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Stabilization for SLn in bounded cohomology

Nicolas Monod

Abstract. We prove that for all local fields SLn is stable over n in terms of
continuous bounded cohomology. We complement this by various computa-

tions in low degree, showing notably H3
b(SLn(R)) = 0 for all n ∈ N. We link

the corresponding vanishing for p-adic fields to a question on prime numbers.

1. Introduction

The continuous Eilenberg-MacLane cohomology of classical simple Lie groups
is well known. By results going back to É. Cartan and W.T. van Est, it can notably
be realized as relative Lie algebra cohomology or as the cohomology of the compact
dual symmetric space [4]. For instance, the continuous cohomology H•

c(SLn(C))
is an exterior algebra over the Borel classes. In this example, there is moreover a
stabilization: the standard inclusions SLn(C) ↪→ SLn+1(C) induce an isomorphism
on Hq

c for n large enough compared to q; in particular, one obtains a description of
the cohomology of the direct limit SL∞(C) which is notably of relevance for Bott
periodicity [9].

The continuous cohomology of semi-simple Lie groups is also essential for the
understanding of the more complicated cohomology of their discrete subgroups [4,
3]. On the other hand, the theory of bounded cohomology, which plays an important
role for discrete groups in a number of contexts [14, 12, 6, 7, 16, 20, 21, 22], is
reputedly much less accessible to computation – and mostly unknown as yet.

However, we find that for the continuous bounded cohomology H•
cb of Lie

groups, more tools are available, at least in low degrees. Our first result is a
stabilization statement:

Theorem 1.1. Let k be a local field and 0 ≤ m ≤ n. Then the standard
embeddings GLm(k) ↪→ GLn(k) induce isomorphisms

Hq
cb(GLn(k)) ∼= Hq

cb(GLm(k))

for any 0 ≤ q ≤ m. Similarly, one has

Hq
cb(SLn(k)) ∼= Hq

cb(GLm(k))

if 0 ≤ q ≤ m− 1.
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Theorem 1.1 makes it all the more desirable to gain an understanding of the
low degree bounded cohomology for the low dimensional linear groups. Let us first
review what is known. In degree one, H•

cb always vanishes. In degree two, the
situation is fully understood:

Theorem (see [6, 7]). Let G be a connected simple Lie group or more generally
the group of k-points of a connected isotropic almost simple algebraic group over a
local field k of any characteristic. Then H2

cb(G) ∼= H2
c(G). (In particular, this space

is one dimensional if k is Archimedean and the associated symmetric space is of
Hermitian type; it vanishes in all other cases).

Beyond degree two, no complete results are known. For the case of SL2(C), we
have shown with M. Burger [8, Theorem 1.2] that a result of S. Bloch [2] implies

Theorem (see [8]). The space H3
cb(SL2(C)) is naturally isomorphic to H3

c(SL2(C))
(and thus has dimension one).

We have also proved the following [8, Theorem 1.5]

Theorem (see [8]). H3
cb(SL2(R)) = 0.

Further, A. Goncharov’s study of functional equations for the trilogarithm [13]
shows that the Borel class generating H5

c(SL3(C)) can be represented by a bounded
cocycle and hence H5

cb → H5
c is onto for this group. Goncharov gives also formulae

expressing cocycles for higher Borel classes in terms of higher polylogarithms ; we
could however not check whether theses cocycles are bounded (this would settle for
SLn(C) a conjecture of J.L. Dupont [10], see [20, 9.3.9]). The only other surjectivity
results in higher rank that we are aware of are R.P. Savage’s proof [23] that the
volume form associated to SLn(R) is in the image of Hd

cb (for d = n(n + 1)/2− 1)
and the fact that the Euler class for GL+

n (R) is in the image of Hn
cb as can be

deduced e.g. from the Ivanov-Turaev cocycle [17].

However, none of this information can be immediately used in Theorem 1.1 as
it stands because of the assumption 0 ≤ q ≤ m− 1 or m. We shall show:

Theorem 1.2. H3
cb(SLn(R)) = 0 and H3

cb(GLn(R)) = 0 for all n ∈ N.

