
A LATTICE IN MORE THAN TWO KAC�MOODY GROUPS ISARITHMETICPIERRE-EMMANUEL CAPRACE* AND NICOLAS MONOD‡Abstrat. Let Γ < G1 × · · · × Gn be an irreduible lattie in a produt of in�niteirreduible omplete Ka�Moody groups of simply laed type over �nite �elds. We showthat if n ≥ 3, then eah Gi is a simple algebrai group over a loal �eld and Γ is an
S-arithmeti lattie. This relies on the following alternative whih is satis�ed by anyirreduible lattie provided n ≥ 2: either Γ is an S-arithmeti (hene linear) group, or Γis not residually �nite. In that ase, it is even virtually simple when the ground �eld islarge enough.More general CAT(0) groups are also onsidered throughout.1. IntrodutionThe theory of latties in semi-simple Lie and algebrai groups has witnessed tremendousdevelopments over the past fourty years. It has now reahed a remarkably deep and rihstatus, notably thanks to the elebrated work of G. Margulis, whose main aspets may beonsulted in [Mar91℄. Amongst the followers and exegetes of Margulis' work, several authorsextended the methods and results pertaining to this lassial setting to broader lasses oflatties in loally ompat groups. It should be noted however that as of today there existsapparently no haraterisation of the S-arithmeti latties purely within the ategory oflatties in ompatly generated loally ompat groups.It turns out that relatively few examples of ompatly generated topologially simplegroups are known to possess latties; to the best of our knowledge, they are all loallyompat CAT(0) groups. In fat, the only examples whih are neither algebrai nor Gromovhyperboli are all automorphism groups of non-Eulidean loally �nite buildings. Amongstthese, the most prominent family onsists perhaps of the so-alled irreduible ompleteKa�Moody groups over �nite �elds onstruted by J. Tits [Tit87℄ (see � 4.B below formore details).We now proeed to desribe our main result. To this end, �x a positive integer n.For eah i ∈ {1, . . . , n}, let Xi be a proper CAT(0) spae and Gi < Is(Xi) be a losedsubgroup ating oompatly.Theorem 1.1. Let Γ < G1 × · · ·×Gn be any lattie whose projetion to eah Gi is faithful.Assume that G1 is an irreduible omplete Ka�Moody group of simply laed type over a�nite �eld.If n ≥ 3, then eah Gi ontains a oompat normal subgroup whih is a ompat extensionof a semi-simple group over a loal �eld, and Γ is an S-arithmeti lattie.Key words and phrases. Lattie, loally ompat group, arithmetiity, Ka�Moody group, building, non-positive urvature, CAT(0) spae.*F.N.R.S. Researh Assoiate.
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2 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONOD(The same onlusion holds if G1 is instead assumed to be a non-Gromov-hyperboli ir-reduible omplete Ka�Moody group of 3-spherial type over a �nite �eld of harateris-ti 6= 2.)One an summarise the above result as follows: As soon as n ≥ 3 and one of the fators
Gi is Ka�Moody as above, all Gi are topologially ommensurable to semi-simple algebraigroups and the lattie is S-arithmeti.Remark 1.2. Our aim in Theorem 1.1 is to provide a statement without any restritiveassumptions on the lattie Γ, on the spaes Xi or on the groups Gi. Considerable om-pliations are aused by the fat that Γ is not supposed �nitely generated. It turns out aposteriori that only �nitely generated latties exist � as a onsequene of arithmetiity.Remark 1.3. The assumption on faithfulness of the projetions of Γ to eah fator Gi is aform of irreduibility. We refer to Setion 2.B below for a disussion of the di�erent possiblede�nitions of irreduibility for latties in produts of loally ompat groups.The above theorem is a new manifestation of the phenomenon that �high rank� yieldsrigidity. Numerous other results support this vague statement, inluding the rank rigidityof Hadamard manifolds, the arithmetiity of latties in higher rank semi-simple groups,or the fat that any irreduible spherial building of rank ≥ 3 (resp. a�ne building ofdimension ≥ 3) is assoiated to a simple algebrai group (possibly over a skew �eld).Theorem 1.1 will be established with the help of the following arithmetiity vs. non-residual-�niteness alternative.Theorem 1.4. Let Γ < G1×· · ·×Gn be a lattie whih is algebraially irreduible. Assumethat G1 is an in�nite irreduible omplete Ka�Moody group of simply-laed type over a�nite �eld.If n ≥ 2 then either Γ is an S-arithmeti group or Γ is not residually �nite.(The same onlusion holds if G1 is instead assumed to be a non-Gromov-hyperboli ir-reduible omplete Ka�Moody group of 3-spherial type over a �nite �eld of harateris-ti 6= 2.)It is known that if G = G1 × G2 is a produt of two isomorphi omplete Ka�Moodygroups over a su�iently large �nite �eld, then G ontains at least one irreduible non-uniform lattie (see [Rém99℄, [CG99℄). In [CR09℄, this spei� example is shown to besimple provided G1 and G2 are non-a�ne (and without any other restrition on the type).Theorem 1.4 shows in partiular that, under appropriate assumptions, all irreduible lat-ties in G are virtually simple. More preisely, we have the following arithmetiity vs.simpliity alternative whih, under more preise hypotheses, strengthens the alternativefrom Theorem 1.4.Corollary 1.5. Let G = G1×· · ·×Gn, where Gi is an in�nite irreduible Ka�Moody groupof simply-laed type over a �nite �eld Fqi

(or a non-a�ne non-Gromov-hyperboli irreduibleomplete Ka�Moody group of 3-spherial type over a �nite �eld Fqi
of harateristi 6= 2).Let Γ < G be a topologially irreduible lattie; if Γ is not uniform, assume in addition that

qi ≥ 1764di/25 for eah i, where di denotes the maximal rank of a �nite Coxeter subgroupof the Weyl group of Gi. If n ≥ 2, then exatly one of the following assertions holds:(i) Eah Gi is of a�ne type and Γ is an arithmeti lattie.(ii) n = 2 and Γ is virtually simple.



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 3It is important to remark that, in most ases, a group G satisfying the hypotheses of anyof the above statements does not admit any uniform lattie (see Remark 4.4 below).Corollary 1.6. Let G = G1 × · · · × Gn, where Gi is an in�nite irreduible non-a�neKa�Moody groups of simply-laed type over a �nite �eld Fqi
(or a non-a�ne non-Gromov-hyperboli irreduible omplete Ka�Moody group of 3-spherial type over a �nite �eld Fqi

ofharateristi 6= 2). Assume that qi ≥ 1764di/25 for eah i, where di denotes the maximalrank of a �nite Coxeter subgroup of the Weyl group of Gi.If n ≥ 2, then any topologially irreduible lattie of G has a disrete ommensurator, andis thus ontained in a unique maximal lattie.Our proof of Theorems 1.1 and 1.4 builds upon the general methods developed in [CM09a,CM09b℄ for studying latties in isometry groups of non-positively urved spaes. Our treat-ment of the residual-�niteness/simpliity dihotomy is inspired by the work of Burger�Mozesfor tree latties [BM00℄.Aknowledgement. We are grateful to the anonymous referee for his/her useful om-ments. 2. Latties in non-positive urvature2.A. The set-up. We now introdue the setting for this setion and the subsequent ones.The situation will di�er from the very simple assumptions made in the Introdution; indeedour �rst task in the proof of Theorems 1.1 and 1.4 will be to redue them to the set-upbelow.Fix an integer n ≥ 2. For eah i ∈ {1, . . . , n}, let Xi be an irreduible proper CAT(0)spae not isometri to the real line; irreduibility of Xi means that it does not split (non-trivially) as a diret produt. It follows that Xi has no Eulidean fator. We also assumethat the boundary ∂Xi is �nite-dimensional for the Tits topology (though this assumptionwill only be used in later setions).Let further Gi < Is(Xi) be a ompatly generated losed subgroup without global �xedpoint at in�nity. We assume that Gi ats minimally in the sense that there is no invariantlosed onvex proper subspae of Xi. We point out that this assumption is automatiallyful�lled upon passing to some subspae sine there is no �xed point at in�nity, ompareRemark 36 in [Mon06℄.We set G = G1 × · · · × Gn and X = X1 × · · · × Xn. Finally, let Γ < G be a lattie.It was established in [CM09b℄ that the following �Borel density� holds.Proposition 2.1. The ation of Γ and its �nite index subgroups on X is minimal andwithout �xed points at in�nity.Proof. This is a speial ase of Theorem 2.4 in [CM09b℄. �2.B. Irreduible latties and residual �niteness. Let G = G1 × · · · × Gn be a loallyompat group. The following properties provide several possible de�nitions of irreduibilityfor a lattie Γ in the produt G = G1 × · · · × Gn, whih we shall subsequently disuss.(Irr1) The projetion of Γ to any proper sub-produt of G is dense (and all Gi are non-disrete). In this ase Γ is alled topologially irreduible.(Irr2) The projetion of Γ to eah fator Gi is injetive.(Irr3) The projetion of Γ to any proper sub-produt of G is non-disrete.



