal.
274 (2018), no. 6, 1657–1689. 10

[Eym72] Pierre Eymard, Moyennes invariantes et représentations unitaires, Lecture Notes in
Mathematics, Vol. 300, Springer-Verlag, Berlin-New York, 1972. MR 0447969 12

[Fel64] J. M. G. Fell, Weak containment and induced representations of groups. II, Trans.
Amer. Math. Soc. 110 (1964), 424–447. 9

[Gar14]  Lukacz Garncarek, Boundary representations of hyperbolic groups, preprint
arXiv:1404.0903, 2014. 4, 26, 28

[GdlH90] Étienne Ghys and Pierre de la Harpe (eds.), Sur les groupes hyperboliques d’après
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