It turns out that a similar investigation for the field Q (Proposition 4.1 below)
leads to an intriguing question:

For a prime p, denote by vp the valuation normalized by vp(pn) = n. If q is
another prime, define Dp,q : Q \ {0, 1} → Z by

Dp,q(x) = vp(x)vq(1− x)− vq(x)vp(1− x).

This function is obviously unbounded because of the Chinese remainder theorem;
on the other hand, one can form arbitrary combinations of such Dp,q by varying
the primes p, q since the sum is finite at each x. We propose the following

Question 1.3. Is the function
∑
p<q

αp,qDp,q unbounded on Q \ {0, 1} for every

family of real numbers {αp,q} (unless they are all zero)?

Using an adèle argument, the Bloch-Suslin complex and Theorem 1.1, we show:

Theorem 1.4. A positive answer to Question 1.3 implies H3
cb(GLn(Qp)) = 0

for all n ∈ N and all primes p.



STABILIZATION IN BOUNDED COHOMOLOGY 3

Acknowledgments I am indebted to D. Zagier for suggesting and discussing
the reference [24] used in the last section. Warm thanks are due to the organisers
of the first JAMS symposium. Work partially supported by grants of the FNS and
the NSF.

2. Cohomology with Coefficients on Projective Spaces

Let k be a local field, i.e. a locally compact non-discrete field, and let n ≥ 1.
We write

Gn = GLn(k), G+
n = SLn(k), Pn−1 = Pn−1(k) = (kn \ {0})/k∗.

We endow Pn−1 with the measure class determined by the Haar measures on k.
The natural Gn-action preserves this class and therefore we obtain a coefficient
module L∞(Pn−1), and more generally for every m ≥ 0 the diagonal action on
the direct product turns L∞(Pm+1

n−1 ) into a coefficient module (a coefficient module
is a dual isometric Banach representation with separable continuous predual; for
background see [20]). We agree that Gn, G+

n are trivial groups for n ≤ 0.

An important ingredient for Theorem 1.1 is the following.

Proposition 2.1. Let k be a local field and n, p, q non-negative integers. There
are canonical isomorphisms

(i) Hq
cb

(
Gn, L∞(Pp+1

n−1)
) ∼= Hq

cb(Gn−p−1) for 0 ≤ p ≤ n.
(ii) Hq

cb

(
G+

n , L∞(Pp+1
n−1)

) ∼= Hq
cb(Gn−p−1) for 0 ≤ p ≤ n− 1.

(iii) Hq
cb

(
Gn, L∞(Pp+1

n−1)
)

= Hq
cb

(
G+

n , L∞(Pp+1
n−1)

)
= 0 for p ≥ n − 2 and

q 6= 0.

Remark 2.2. The case p ≥ n− 2, q = 0 is not contained in the proposition be-
cause indeed the very definition of H0

cb yields H0
cb

(
G+

n , L∞(Pp+1
n−1)

) ∼= L∞(Pp+1
n−1)

G+
n

and H0
cb

(
Gn, L∞(Pp+1

n−1)
) ∼= L∞(Pp+1

n−1)
Gn for all p. In particular, comparing with (i)

and (ii), we recover the basic facts

(2.1) L∞(Pp+1
n−1)

Gn ∼= R (∀ p ≤ n),

(2.2) L∞(Pp+1
n−1)

G+
n ∼= R (∀ p ≤ n− 1).

Remark 2.3. An elementary consequence of the proposition is that for all
n, p ≥ 0 one has

H1
cb

(
Gn, L∞(Pp+1

n−1)
)

= 0,

H1
cb

(
G+

n , L∞(Pp+1
n−1)

)
= 0.

Indeed, for bounded cohomology with trivial coefficients one has always H1
cb(−) = 0,

so that for p ≤ n− 1 we are done by (i) and (ii); for other p, apply (iii).