4 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONOD(Irr4) Γ has no �nite index subgroup whih splits as a diret produt of two in�nitesubgroups. In this ase Γ is alled algebraially irreduible.It turns out, as is well known, that if eah fator Gi is a semi-simple linear algebrai group,then all four properties (Irr1)�(Irr4) are equivalent. We shall show that, in the setting of� 2.A, the impliations (Irr2)⇒(Irr3)⇒(Irr4) do hold. If one assumes furthermore that eah
Gi is topologially simple and ompatly generated, then eah Gi has trivial quasi-entreby [BEW08, Theorem 4.8℄ and, hene, one has (Irr1)⇒(Irr2) in that ase. However, even inthe setting of � 2.A, none of the impliations (Irr2)⇒(Irr1), (Irr3)⇒(Irr2) or (Irr4)⇒(Irr3)holds true.A ruial point in the proof of Theorem 1.4 is that, nevertheless, the impliation (Irr4)⇒(Irr2)beomes true provided the lattie Γ is residually �nite, see Proposition 2.4 below.From now on, we retain the notation of � 2.A.The following result implies that (Irr2)⇒(Irr3)⇒(Irr4).Proposition 2.2.(i) If the projetion of Γ to eah fator Gi is faithful, then the projetion of Γ to anyproper sub-produt of G is non-disrete.(ii) If the projetion of Γ to any proper sub-produt of G is non-disrete, or if theprojetion to at least one fator Gi is faithful, then Γ is algebraially irreduible.Proof. (i) Assume that the projetion of Γ to eah fator Gi is faithful and onsider any(non-trivial) regrouping of fators G = G′ × G′′; we need to show that the projetion of Γto G′ is not disrete. Assume thus that the latter is disrete. In that ase, Lemma I.1.7in [Rag72℄ ensures that Γ∩ ({1}×G′′) is a lattie in {1}×G′′. In partiular it is non-trivial.Therefore the projetion of Γ to G′ annot be faithful (a fortiori to some Gi).(ii) Suppose that some �nite index subgroup Γ0 < Γ admits a splitting. Proposition 2.1implies in partiular that Γ0 ats on X as well as on eah fator Xj, minimally and without�xed points at in�nity. These are exatly the assumptions neessary to apply the splittingtheorem of [Mon06℄. The latter provides a splitting of X as X = Y × Z whih, by theanoniity of the geometri deomposition X ∼= X1 × · · · × Xn, must orrespond to someregrouping of irreduible fators of X. In other words we have a non-empty subset J (

{1, . . . , n} suh that Y =
∏

j∈J Xj and Z =
∏

j 6∈J Xj . The desired result now follows fromthe fat that the respetive Γ0-ations on Y and Z are disrete but not faithful. �Examples showing that the impliation (Irr3)⇒(Irr2) fails in the setting of � 2.A anbe obtained as extensions of arithmeti latties by produts or free groups, using similaronstrutions as in [CM09b, �6.C℄ (suggested by Burger�Mozes). The following result showsthat (Irr4)⇒(Irr3) provided that the lattie Γ is �nitely generated.Proposition 2.3. Assume that Γ is �nitely generated and algebraially irreduible. Thenthe projetion of Γ to any proper sub-produt of G = G1 × · · · ×Gn has non-disrete image.Proof. See Theorem 4.2(i) in [CM09b℄. �We shall now desribe an example showing that the impliation (Irr4)⇒(Irr3) fails tohold if one removes the hypothesis that Γ be �nitely generated. This also illustrates someof the tehnial di�ulties that are unavoidable in the proof of our main results, sine wedeal with general (i.e. possibly non-uniform in�nitely generated) latties.



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 5Example. Let A =
⊕

n≥0 Z/2 and M = A ∗ A. Then M an be realised as a non-uniformlattie in the group Aut(T3) of the regular tree of degree 3. To see this, one an express Mas the fundamental group of a graph of groups as follows. Let λ+ and λ− be two opies ofthe simpliial half-line, and let us index the respetive verties of λ+ and λ− by the stritlypositive integers in the natural order. On both λ+ and λ−, we attah the group (Z/2)n tothe vertex n and to the edge joining n to n + 1. The embedding of the edge group attahedwith [n, n + 1] to the vertex group attahed with n + 1 is the natural inlusion of (Z/2)n in
(Z/2)n+1 de�ned by x 7→ (x, 0). Finally, we join the vertex 1 of λ+ to the vertex 1 of λ−by an edge to whih we attah the trivial group. In this way, we obtain a graph of groups,whih is simpliially isomorphi to the line. Its fundamental group is isomorphi to M andats on the universal over T3 as a non-uniform lattie.Similarly, we set B =

⊕

n≥0 Z/3 and view the group N = B ∗B ating as a non-uniformlattie on the regular tree T4 of degree 4 using the same onstrution, but replaing Z/2 by
Z/3.Now we de�ne an ation of M by automorphisms on N . Clearly A ats on B by non-trivial automorphisms omponentwise, so that the semi-diret produt A ⋉ B is isomorphito ⊕

n≥0(Z/2 ⋉ Z/3): in eah oordinate, the group Z/2 ats on Z/3 as the (unique) non-trivial automorphism. This ation extends naturally to a diagonal ation of A on B × Bwhih, post-omposed with the embedding of sets B×B →֒ B ∗B, de�nes an ation of A onthe generators of N = B ∗B preserving all the de�ning relations. Thus A ats on N = B ∗Bby automorphisms. Preomposing this with the natural quotient map M = A∗A → A whihannihilates the seond free fator, we obtain a homomorphism
α : M → Aut(N).Sine the M -ation on N preserves the graph of group deomposition of N , it extends toan M -ation by automorphisms on T4 whih, by a slight abuse of notation, we also denoteby α. As a subgroup of Aut(T4), the group α(M) �xes pointwise a line; the losure of Min Aut(T4) is a ompat subgroup Q isomorphi to ∏

Z
Z/2.Set now

Γ = N ⋊α M and G = Aut(T4) × Aut(T3).We have already de�ned an embedding f4 : Γ → Aut(T4) and a lattie embedding of
M in Aut(T3). Preomposing the latter with the quotient map Γ → M , we obtain ahomomorphism f3 : Γ → Aut(T3) whose image is the lattie M < Aut(T3). Finally, wede�ne an injetive homomorphism

f : Γ → G : γ 7→ (f4(γ), f3(γ)).The image f(Γ) is disrete. Moreover, sine the image of f(Γ) is a lattie in Aut(T3) andthe kernel of the projetion of f(Γ) to Aut(T3) is a lattie in Aut(T4), it follows that f(Γ)is a lattie in G.Remark that Γ is algebraially irreduible sine no �nite index subgroup of M is normalin Γ. The projetion of Γ to Aut(T3) is disrete while its projetion to Aut(T4) is not, sineits losure is isomorphi to N ⋊Q. This shows that Proposition 2.3 does not hold for lattieswhih are not �nitely generated.We �nish this subsetion with a ruial ingredient in the proof of Theorem 1.4 whihshows that the impliation (Irr4)⇒(Irr2) does however hold under the extra assumptionthat the lattie Γ is residually �nite � even if it is not �nitely generated.



6 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODProposition 2.4. Assume that Γ is residually �nite and algebraially irreduible. Then theprojetion of Γ to eah Gi is faithful.Proof. In the speial ase when Γ is �nitely generated, we obtained this result in Theo-rem 4.10 of [CM09b℄. In the present level of generality, we an write Γ as the union ofan asending sequene of �nitely generated subgroups (Γj)j≥0 beause Γ is ountable sine
Is(X) is seond ountable.We let Hi denote the losure of the projetion of Γ to Gi. Upon reordering the fators,we may assume that there is some s ∈ {0, . . . , n} suh that Hi is disrete if and only if
i > s. We remark that if s = 0, then Hi is disrete for all i. Therefore, Lemma I.1.6 from[Rag72℄ ensures that H1 × · · · × Hn is a lattie in G = G1 × · · · × Gn and that the indexof Γ in H1 × · · · × Hn is �nite. Therefore the produt group (Γ ∩ H1) × · · · × (Γ ∩ Hn) has�nite index in Γ, ontraditing the fat that Γ is algebraially irreduible. Thus s > 0 asasserted.By [CM09a, Corollary 1.11℄, eah Gi is either totally disonneted or an adjoint simplenon-ompat Lie group. By the de�nition of s, the group Hi is non-disrete for all i ≤ sand, hene, dense in every onneted fator of H1 × · · · × Hs by Borel density [Bor60, 4.2℄(see also [Mar91, II.6.2℄). Thus, for all i ≤ s, the group Hi is a non-disrete losed subgroupwhih oinides with Gi if the latter is not totally disonneted.Let I ⊆ {1, . . . , s} be any non-empty subset. We laim that if the projetion of Γ to
∏

i6∈I Hi is not faithful, then the projetion of Γ to ∏

i∈I Hi is disrete.In order to establish the laim, we let C denote the losure of the projetion of Γ to
∏

i∈I Hi and let
N = Γ ∩ (

∏

i∈I

Hi ×
∏

i6∈I

{1}) < H1 × · · · × Hn.Then C is totally disonneted; this is shown in the proof of Theorem 4.10 in [CM09b℄ byarguments that do not depend on the �nite generation of Γ, but use the fat that Hi iseither totally disonneted or a onneted simple Lie group for all i ∈ I.We now assume that N is non-trivial and need to dedue that C is disrete. Sine Γ hastrivial amenable radial [CM09b, Corollary 2.7℄ the normal subgroup N � Γ is not loally�nite and, hene, we an assume upon disarding the �rst few indies in the �ltration
(Γj)j≥0 that Γj ∩ N is in�nite for eah j ≥ 0. Furthermore, sine Γ has no �xed point ∂Xby Proposition 2.1 and sine ∂X is ompat when endowed with the one topology, we anmoreover assume that Γj has no �xed point in ∂X for all j. Finally, let Q < C be a ompatopen subgroup and denote by Cj < C the subgroup generated by Q and the image of Γj .By onstrution the group Cj is ompatly generated, it ats without �xed point atin�nity and the intersetion of Cj with the image of N in C is an in�nite disrete normalsubgroup of Cj. Sine Γ∩

(

(
∏

i6∈I Hi) ·Cj

) projets densely to Cj , we dedue from [CM09b,Proposition 4.8℄ that [Cj ∩ N,C
(∞)
j ] = 1, where C

(∞)
j denotes the intersetion of all opennormal subgroups of Cj . We reall that a non-ompat group of isometries of a properCAT(0) spae X ating without �xed point at in�nity has a ompat entraliser in Is(X)(though this is an overkill, it follows e.g. from the splitting theorem in [Mon06℄); hene

C
(∞)
j is ompat.On the other hand, the group Cj possesses a maximal ompat normal subgroup beauseit ats without �xed point at in�nity; this follows e.g. from Corollary 5.8 in [CM09a℄, theompat subgroup being the kernel of the Cj-ation on a minimal subspae. Therefore,



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 7it follows from [CM09a, Proposition 6.12℄ that C
(∞)
j is non-ompat whenever Cj is non-disrete. This shows that Cj is disrete. By onstrution Cj is open in C, thus C is disreteas well. This proves the laim.We shall now establish that s = n. To this end, we notie that the projetion of Γ to

Gs+1 × · · · × Gn annot be faithful sine it has disrete image (see [Rag72, Lemma I.1.7℄).Applying the laim with the set I = {1, . . . , s}, we infer that the losure C of the projetionof Γ to H1 × · · · ×Hs is disrete. By the de�nition of s, we also observe that the losure Dof the projetion of Γ to Hs+1 × · · · × Hn is disrete. Thus Γ is ontained in the disretesubgroup C × D < (H1 × · · · × Hs) × (Hs+1 × · · · × Hn). Sine Γ is a lattie, it musttherefore have �nite index in C×D. Therefore Γ has a �nite index subgroup whih splits asa diret produt, whih ontradits the hypothesis that Γ is algebraially irreduible. Thisontradition on�rms that s = n.Finally, assume for a ontradition that the projetion of Γ to Gk is not faithful for some
k ∈ {1, . . . , n}. We then invoke the laim above to the set I = {1, . . . , n} \ {k}. From thelaim, we infer that the projetion C ′ of Γ to ∏

i6=k Hi is disrete. Therefore, this projetionannot be faithful (see [Rag72, Lemma I.1.7℄). We an then invoke the laim one moretime, now with the set I = {k}. This implies that the projetion D′ of Γ to Hk is disrete,ontraditing s = n. �2.C. Open subgroups. Reall that, given a lattie Λ in a loally ompat group H andany open subgroup P < H, the intersetion Λ ∩ P is a lattie in P ; indeed a Haar measurefor P may be obtained by restriting the Haar measure of H. Furthermore, if Λ is uniformin H, so is Λ ∩ P in P . We shall frequently take advantage of this basi observation andstudy the intersetion Γ ∩ P for various open subgroups P < G.Lemma 2.5. Let H,J be loally ompat groups, Λ < H × J a lattie, P < H an opensubgroup and ΛP = Λ ∩ (P × J). Then any intermediate group ΛP < Λ′ < Λ is a lattie in
H ′ × J and in H ′ × J ′, where H ′ and J ′ are the losure of the projetion of Λ′ to H and Jrespetively.Proof. Let H∗ be the the losure of the projetion of Λ to H and P ∗ = P ∩ H∗. Then Λ isa lattie in H∗× J by [Rag72, I.1.6℄. Moreover, ΛP is a lattie in P ∗× J projeting denselyto P ∗ sine P is open; in partiular, P ∗ ⊆ H ′. Let F ⊆ P ∗ × J be a (left) fundamentaldomain for ΛP in P ∗ × J .We laim that the Λ′-translates of F over H ′×J . Pik thus any (h0, j0) in H ′×J . Sine
P ∗ is open in H ′, there is (h1, j1) in Λ′ suh that h1h0 ∈ P ∗. Sine (h1h0, j1j0) ∈ P ∗ × J ,there is (h2, j2) in ΛP suh that (h2h1h0, j2j1j0) ∈ F . Sine (h2h1, j2j1) ∈ Λ′, this provesthe laim.Sine Λ′ is disrete and sine the Haar measures of P ∗ × J extend to Haar measures of
H ′× J , we onlude that Λ′ is indeed a lattie in H ′× J . Applying again [Rag72, I.1.6℄, wededue that it is also a lattie in H ′ × J ′. �We now return to our geometri setting.Proposition 2.6. Let P < G1 be an open subgroup and set

ΓP = Γ ∩ (P × G2 × · · · × Gn).Assume that the projetion of ΓP to some Gi with i ≥ 2 is faithful. Then ΓP is algebraiallyirreduible.