We prepare now the proof of Proposition 2.1. For v ∈ kn \ {0} we denote by v̄
the corresponding element of Pn−1. We denote by (e1, . . . , en) the canonical base
of kn and consider by abuse of notation the corresponding inclusion kn ⊂ kn+1.
We let

Qn = StabGn
(ēn), Q+

n = StabG+
n
(ēn).
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If we write Nn and N+
n for the corresponding kernels of the Qn- and Q+

n -actions
on kn−1, we have semi-direct product decompositions Qn = Nn o Gn−1 and Q+

n =
N+

n o Gn−1.

Lemma 2.4. Let σ : Gn−1 → Qn be a section, E a coefficient Qn-module
and ι : ENn → E the inclusion map. Then we have for all q ∈ N topological
isomorphisms

Hq
cb(Gn−1, E

Nn) σ∗←−−− Hq
cb(Qn, ENn) ι∗−−→ Hq

cb(Qn, E).

Moreover, the restriction map σ∗ does not depend on the choice of σ.

Proof. Let π : Qn → Gn−1 be the quotient map. The amenability of Nn

implies that ι∗ as well as the inflation map

π∗ : Hq
cb(Gn−1, E

Nn) −→ Hq
cb(Qn, ENn)

are topological isomorphisms, see Corollary 8.5.2 in [20]. The statements about σ∗

now follow from σ∗π∗ = Id . �

Similarly, we have

Lemma (2.4+). Let σ : Gn−1 → Q+
n be a section, E a coefficient Q+

n -module
and ι : EN+

n → E the inclusion map. Then we have for all q ∈ N topological
isomorphisms

Hq
cb(Gn−1, E

N+
n ) σ∗←−−− Hq

cb(Q+
n , EN+

n ) ι∗−−→ Hq
cb(Q+

n , E).

Moreover, the restriction map σ∗ does not depend on the choice of σ. �

For n ≥ 2, the canonical projection kn → kn−1 which omits en induces a
Qn-equivariant map

πn : Pn−1 \ {ēn} −→ Pn−2.

Since the Nn-action on Pn−2 is trivial, πn induces for every p ≥ 1 a surjective
Qn-map

πn :
(
Pn−1 \ {ēn}

)p
/

Nn −→ Pp
n−2.

Since k is non-discrete, Pn−1\{ēn} has full measure in Pn−1. Denoting by a double
slash the standard quotients in the category of measure class spaces, we have

Lemma 2.5. For all 0 ≤ p ≤ n, the map πn yields a Qn-equivariant isomor-
phism

Pp
n−1

//
Nn −→ Pp

n−2.

of measure class spaces.

Proof of Lemma 2.5. The case p = 0 is void, so let p ≥ 1. It is enough to
prove that the map πn is injective outside a null set, which can be achieved by a
dimension argument because k is non-discrete:

Take two families u1, . . . up and v1, . . . vp of elements of kp \ ken and suppose
πn(ui) = πn(vi) for all 1 ≤ i ≤ p. Thus, there are λ1, . . . , λp ∈ k∗ such that,
working in the canonical base (ej), we have

ui
j = λiv

i
j ∀ 1 ≤ i ≤ p, 1 ≤ j ≤ n− 1.
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In this base, we have an identification kn−1ok∗ ∼= Nn which takes ν = (ν1, . . . , νn−1; νn)

to

 0

Id
...
0

ν1 ··· νn−1 νn

. Thus the image of ui under ν is


ui

1
...

ui
n−1

〈ν|ui〉

 =


λiv

i
1

...
λiv

i
n−1

〈ν|ui〉


where 〈·|·〉 is the k-bilinear form associated to (ej). In order to show that the
p-tuples (u1, . . . , up) and (v1, . . . , vp) are in the same Nn-orbit, one must solve
simultaneously the equations 〈ν|ui〉 = λiv

i
n (1 ≤ i ≤ p) in ν with νn 6= 0. This

system can be solved if the (ui) are linearly independent in kn; this condition fails
only for a set of positive codimension in Pp

n−1 since p ≤ n. The additional condition
νn 6= 0 is also generic in (ui). �

We observe that with the above notations there is an identification N+
n
∼= kn−1

under which ν ∈ N+
n is equivalent to νn = 1. Repeating the preceding proof with

this additional restriction decreasing by one the bound on p, we get:

Lemma 2.6. For all 0 ≤ p ≤ n − 1, the map πn yields a Q+
n -equivariant

isomorphism Pp
n−1//N

+
n → Pp

n−2 of measure class spaces. �

Corollary 2.7. (i) For all 0 ≤ p ≤ n, the map πn induces an identification
L∞(Pp

n−1)
Nn ∼= L∞(Pp

n−2) of coefficient Qn-modules (or Gn−1-modules).
(ii) For all 0 ≤ p ≤ n−1, the map πn induces an identification L∞(Pp

n−1)
N+

n ∼=
L∞(Pp

n−2) of coefficient Q+
n -modules (or Gn−1-modules). �

Proof of Proposition 2.1. We may assume n ≥ 2 since otherwise all groups
are Abelian and hence have vanishing bounded cohomology in all positive degrees.

(i) and (ii): The identifications

(2.3) Pn−1
∼= Gn/Qn, Pn−1

∼= G+
n /Q+

n

yield coefficient modules identifications

L∞(Pp+1
n−1) ∼= L∞w∗

(
Gn/Qn, L∞(Pp

n−1)
)
,

where L∞w∗ denotes the space of weak-* measurable bounded function classes; for
background on this and the following, we refer to [20]. The right hand side above
is isomorphic to the induced module IndGn

Qn
L∞(Pp

n−1), see point (v) in Exam-
ples 10.1.2 in [20]. Therefore there is a natural induction isomorphism

Hq
cb

(
Gn, L∞(Pp+1

n−1)
) ∼= Hq

cb

(
Qn, L∞(Pp

n−1)
)

by Propositions 10.1.3 and 10.1.5 in [20]. Similarly,

Hq
cb

(
G+

n , L∞(Pp+1
n−1)

) ∼= Hq
cb

(
Q+

n , L∞(Pp
n−1)

)
.

By Lemma 2.4 and Lemma 2.4+, we have restriction isomorphisms

Hq
cb

(
Qn, L∞(Pp

n−1)
) ∼= Hq

cb

(
Gn−1, L

∞(Pp
n−1)

Nn
)
,

Hq
cb

(
Q+

n , L∞(Pp
n−1)

) ∼= Hq
cb

(
Gn−1, L

∞(Pp
n−1)

N+
n

)
.
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Since we have assumed p ≤ n resp. p ≤ n − 1, we may apply both cases of
Corollary 2.7 and deduce

Hq
cb

(
Gn, L∞(Pp+1

n−1)
) ∼= Hq

cb

(
Gn−1, L

∞(Pp
n−2)

)
,

Hq
cb

(
G+

n , L∞(Pp+1
n−1)

) ∼= Hq
cb

(
Gn−1, L

∞(Pp
n−2)

)
.

We may now repeat the argument ` times on the common right hand side above,
thus decreasing simultaneously n and p to get

Hq
cb

(
Gn−1−`, L

∞(Pp−`
n−2−`)

)
.

If p ≤ n− 2 we stop at ` = p and obtain the term

Hq
cb

(
Gn−p−1, L

∞(P0
n−2−p)

)
= Hq

cb(Gn−p−1)

If p = n− 1 we stop at ` = p− 1 and obtain

Hq
cb

(
G1, L

∞(P0)
)

= Hq
cb(G1) = Hq

cb(G0)

(G1 is amenable), whilst if p = n we stop at ` = p− 2 and obtain likewise

Hq
cb

(
G1, L

∞(P2
0)

)
= Hq

cb(G1) = Hq
cb(G−1).

In all three cases we have the right hand side of (i) and (ii).
(iii): We claim that for p ≥ n− 2 the diagonal Gn-action on Pp+1

n−1 is amenable
(in the sense of R. Zimmer [25]). Indeed (see [1]), the amenability of the action is
equivalent to the conjunction of

– the equivalence relation associated to the action is amenable,
– the stabilizer of almost every point is an amenable group.