8 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODProof. In order to argue as in Proposition 2.2, we need to show that the ΓP -ation on Xi isminimal and without �xed point at in�nity.We laim that without loss of generality we may assume that G1 is totally disonneted.Indeed, otherwise by Corollary 1.11 in [CM09a℄ the group G1 is an almost onneted simpleLie group. In that ase the open subgroup P < G1 has �nite index in G1 and hene ΓP has�nite index in Γ. The laimed statement is thus a ase of Proposition 2.2.In view of the laim, we assume that G1 is totally disonneted; hene so is P . Thereforethere exists a ompat open subgroup U < P (see [Bou71, III.4 No 6℄). Then the group
ΓU = Γ ∩ (U × G2 × · · · × Gn)is a lattie in U × G2 × · · · × Gn and thus its projetion to H := G2 × · · · × Gn is a lattieas well. Sine the H-ation on Y := X2 × · · · × Xn is minimal and without �xed point atin�nity, so is the ΓU -ation by Proposition 2.1. Now we dedue a fortiori that the ΓP -ationon Y and hene on Xi is minimal and without �xed point at in�nity. �Corollary 2.7. Let P < G1 be any open subgroup and set
ΓP = Γ ∩ (P × G2 × · · · × Gn).If Γ is algebraially irreduible and residually �nite, then so is ΓP .Proof. By Proposition 2.4 the projetion of Γ to eah Gi is faithful. Thus we may applyProposition 2.6. �2.D. Co�nite embeddings of semi-simple groups. We do not know if a semi-simplealgebrai group an appear as a subgroup of �nite ovolume in a loally ompat groupwithout being oompat1. We shall prove that this does not happen in the CAT(0) setting.Proposition 2.8. Let H be a loally ompat group and L < H a losed subgroup of �niteovolume whih is a ompat extension of a semi-simple algebrai group. Suppose that Hadmits a oompat proper ontinuous isometri ation on some CAT(0) spae.Then H/L is ompat.Morover, if the semi-simple group has no rank one fators, then upon fatoring out a(unique maximal) ompat normal subgroup, H is a group of automorphismsm of the semi-simple algebrai group.The following fat is well-known.Lemma 2.9. A group of isometries preserving a non-zero �nite measure on a ompleteCAT(0) spae �xes a point.Proof. Let G be the group, X the spae and µ the measure. There is a bounded set B ⊆ Xsuh that µ(B) > µ(X)/2. Therefore gB ∩ B 6= ∅ for all g ∈ G. It follows that G has abounded orbit and hene a �xed point by Cartan's irumentre priniple [BH99, II.2.8℄. �Lemma 2.10. Let H be a loally ompat group ontaining a losed subgroup of �nite o-volume whih is a ompat extension of a semi-simple algebrai group. Then any ontinuousisometri H-ation on a proper CAT(0) spae preserves a non-empty losed onvex subsetwith trivial Eulidean fator.1Note added in proof: we have been informed that Bader�Furman�Sauer address this question in forth-oming work.



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 9Proof. Invoking repeteadly the anonial Eulidean deomposition [BH99, II.6.15℄, it su�esto prove that any ontinuous isometri H-ation on any Rd has a �xed point. Let L < Hbe the given subgroup with K0 � L ompat normal suh that L/K0 is semi-simple. Thenon-empty subspae of K0-�xed points is an a�ne subspae preserved by L; we thereforehave an isometri ation of the semi-simple group L/K0 on some Rd′ .It is well-known that all suh L/K0-ations have a �xed point. Therefore L �xes a pointin Rd, whih implies by Lemma 2.9 that H also �xes a point. �Proof of Proposition 2.8. Let X be a CAT(0) spae as in the statement; it is neessarilyproper. Sine H ats oompatly, it has a minimal onvex invariant subspae and thuswe an assume X minimal upon fatoring out the ompat kernel of the H-ation on thatsubspae. We note in passing that this kernel is a (neessarily unique) maximal ompatnormal subgroup of H.Lemma 2.10 implies that X has trivial Eulidean fator. Moreover, we laim that H hasno �xed point at in�nity. Indeed, otherwise by minimality the orresponding Busemannharater H → R would be non-trivial. This however would produe a non-trivial haraterof L whih would thus desend non-trivially to the semi-simple group, whih is absurd.By Theorem 2.4 in [CM09b℄, the L-ation on X is minimal and without �xed point atin�nity. In partiular, L has no non-trivial ompat normal subgroup and we an deomposeit into its simple fators L = L1 × · · · × Ln. Eah Li is non-ompat and we an assume
n ≥ 1 sine otherwise H is ompat (atually trivial at this point).In view of Addendum 1.8 in [CM09a℄ we an write X = X1 × · · · × Xn, where eah Liats minimally on Xi; the �nite-dimensionality of ∂X holds by Theorem C in [Kle99℄ sine
H ats oompatly. Moreover, eah ∂Xi is �nite-dimensional and eah Li has full limit setin ∂Xi beause the two orresponding statements for ∂X and the L-ation on X hold: thelatter by Proposition 2.9 in [CM09b℄, using again oompatness of H.We an now apply Theorem 7.4 in [CM09a℄ and dedue that eah Li ats oompatly on
Xi; indeed the proof of lo. it. even provides a quasi-isometry bewteen Xi and the modelspae (symmetri spae or Bruhat�Tits building) of Li. Thus L ats oompatly on X,whih implies that L is oompat in H.Theorem 7.4 in [CM09a℄ also provides a Tits-isometri identi�ation of ∂Xi with theboundary of the model spae of Li. Assuming now that eah Li has rank at least two, wean apply Tits' rigidity theorem (Theorem 5.18.4 in [Tit74℄) and dedue that Is(Xi) is thegroup of isometries of the model spae, whih oinides with the group of automorphismsof the assoiated semi-simple group. �3. Presene of an algebrai fator3.A. Algebrai fators in general. Following Margulis [Mar91, IX.1.8℄, we shall say thata simple algebrai group G de�ned over a �eld k is admissible if none of the followingholds:� char(k) = 2 and G is of type A1, Bn, Cn or F4;� char(k) = 3 and G is of type G2.A semi-simple group will be alled admissible if all its simple fators are.Theorem 3.1. Let k be a loal �eld and G an adjoint admissible onneted semi-simple
k-group without k-anisotropi fators. Let X be a proper CAT(0) spae without Eulideanfator and H < Is(X) a losed totally disonneted subgroup ating minimally and without�xed point at in�nity. Let Γ < G(k)×H be any lattie; in ase rankk G = 1 and char(k) > 0,we assume in addition Γ oompat.