The first condition is satisfied because the orbits are locally closed. As for the
second, the identification (2.3) shows that the stabilizer of a point in Pp+1

n−1 is the
intersection of p+1 conjugates of Qn. Since p+1 ≥ n−1, a generic such intersection
is contained in a minimal parabolic subgroup, hence is amenable. This proves the
claim.

The amenability of the action is equivalent to the relative injectivity of the
coefficient Gn-module L∞(Pp+1

n−1), see Theorem 5.7.1 in [20]. Similarly, L∞(Pp+1
n−1)

is relatively injective as a coefficient G+
n -module1. This implies the vanishing of the

bounded cohomology in every positive degree (Proposition 7.4.1 in [20]). �

3. A Double Complex

Keep the notation of the previous section. We define a fist quadrant double
complex (L•,•, Id, IId) by

Lp,q = L∞(Gp+1
n ×Pq+1

n−1)
Gn (p, q ≥ 0)

with Id : Lp,q → Lp+1,q defined by the homogeneous coboundary dp associated to
Gp+1

n ; we recall for later use the definition dp =
∑p

j=0(−1)jdp
j , where dp

j omits the
jth variable. As for IId : Lq,p → Lq,p+1 it is defined by the homogeneous coboundary
on Pp+1

n−1 affected with the sign (−1)(p+1). To such a complex are associated two
spectral sequences IE, IIE; for spectral sequences, we follow standard notations, see
e.g. [11, III.7], [5, III §14] or the Section 12.1 in [20]. The following lemma is
straightforward except for a technical point:

1One can also argue that for coefficient modules, relative injectivity is preserved by passing
to closed subgroups of second countable locally compact groups, see Proposition 5.8.1 in [20].
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Lemma 3.1. The first spectral sequence converges to H•
cb(Gn). More precisely,

IEp,q
r = 0 (∀ p ≥ 0, q ≥ 1, r ≥ 1) and IEp,0

r
∼= Hp

cb(Gn) (∀ p ≥ 0, r ≥ 2).

Proof. Since integration over the first variable provides a homotopy (cf. proof
of [7, 1.5.6] or [20, 7.5.5]), the cohomology of the complex

0 −→ L∞(Pn−1) −→ L∞(P2
n−1) −→ L∞(P3

n−1) −→ · · ·
is concentrated in degree zero, where it is R. We have shown in Lemma 8.2.5
of [20] that L∞w∗(G

p+1
n ,−)Gn is exact for all p ≥ 0 with respect to adjoint short

exact sequences of coefficient Gn-modules. Therefore, since IEp,q
1 is defined by

L∞w∗(G
p+1
n , L∞(Pq

n−1))
Gn −→ L∞w∗(G

p+1
n , L∞(Pq+1

n−1))
Gn −→

−→ L∞w∗(G
p+1
n , L∞(Pq+2

n−1))
Gn

for q > 0 and

0 −→ L∞w∗(G
p+1
n , L∞(Pn−1))Gn −→ L∞w∗(G

p+1
n , L∞(P2

n−1))
Gn

when q = 0, we deduce canonical identifications IEp,0
1
∼= L∞(Gp+1

n )Gn , IEp,q
1 = 0

for all p ≥ 0, q ≥ 1. Thus IEp,0
2 is defined by the L∞ homogeneous resolution for

Hp
cb(Gn) and the statement follows. �

Lemma 3.2. There is a canonical identification IIEp,q
1
∼= Hq

cb

(
Gn, L∞(Pp+1

n−1)
)

for all p, q ≥ 0.

Proof. In view of the identification Lq,p ∼= L∞w∗
(
Gq+1

n , L∞(Pp+1
n−1)

)Gn , the
spaces IIEp,q

1 are indeed defined by the L∞ homogeneous resolution for the contin-
uous bounded cohomology of Gn with coefficients in L∞(Pp+1

n−1). �

Recall that we have given in Proposition 2.1 an interpretation of the right hand
side in Lemma 3.2. However, in order to compute the second tableau IIE2 we need
to understand the differentials IIEp,q

1 → IIEp+1,q
1 , induced (up to the sign) by the

homogeneous coboundary dp+1 : L∞(Pp+1
n−1)→ L∞(Pp+2

n−1).

Lemma 3.3. Let n, p, q be non-negative integers with p ≤ n − 2. If p is even,
then the differential IIEp,q

1 → IIEp+1,q
1 vanishes. If p is odd, then the isomorphisms

of (the proof of) Proposition 2.1 (i) conjugate the differential to the restriction map

res : Hq
cb(Gn−p−1) −→ Hq

cb(Gn−p−2)

induced by the upper left inclusion Gn−p−2 → Gn−p−1.

Proof. We consider for 0 ≤ j ≤ p + 1 the map Ap+1
n,j defined by the commu-

tative diagram

Hq
cb(Gn, L∞(Pp+1

n−1))
(dp+1

j )∗ // Hq
cb(Gn, L∞(Pp+2

n−1))

Hq
cb(Qn, L∞(Pp

n−1))
Ap+1

n,j //

∼= ind

OO

Hq
cb(Qn, L∞(Pp+1

n−1)).

∼= ind

OO

We recall from [20, p. 134] that the left hand side induction can be defined e.g.
as follows. Represent [α] ∈ Hq

cb(Qn, L∞(Pp
n−1)) by a bounded measurable Qn-

equivariant cocycle α : Gq+1
n → L∞(Pp

n−1) and define

iα : Gq+1
n −→ L∞(Pp+1

n−1) ∼= L∞w∗(Gn/Qn, L∞(Pp
n−1))
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by setting for gi, h ∈ Gn, x ∈ Pp
n−1

(3.1) iα(g0, · · · , gq)(hQn)(x) = α(h−1g0, · · · , h−1gq)(h−1x).

A similar formula defines the right hand side induction. A computation with (3.1)
shows that for j 6= 0 the map Ap+1

n,j is but (dp
j−1)∗ induced by L∞(Pp

n−1) →
L∞(Pp+1

n−1). It follows that, for the isomorphisms of the proof of Proposition 2.1,
we have a commutative diagram for j 6= 0

Hq
cb(Gn, L∞(Pp+1

n−1))
(dp+1

j )∗ //

∼=
��

Hq
cb(Gn, L∞(Pp+2

n−1))

∼=
��

Hq
cb(Gn−1, L

∞(Pp
n−2))

(dp
j−1)∗ // Hq

cb(Gn−1, L
∞(Pp+1

n−2)).

In the case j = 0, a computation with (3.1) shows that Ap+1
n,0 is the map res ◦ ind

such that

Hq
cb(Gn, L∞(Pp+1

n−1))
(dp+1

0 )∗ //

res

**VVVVVVVVVVVVVVVVVV
Hq

cb(Gn, L∞(Pp+2
n−1))

Hq
cb(Qn, L∞(Pp

n−1))
Ap+1

n,0 //

∼= ind

OO

Hq
cb(Qn, L∞(Pp+1

n−1))

∼= ind

OO

commutes. One checks further that the relevant isomorphisms from the proof of
Proposition 2.1 intertwine Ap+1

n,0 with Ap
n−1,0. Since dp+1 is an alternating sum

of the dp+1
j , the statement follows by induction on p. In fact the differential is

induced by dp+1 up to (−1)p+1 only, but this is irrelevant since we established that
it vanishes for p + 1 odd. �

Proof of Theorem 1.1 for Gn. It is enough to show that the upper left
embedding GLn−1(k) ↪→ GLn(k) induces isomorphisms

Hq
cb(GLn(k)) ∼= Hq

cb(GLn−1(k))

for any 0 ≤ q ≤ n− 1. We do this by induction on n. The statement is trivial for
n ≤ 2. Take n ≥ 3 and assume the statement true for all smaller values.