10 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODIf Γ projets faithfully to the simple fators of G(k), then H is a semi-simple algebraigroup upon passing to a �nite ovolume subgroup ontaining the image of Γ. Furthermore,
Γ is �nitely generated.Remark 3.2. There is a similar statement without the CAT(0) spae X in Theorem 5.20of [CM09b℄, but at the ost of assuming H ompatly generated and assuming that Γprojets densely to H. In general, we do not know how to prove a priori that the losure ofthe projetion of Γ to H is ompatly generated, even if we assume H ompatly generated.In the above theorem, ompat generation of H follows a posteriori from the statement. Infat, the bulk of the proof given below is onerned with addressing this very issue.We begin with a geometri �niteness result that will allow us to rule out phenomena ofadéli type in the proof of Theorem 3.1; for its own sake, we provide more generality.Proposition 3.3. Let X be a proper CAT(0) spae and H < Is(X) a losed subgroup atingminimally and without �xed point at in�nity. Let {Hn} be a non-dereasing family of losedsubgroups of H suh that the losure of the union of all Hn is o-amenable in H.Then there is N ∈ N suh that no Hn an be a ompat extension of a diret produt ofmore than N non-ompat fators.Proof. Let X = Y ×Rd be the maximal Eulidean deomposition, so that Is(X) = Is(Y )×
(

O(d) ⋉ Rd
), see Theorem II.6.15 in [BH99℄. Arguing by ontradition, we an assumethat eah Hn has a ompat normal subgroup Kn suh that Hn/Kn an be deomposedas a diret produt of n non-ompat fators. We laim that we an pass to a furthersubsequene and regroup fators so that all n fators have non-ompat image in Is(Y Kn).Indeed, eah Hn/Kn ats on a Eulidean subspae of Rd, namely its Kn-�xed points. Thisimplies that at most d of the non-ompat fators of Hn/Kn have a non-ompat image in

(Rd)Kn ; thus at least n − d fators have non-ompat image in Is(Y Kn), whih implies thelaim.Sine the losure H∞ < H of the union of all Hn is o-amenable, it has no �xed point in
∂Y by Proposition 2.1 in [CM09b℄. Therefore, by ompatness of ∂Y , we an further assumethat none of the Hn has a �xed point in ∂Y . It follows that eah Hn admits some minimalnon-empty losed onvex invariant subspae Yn ⊆ Y and that moreover the union Zn ⊆ Y ofall suh subspaes splits isometrially and equivariantly as Zn

∼= Yn × Tn, where the �spaeof omponents� Tn is a bounded CAT(0) spae endowed with the trivial Hn-ation; for allthis, see Remark 39 in [Mon06℄.We laim that the sequene {Tn} is of non-inreasing diameter. Indeed, let t, t′ ∈ Tn+1;then both Yn+1×{t} and Yn+1×{t′} ontain some, a priori several, minimal Hn-subspaes.We denote by s, s′ ∈ Tn the elements orresponding to some arbitrary suh hoies Yn×{s} ⊆
Yn+1×{t} and Yn×{s′} ⊆ Yn+1×{t′}. Now we have d(t, t′) ≤ d(s, s′) and the laim follows.In view of the laim, we may hoose a sequene of points yn ∈ Yn that remains bounded.Notie that Kn ats trivially on Yn. Our assumption on Hn/Kn together with the splittingtheorem from [Mon06℄ shows that Yn admits a splitting as a produt of n non-ompat fa-tors. In partiular, we an hoose n geodesi rays issuing from yn and spanning a Eulidean
n-dimensional quadrant. Having Eulidean quadrants of unbounded dimension but basedat the points yn whih remain in a bounded set ontradits the loal ompatness of Y . �Proof of Theorem 3.1. In view of the nature of the statement, we may and shall replae Hby the losure of the projetion of Γ, whih has �nite ovolume in H. By Theorem 2.4in [CM09b℄, H still ats minimally and without �xed point at in�nity. In partiular, we anassume it non-ompat sine otherwise it is trivial, in whih ase the statement is empty



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 11exept for the �nite generation of Γ; the latter would still follow as explained below for ΓU ,whih oinides with Γ when H is trivial.As we shall see, given the results we proved in [CM09b℄, the main step here is to provethe following.Main laim: the lattie Γ is �nitely generated.To this end, let U < H be a ompat open subgroup, whih exists by [Bou71, III.4 No 6℄.Sine Γ projets injetively to G(k), we an onsider ΓU = Γ ∩ (G(k) × U) as a lattiein G(k). Moreover, ΓU is irreduible in G(k) sine it projets injetively to the simplefators (realling that the various notions of irreduibility oinide in the ase of latties insemi-simple groups). Our assumptions imply that ΓU is �nitely generated; indeed, we reallthe argument given in [CM09b, 5.20℄: either we have simultaneously char(k) > 0 and G issimple of k-rank one, in whih ase we assumed Γ oompat, so that ΓU is oompat in theompatly generated group G(k) and hene �nitely generated [Mar91, I.0.40℄; otherwise,
ΓU is known to be �nitely generated by applying, as the ase may be, either Kazhdan'sproperty, or the theory of fundamental domains, or the oompatness of p-adi latties �we refer to Margulis, Setions (3.1) and (3.2) of Chapter IX in [Mar91℄.We hoose a non-dereasing sequene {Γn} of �nitely generated subgroups with ΓU <
Γn < Γ and whih exhaust all of Γ. We denote by Gn < G(k) the losure of the projetionof Γn to G(k) and by Hn < H the losure of the projetion of Γn to H. Notie that thelosure of the union of all Hn oinides with the losure of the projetion of Γ to H andthus is all of H in view of our preliminary redution.We laim that Γn is a topologially irreduible lattie in Gn × Hn upon disarding the�rst few n. Lemma 2.5 shows that Γn is indeed a lattie in Gn × Hn and hene the pointto verify is that Gn,Hn are both non-disrete.If all Gn are disrete, they are latties in G(k) and thus ΓU has �nite index in Γn sinethe projetion of Γ to G(k) is faithful; in partiular, Hn is ompat and hene �xes a pointin X. Considering the nested sequene of Hn-�xed points in the ompati�ation X , wededue by ompatness that H �xes a point in X. This is impossible sine H �xes no pointat in�nity and is non-ompat.If Hn is disrete, then Γn ∩ (Gn × 1) is a lattie (see Theorem 1.13 in [Rag72℄). Viewingit in Gn, it is a normal (hene oompat) lattie sine it is normalised by the projetionof Γn. However, Gn does not admit a normal lattie when it is non-disrete. Indeed, beingZariski-dense in G (by Borel density applied to ΓU), it ontains the group Gα(k)+ for somesimple fator Gα by [Pra77℄ and the latter is simple [Tit64℄ (and non-disrete). The laimthat Γn is irreduible in Gn × Hn is proved.We an now apply Theorem 5.1 from [CM09b℄ and dedue that Hn is a ompat extensionof a semi-simple algebrai group without ompat fators. In fat, this referene allows apriori for a possibly in�nite disrete diret fator in Hn whih is also virtually a diret fatorof Γn, but in the ase at hand this ontradits the fat that it is Zariski dense in a simplealgebrai group, namely any simple fator Gα (sine it ontains ΓU whih is Zariski-densein G by Borel density).We laim that the obtained semi-simple quotient of Hn is a diret fator of the quotientassoiated to Hn+1.Indeed, Margulis' ommensurator arthmetiity [Mar91, 1.(1)℄ shows that ΓU is S-arithmetiand hene the projetion of Γ is ontained in G(K) for some global �eld K over whih G isde�ned by Theorem 3.b in [Bor66℄ (see also [Wor07, Lemma 7.3℄). An examination of theproof of Theorem 5.1 in [CM09b℄ shows that the semi-simple quotient of Hn is the produt



12 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODof the non-ompat semi-simple fators of all G(Kv), where v ranges over the set of plaesof K for whih Γn is unbounded. This proves the laim.Proposition 3.3 applies and we dedue from the previous laim that the sequene ofthe semi-simple quotients assoiated to {Hn} stabilises. In view of the above disussion,it follows that Γ < G(K) is in fat itself S-arithmeti. In view of the assumptions on
G and of the results in Setion 3.2 of Chapter IX in [Mar91℄, this S-arithmeti group is�nitely generated if it is irreduible. Sine Γ projets injetively into the simple fators of
G(k), irreduibility follows. (Alternatively, argue as in the proof of Proposition 2.2.) Thisonludes the proof of the main laim.We now have Γ = Γn for n large enough; in partiular, Hn = H and the proof isomplete. �3.B. Redution to the totally disonneted ase. Retain the notation of � 2.A. Thefollowing result will later allow us to fous on the ase where eah Gi is totally disonneted.Proposition 3.4. Assume that the projetion of Γ to eah Gi is faithful.If G is not totally disonneted, then eah Gi ontains a losed subgroup Hi of �niteovolume whih is a simple algebrai group over a loal �eld and Γ is S-arithmeti. If inaddition G ats oompatly on X, then Gi/Hi is ompat.Proof. De�ne Hi as the losure of the projetion of Γ to Gi; we shall fous on the statementsabout Gi and Hi, sine the arithmetiity of Γ will then follow by Margulis' results (seeTheorem (A) in Chapter IX of [Mar91℄).If the identity omponent G◦ is non-trivial, then the same holds for some Gi. Uponrenumbering the Gi's, we may and shall assume that Gi is totally disonneted if and onlyif i > k for some k ∈ {1, . . . , n}. By [CM09a, Corollary 1.11℄, it follows that Gi is anon-ompat simple Lie group with trivial entre for eah i ∈ {1, . . . , k}.By Proposition 2.2(i), the group Hi is non-disrete for eah i. In partiular we have
Hi = Gi for eah i ≤ k by Borel density [Bor60℄, sine a Zariski-dense subgroup of a simpleLie group is either disrete or dense. Furthermore, sine Hi has �nite ovolume in Gi, itfollows from [CM09b, Theorem 2.4℄ that Hi ats minimally without �xed point at in�nityon Xi. In partiular it has no non-trivial ompat normal subgroup. Now Theorem 3.1implies that

H := G1 × · · · × Gk × Hk+1 × · · · × Hnis a semi-simple algebrai group. In view of Proposition 2.8, if Gi ats oompatly on Xi,then so does Hi. �It will be onvenient to have the following ad ho simpler variant of Proposition 3.4; it isessentially just a shortut available in positive harateristi.Proposition 3.5. Let k be a loal �eld of positive harateristi and G an adjoint onnetedabsolutely almost simple k-group of positive k-rank. Let X be a proper CAT(0) spae withoutEulidean fator and let H < Is(X) be a losed subgroup ating oompatly, minimally andwithout �xed point at in�nity.If there is any lattie Γ < G(k) × H that projets faithfully to G(k), then H is totallydisonneted.Proof. Theorem 1.6 in [CM09a℄ implies that H is of the form H = S × D, where S is aonneted semi-simple Lie group and D is totally disonneted. Let U < D be a ompatopen subgroup and observe that the lattie ΓU < G(k) × S ×U (as onsidered in 2.C) stillprojets injetively to G(k). Suppose for a ontradition that S is non-ompat. Then we



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 13have obtained a lattie in G(k)×S whih is irreduible and S-arithmeti in view of Margulis'arithmetiity [Mar91℄. This is absurd sine the harateristis of the �elds of de�nition donot agree. �3.C. Arithmetiity of residually �nite latties. We remain in the setting of � 2.A.Theorem 3.6. Suppose that the lattie Γ < G = G1 × · · · × Gn is algebraially irreduible.Assume that G1 possesses an open subgroup P whih is a ompat extension of a non-ompat admissible simple algebrai group H over a loal �eld k. In ase k has positiveharateristi and H has k-rank one, we assume in addition Γ oompat.If Γ is residually �nite, then eah Gi ontains a losed subgroup of �nite ovolume whihis a ompat extension of a simple algebrai group over a loal �eld, and Γ is S-arithmeti.Proof. By Proposition 2.4, the projetion of Γ to eah Gi is faithful. Therefore, in view ofProposition 3.4, we an assume that G is totally disonneted. Set
ΓP = Γ ∩ (P × G2 × · · · × Gn).By assumption P has a ompat normal subgroup K suh that P/K = H(k). Now ΓPmaps onto a lattie in the produt

H(k) × G2 × · · · × Gnand this map has �nite kernel. Sine ΓP is residually �nite, we an assume that the kernelis trivial upon replaing ΓP with a �nite index subgroup; we heneforth onsider ΓP as alattie in the above produt.The projetion of ΓP to H(k) is faithful sine we have already reorded that Γ projetsinjetively to G1. Therefore, we an apply a �rst time Theorem 3.1 to ΓP and dedue inpartiular for eah i ≥ 2 that Gi is an admissible semi-simple algebrai group upon replaingit by a losed subgroup of �nite ovolume ontaining the image of ΓP . In fat, these groupsare simple in view of the irreduibility of Xi (e.g. by the splitting theorem). We write
Gi = Gi(ki) for i ≥ 2 and also note that ΓP is irreduible (e.g. by Proposition 2.2).We now return to the lattie Γ < G with the intention to apply a seond time Theorem 3.1,but reversing the r�les of G1 and G2×· · ·×Gn. We point out that the simple groups Gi areall admissible sine both the absolute type and harateristi are onstant over all fatorsin view of the fat that the S-arithmeti group ΓP is irreduible. However, we have noguarantee that the tehnial assumption made on H holds for Gi. It an indeed fail andlikewise the �nite generation used in the proof of Theorem 3.1 for ΓU is also known to fail.We shall now irumvent this di�ulty.The group ΓP is �nitely generated by the above appliation of Theorem 3.1. We on-sider a non-dereasing sequene of �nitely generated groups Γj starting with Γ0 = ΓP andexhausting Γ. We denote by Lj and Rj the losure of the projetion of Γj to

G1 × · · · × Gn−1 and Gnrespetively. Lemma 2.5 shows that Γj is a lattie in Lj ×Rj. It is topologially irreduiblein the former produt sine already the projetions of Γ0 are non-disrete (e.g. by Proposi-tion 2.3). Theorem 5.1 in [CM09b℄ implies that Lj is a ompat extension of a semi-simplegroup Sj. We write Q = P × G2 × · · · × Gn−1, wherein Q = P is understood if n = 2. Thegroup Q∩Lj is open in Lj and non-ompat sine it ontains L0 whih is of �nite ovolumein the non-ompat group Q. Therefore the image of Q ∩ Lj in Sj ontains S+
j by [Pra82,thm. (T)℄ (or by an appliation of Howe�Moore). Sine S+

j is oompat in Sj (see [BT73,6.14℄) we onlude that Q ∩ Lj is oompat in Lj and hene has �nite index. This shows



14 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODthat L0 has �nite index in Lj . Therefore, S0 has �nite index in Sj for all j; it follows, sine
S+

0 is simple [Tit64℄, that Sj normalises S+
0 . We denote by L+

0 the preimage of S+
0 in L0and set Γ+

0 = Γ ∩ (L+
0 × Gn). Then Γ+

0 has �nite index in Γ0 sine the latter is �nitelygenerated and sine S0/S
+
0 is a virtually Abelian torsion group [BT73, 6.14℄. Moreover, Γjnormalises Γ+

0 for all j in view of orresponding statement for S+
0 < Sj above.At this point we have a natural map Γ → Aut(S+

0 ) whose image normalises Γ+
0 . Inombination with the injetive map Γ → Gn, we have a realisation of Γ in the normaliser of

Γ+
0 in the algebrai group Aut(S+

0 ) × Gn(kn). Sine Γ+
0 is a lattie in the latter, it followsfrom Borel's density theorem that Γ+

0 has �nite index in its normaliser, see [Mar91, II.6.3℄.In onlusion, Γ+
0 has �nite index in Γ and thus both sequenes Γj and Lj are eventuallyonstant, ompleting the proof. �4. Ka�Moody groups4.A. A lemma on Coxeter�Dynkin diagrams. A theorem of G. Moussong haraterisesthe Gromov hyperboli Coxeter groups in terms of their Coxeter diagram. In fat, Mous-song's result says that a �nitely generated Coxeter group is Gromov hyperboli if and onlyif it does not ontain any subgroup isomorphi to Z× Z. The latter property an easily bedeteted on the Coxeter diagram of G, sine any subgroup isomorphi to Z×Z is onjugateinto a speial paraboli subgroup of W whih is either of a�ne type or whih deomposesas the diret produt of two in�nite speial subgroups. It turns out that for some spei�families of Coxeter groups, the presene of a Z×Z-subgroup always guarantees the preseneof an a�ne paraboli.Lemma 4.1. Let (W,S) be a rystallographi Coxeter system of simply laed or 3-spherialtype, with S �nite. Then W is Gromov hyperboli if and only if W ontains no parabolisubgroup of a�ne type.Reall that a Coxeter group W is alled rystallographi if its natural geometri repre-sentation in Rn preserves a lattie (see [Bou68℄). This property is known to be equivalentto eah of the following onditions:

• The Coxeter numbers whih appear in a Coxeter presentation of W belong to
{2, 3, 4, 6,∞}.