Lemma 3.2 and Proposition 2.1 (i) show that IIEp,q
2 is computed by

0 −→ Hq
cb(Gn−1) −→ Hq

cb(Gn−2) −→ · · · −→ Hq
cb(G0)

for 0 ≤ p ≤ n− 2 and q ≥ 1. If we add the induction assumption to the conclusion
of Lemma 3.3, we deduce that IIE0,q

2 = Hq
cb(Gn−1) and that IIEp,q

2 vanishes for
1 ≤ p ≤ n−2 and q ≥ 1. Lemma 3.2 and Proposition 2.1 (iii) imply now that IIEp,q

2

vanishes for all p, q provided pq 6= 0. In particular we get an exact sequence

(3.2) IIE
0,q−1

2 −→ IIE
q,0

2 −→ IIE
q

∞ −→ IIE
0,q

2 −→ IIE
q+1,0

2 .

On the other hand, IIEp,0
2 is computed by the complex

(3.3) 0 −→ L∞(Pn−1)Gn −→ L∞(P2
n−1)

Gn −→ L∞(P3
n−1)

Gn −→ · · ·
By Remark 2.2 and in view of the definition of the coboundary, this complex has
the form

0 −→ R 0−−→ R =−−→ R 0−−→ R =−−→ · · ·
for 0 ≤ p ≤ n. Therefore, IIEp,0

2 vanishes for 1 ≤ p ≤ n. Putting everything
together in (3.2), we deduce IIEq

∞
∼= Hq

cb(Gn−1) for all q ≤ n − 1. This, together
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with Lemma 3.1, finishes the proof upon checking that the isomorphism is indeed
induced by the inclusion. �

Proof of Theorem 1.1 for G+
n . We define a similar double complex by

Lp,q = L∞
(
(G+

n )p+1 ×Pq+1
n−1

)G+
n .

Then the proof is identical to the case of Gn except that one has to keep track of the
restriction p ≤ n − 1 of Proposition 2.1, Lemma 2.6 and Corollary 2.7 throughout
the argument. This results in the restriction q ≤ m− 1 in Theorem 1.1. �

As a by-product of the previous arguments, we obtain also:

Proposition 3.4. The restriction maps

Hn
cb(Gn) −→ Hn

cb(Gn−1) and Hn−1
cb (G+

n ) −→ Hn−1
cb (Gn−1)

are injective for all n. If k∗/(k∗)n is trivial, then the restriction map

Hn
cb(G+

n ) −→ Hn
cb(Gn−1)

is also injective.

Proof. Our discussion showed that (3.2) yields an exact sequence

IIE
n,0

2 −→ Hn
cb(Gn) −→ Hn

cb(Gn−1).

The first term is computed by (3.3) which vanishes as pointed out in Remark 2.2 –
case p = n of (2.1). Likewise, the spectral sequence for G+

n yields

IIE
n−1,0

2 −→ Hn−1
cb (G+

n ) −→ Hn−1
cb (G+

n−1),

wherein this time IIE•,02 is realized by

0 −→ L∞(Pn−1)G+
n −→ L∞(P2

n−1)
G+

n −→ L∞(P3
n−1)

G+
n −→ · · ·

Here the first term vanishes by the case p = n− 1 of (2.1).
Suppose now that k∗/(k∗)n is trivial. All we have to show is that IIEn,0

2 van-
ishes for the spectral sequence associated to G+

n . Thus it suffices to show that
L∞(Pn+1

n−1)
G+

n consist only of constant function classes. The Gn- and G+
n -actions

on Pn−1 factor through PGLn(k) and PSLn(k) respectively. The condition on k
implies that these groups coincide and thus we are done by (2.1). �

Proof of Theorem 1.2. First, we observe that the restriction map

H•
cb(GLn(R)) −→ H•

cb(SLn(R))

is injective for all n. Indeed, we have a commutative diagram

H•
cb

(
PGLn(R)

)
//

inf

��

H•
cb

(
PSLn(R)

)
inf

��
H•

cb

(
GLn(R)

)
// H•

cb

(
SLn(R)

)
in which both lateral arrows are isomorphisms [20, 8.5.2] and the upper arrow in
injective since PSLn(R) is closed of finite index in PGLn(R), see [20, 8.6.2].