• W is the Weyl group of some Ka�Moody Lie algebra.In partiular, if W is the Weyl group of a Ka�Moody group over any �eld, then W isrystallographi.Proof of Lemma 4.1. We may assume that W is irreduible. If W possesses a parabolisubgroup of a�ne type, then it ontains a Z × Z-subgroup and annot be hyperboli.Assume now that W is not hyperboli. In view of Moussong's theorem, all we need to showis that if W ontains two in�nite speial subgroups WI ,WJ whih mutually ommute, thenit also ontains a paraboli subgroup of a�ne type. Without loss of generality we mayassume that WI and WJ are minimal in�nite speial subgroups, namely that every properspeial subgroup of WI or WJ is �nite. The list of minimal in�nite Coxeter groups is knownand may be found in Exerises 13�17 for � 4 in Chapter V from [Bou68℄. It turns out thatevery suh a Coxeter group is either a�ne or is de�ned by a diagram belonging to a shortlist, the members of whih have size ≤ 5. A short glimpse at this list shows that noneof them is simply laed. Furthermore, only three of them are 3-spherial rystallographi,namely those depited in Figure 1.
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(a) (b) ()Figure 1. Minimal non-spherial 3-spherial Dynkin diagramsWe now onsider a path of minimal possible length joining I to J in the Coxeter diagramof W and onsider the Coxeter diagram indued on the union of the vertex set P of thispath together with I ∪ J .If any vertex in P − (I ∪ J) is linked by an edge to a vertex of I or J belonging to anedge labelled 4, then the Coxeter diagram ontains a subdiagram of type B̃2 or C̃2 and weare done. Similarly, if some vertex of P − (I ∪ J) is linked to a vertex of I or J by an edgelabelled 4, then we are done as well. Thus we may assume that all labels of edges linking avertex in P − (I ∪ J) to a vertex in I ∪ J are 3, and that all suh edges are not adjaent toan edge labelled 4 in I or J .Now it follows that if more than one vertex of I or J is linked by an edge to vertex in

P −(I∪J), then the diagram ontains a subdiagram of type Ãn and we are done. It remainsto onsider the ase where eah vertex of P − (I ∪ J) is linked to at most one vertex in Iand J . In that ase, it is readily seen that the diagram ontains a subdiagram of type C̃n.This �nishes the proof. �Another useful and well-known fat is the following.Lemma 4.2. Let (W,S) be an irreduible non-spherial non-a�ne Coxeter system suh thatfor eah proper subset J ⊂ S, the speial subgroup WJ is either spherial or a�ne. Then
|S| ≤ 10.Proof. See Exerises 13�17 for � 4 in Chapter V from [Bou68℄. �4.B. Complete Ka�Moody groups and their buildings. Let G be a omplete adjointKa�Moody group over a �nite �eld Fq. Suh a group may be obtained as follows. Startwith a Ka�Moody�Tits funtor G assoiated to a Ka�Moody root datum of adjoint type,as de�ned in [Tit87℄ (see also [Rém02℄ for non-split versions). Thus G is a group funtor onthe ategory of ommutative rings. Its value on any �eld k is a group G(k) whih admits twonatural uniform strutures. Completing G(k) with respet to any of these yields a totallydisonneted topologial group G(k) whih ontains G(k) as a dense subgroup, see [CR09,� 1.2℄. When k = Fq is a �nite �eld of order q, then G(k) is loally ompat.We remark that the funtor G may be obtained by a di�erent onstrution, due to OlivierMathieu [Mat89℄, whih yields not only a group funtor but an ind-group sheme.We assume heneforth that k = Fq and set G = G(Fq). The group G possesses a
BN -pair with B ompat open in G. This BN -pair yields a loally �nite building X ofthikness q + 1 on whih G ats faithfully, ontinuously and properly by automorphisms.Furthermore X possesses a natural realisation as a CAT(0) spae whose isometry groupontains Aut(X) as a losed subgroup [Dav98℄. By a slight abuse of notation, we shall not



16 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODdistinguish between X and its CAT(0) realisation. Thus we view G as a losed subgroupof Is(X). The G-ation on X is transitive on the hambers and the hambers are ompat.In partiular G stabilises a minimal losed onvex invariant nonempty subspae whih wemay view as a CAT(0) realisation of X on whih G ats minimally. There is thus no loss ofgenerality in assuming that G ats minimally on X.The fat G has no �xed point at in�nity may be established in several di�erent ways. Theoneptually easiest one is the following. It is shown in [CR09, Lemma 9℄ that the derivedgroup [G,G] is dense in G. It follows that if G �xed a point ξ in the boundary at in�nity ∂X,then G would stabilise eah horoball entered at that point, ontraditing the minimalityof the ation. Another way to obtain this statement is by using the fat that a Coxetergroup has no �xed point at in�nity in its natural ation on the assoiated CAT(0) ellomplex as one sees by onsidering the numerous re�etions (or else by applying [CM09b,Theorem 3.14℄). Sine for any apartment A ⊂ X the StabG(A)-ation on A is isomorphi tothe natural ation of the Weyl group on its ell omplex, and sine apartments are onvex,it follows again that G has no �xed point at in�nity.Finally, sine X has a oompat isometry group it has �nite-dimensional Tits boundaryby [Kle99, Theorem C℄. This disussion shows in partiular that the group G1 appearingin the statement of Theorem 1.1 satis�es the set-up desribed in � 2.A by onsidering itsnatural ation on the assoiated building.Furthermore, it turns out that G is topologially simple [CR09, Proposition 11℄. Inaddition, if the ground �eld Fq has order q ≥ 1764d/25, where d denotes the dimensionof the building X, and if W is 2-spherial, then G has Kazhdan's property (T) [DJ02,Corollary G℄. Notie that the dimension of X is bounded above by the maximal rank of a�nite Coxeter subgroup of W , see [Dav98℄.Lemma 4.3. Let G be an irreduible omplete Ka�Moody group of adjoint type over a�nite �eld Fq. Assume that the Weyl group W of G is in�nite and simply laed or 3-spherial but not Gromov hyperboli. Then G ontains an open subgroup P whih is aompat extension of a simple algebrai group over a loal �eld of harateristi p = charFqand rank ≥ 2. Furthermore, if W is simply laed or if charFq 6= 2, then the latter simplegroup is admissible.Proof. By Lemma 4.1, the group Weyl group W possesses a speial paraboli subgroupof (irreduible) a�ne type WJ . Let PJ < G be a paraboli subgroup of type WJ . Thus
PJ = B ·WJ ·B, where B denotes the Borel subgroup of G, namely the B-subgroup of the
BN -pair. In partiular PJ ontains the ompat open subgroup B and is thus open. Thesubgroup