As mentioned in the Introduction, the case of SL2(R) is a joint result with
M. Burger [8, 1.5]; therefore H3

cb(GL2(R)) vanishes as well. Now Proposition 3.4
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implies that both H3
cb(GL3(R)) and H3

cb(SL3(R)) vanish since (R∗)3 = R∗. The-
orem 1.1 implies the result for GLn(R). The case of SL4(R) is handled by the
injectivity of the second restriction map in Proposition 3.4. The remaining cases
SLn(R) for n ≥ 5 follow from Theorem 1.1. �

Remark 3.5. With the above arguments, we see that H3
cb(SLn(C)) is at most

one dimensional for all n.

4. p-adic fields and GL2(Q)

The first step for Theorem 1.4 is the following “global” statement:

Proposition 4.1. A positive answer to Question 1.3 implies H3
b(GL2(Q)) = 0.

Proof. Write G = GL2(Q) and P = P(Q). Since P is the quotient of G by
an amenable subgroup, the complex

0 −→ `∞(P)G −→ `∞(P2)G −→ `∞(P3)G −→ · · ·

computes H•
b(G), see [20, 7.5.9]. Thus any class in H3

b(GL2(Q)) = 0 can be rep-
resented by a bounded G-invariant cocycle ω : P4 → R (which we may choose
alternating). The cross-ratio maps the space of G-orbits of fourtuples of distinct
points in P onto Q∗∗ = Q \ {0, 1} and ω descends to a map f : Q∗∗ → R. The
cocycle relation dω = 0 translates into the Abel-Spence relation

(4.1) f

(
y − x

1− x

)
− f (y) + f (x)− f

(
x

y

)
+ f

(
x(1− y)
y(1− x)

)
= 0.

On the other hand (see [24] for details), one has for any infinite field F an exact
sequence

K ind
3 (F )Q −→ Q[F ∗∗]/R

δ−−→ F ∗
Q ∧ F ∗

Q −→ K2(F )Q,

where δ([x]) = x∧ (1− x), the subscript Q means tensorization ⊗ZQ and R is the
subgroup generated by all[

y − x

1− x

]
− [y] + [x]−

[
x

y

]
+

[
x(1− y)
y(1− x)

]
(with x, y ∈ F ∗∗, y 6= x, x− 1). In the case F = Q, both K2 and K ind

3 are torsion
groups (see [19, 11.6] for K2 and [15] for K3; recall that K ind

3 is a quotient of K3).
Thus the map δ above is an isomorphism in the case at hand. Extending f linearly
to Q[Q∗∗], the relation (4.1) means that it descends to a map f∗ modulo R. Now
the induced map

Q∗ ∧Q∗ −→ Q∗
Q ∧Q∗

Q
δ−1

−−−→ Q[Q∗∗]/R
f∗−−−→ R

is of the form
∑

αp,qDp,q as in Question 1.3 and thus a positive answer to Ques-
tion 1.3 implies f = 0, whence ω = 0. �

Proof of Theorem 1.4. Let A be the ring of adèles of Q and GA = PGL2(A).
Since G = PGL2(Q) embeds as a lattice in GA (see e.g. Theorem 3.2.2 in [18,
chap. I]), the restriction H3

cb(GA)→ H3
b(G) is injective (Example 8.6.3 in [20]). The

above proposition now implies H3
cb(GA) = 0. Since PGL2(Qp) is a direct factor of

GA, the inflation H3
cb(PGL2(Qp))→ H3

cb(GA) is injective by functoriality and thus
H3

cb(PGL2(Qp)) vanishes. The inflation associated to GL2(Qp)→ PGL2(Qp) is an
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isomorphism because the kernel is amenable [20, 8.5.2]. Now we have the vanish-
ing of H3

cb(GL2(Qp)); Proposition 3.4 yields the case of GL3(Qp) and Theorem 1.1
handles GLn(Qp) for n ≥ 4. �
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