KJ =
⋂

g∈PJ

gBg−1is a ompat normal subgroup of PJ . The quotient PJ/KJ is a omplete Ka�Moody groupof type WJ over Fq (see [CR09, Proposition 11℄ and [CER08, � 5℄). It follows from [Tit85,Appendix℄ (or else from the uniqueness theorem in [Tit87℄) that PJ/KJ is a simple alge-brai group whose Weyl group is the spherial Weyl group of WJ . This yields the desiredonlusions. �Remark 4.4. As pointed out by G. Margulis [Mar91, IX.1.6(viii)℄, it follows from thearithmetiity theorem, ombined with [Har75, Korollar 1 p. 133℄, that if WJ is not of type
Ãn, then PJ does not admit any uniform lattie. (For type Ãn, suh latties indeed exist,see [BH78℄ and [CS98℄.) If follows in partiular that if WJ is not of type Ãn, then no produt



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 17of the form G×H, where H is a totally disonneted loally ompat group, possesses anyuniform lattie.Notie furthermore that the ondition that every speial subgroup of W of a�ne type beof type Ãn is a very strong one. For example, if W is 3-spherial, then only �nitely manyCoxeter diagrams are possible for W . This shows that in general one should not expet G(or G × H) to possess any uniform lattie.5. Completion of the proofs5.A. Redution of the hypotheses. For the purposes of this last setion, let us de�nea omplete Ka�Moody group G = G(Fq) over a �nite �eld Fq with Weyl group W to beadmissible if any of the following two onditions holds:� W is simply laed.� char(Fq) 6= 2 and W is 3-spherial but not Gromov hyperboli.Notie that the Weyl group W of G is Gromov hyperboli if and only if G(F ) is Gromovhyperboli for eah �nite �eld F . Indeed G(F ) ats properly and oompatly on a buildingof type W , and it is known that a building is Gromov hyperboli if and only if its Weylgroup is so (see e.g. [Dav98℄).Although we have already used the term admissible in a di�erent ontext in � 3.A, theabove de�nition will ause no onfusion. Indeed, given a Ka�Moody group G of a�ne typeover Fq (equivalently G(Fq) is isomorphi to a semi-simple algebrai group H over a �eld
k of formal power series with oe�ients in Fq), if G(Fq) is admissible in the above sensethen H(k) is admissible in the sense of � 3.A.We now proeed to relate the broad assumptions of the Introdution to the setting on-sidered in � 2.A.Let n ≥ 2; for eah i ∈ {1, . . . , n}, let Xi be a proper CAT(0) spae and Gi < Is(Xi)be a losed subgroup ating oompatly. We reall that oompatness implies that Gi isompatly generated (see e.g. Lemma 22 in [MMS04℄). Assume that G1 is an admissibleirreduible Ka�Moody group as disussed above. Set G = G1 × · · · × Gn and X = X1 ×
· · · ×Xn. Finally, let Γ < G be a lattie whose projetion to eah Gi is faithful. We assume
G1 in�nite; this hypothesis was not made in Theorem 1.1 but the latter is otherwise trivialsine Γ would be �nite.Proposition 5.1. The spae X has trivial Eulidean fator and G has no �xed point atin�nity.Moreover, for eah i ∈ {1, . . . , n}, there is a losed normal subgroup of �nite index G∗

i �Gi,a proper CAT(0) spae Yi = Yi,1 × · · · × Yi,ki
, where eah Yi,j is irreduible 6= R with �nite-dimensional boundary and a ontinuous proper map G∗

i → Is(Yi,1) × · · · × Is(Yi,ki
) whihyields a oompat minimal G∗

i -ation on Yi without �xed point at in�nity. Finally, for all
i, j the image of G∗

i in Is(Yi,j) is either totally disonneted or a onneted simple Lie group.Proof. Sine the Gi-ation on Xi is oompat, there is a non-empty losed onvex Gi-invariant subset Yi ⊆ Xi on whih the indued Gi-ation is minimal. This ation is properand remains oompat, whih implies that the boundary ∂Yi is �nite-dimensional (Theo-rem C in [Kle99℄). Corollary 5.3(ii) in [CM09a℄ now states that Yi possesses a deomposition
Yi = Rdi × Yi,1 × · · · × Yi,ki

, where Yi,j is an irreduible proper CAT(0) spae, suh that
Is(Yi) = Is(Rdi) ×

(

(

ki
∏

j=1

Is(Yi,j)
)

⋊ F

)

,



18 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODwhere F is a �nite permutation group of possibly isometri fators. Thus Gi possessesa losed normal subgroup of �nite index G∗
i =

∏ki

j=1 Gi,j whose indued ation on Yi isomponentwise.We now proeed to prove that Y := Y1 × · · · × Yn has no Eulidean fator, i.e. di = 0for all i. Our assumption on G1 implies d1 = 0 (see [CH09℄). Considering the anonialEulidean deomposition of Y (see [BH99, II.6.15℄), we write Y ∼= Y ′ × Rd, where Y ′ hasno Eulidean fator and d = d1 + · · · + dn. We laim that all G∗-�xed points at in�nity liein ∂Rd, where G∗ =
∏

G∗
i . To this end, we observe that Γ provides us with a lattie in G∗upon passing to a �nite index subgroup; we still denote it by Γ. If Γ is �nitely generated,the laim follows from Proposition 3.15 in [CM09b℄; in general, it is a onsequene of theunimodularity of G∗, a fat we establish in [CM℄.We an now apply Theorem 1.6 from [CM09a℄ and dedue that eah Gi,j is either totallydisonneted or a onneted simple Lie group (modulo the ompat kernel of its ation on

Yi,j). Proposition 3.6 in [CM09b℄ states that when Γ is �nitely generated, it virtually splitso� an Abelian diret fator of Q-rank d. The �nite generation, however, is only used toprovide a omplementary fator to this Abelian subgroup; the existene of a normal Abeliansubgroup A � Γ of Q-rank d is established in general in lo. it. We �nally dedue that
d = 0 from the fat that Γ projets injetively to the Ka�Moody group G1 using [CH09℄.At this point we have established that Y has trivial eulidean fator and that G∗ hasno �xed points at in�nity. In partiular G has no �xed points in ∂X = ∂Y and X has noEulidean fator either sine Y has �nite odiameter in X. �5.B. End of the proofs.Proof of Theorem 1.4. Retain the notation of the theorem. Then Lemma 4.3 ensures that
G1 possesses an open subgroup P whih is a ompat extension of an admissible simplealgebrai group of rank ≥ 2 over a loal �eld. We an assume Γ residually �nite. Thestatement of Theorem 1.4 is not a�eted by the redutions of Proposition 5.1; therefore,Theorem 3.6 yields the desired onlusion. �Proof of Theorem 1.1. We adopt the notation of the theorem. Countrary to Theorem 1.4,the irreduibility assumption is in the present ase sensitive to replaing Gi with the subfa-tors Gi,j of Proposition 5.1. However, sine G1 is irreduible, Proposition 2.2 implies that
Γ is at least algebraially irreduible.As above, Lemma 4.3 provides an open subgroup P < G1 whih is a ompat extensionof an admissible simple algebrai group H(k) of rank ≥ 2 over a loal �eld k; we emphasisethat k has positive harateristi.The anonial image of ΓP = Γ∩ (P ×G2 ×· · ·×Gn) in H(k)×G2 ×· · ·×Gn is a lattieand it projets injetively to H(k) in view of the orresponding assumption on Γ. ThusProposition 3.5 implies that all Gi are totally disonneted. In partiular Gn possesses aompat open subgroup U (see [Bou71, III.4 No 6℄). Set

ΓU = Γ ∩ (G1 × · · · × Gn−1 × U).By assumption, the projetion of ΓU to U is faithful. In partiular ΓU is residually �nitesine U is so, being a pro�nite group. Applying the faithfulness assumption to any otherfator Gi, we further dedue that ΓU intersets the ompat group 1× · · · × 1×U trivially;therefore, we an view ΓU as a lattie in the produt
G1 ×

k2
∏

j=1

G2,j × · · · ×

kn−1
∏

j=1

Gn−1,j .



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 19By Proposition 2.6, the group ΓU is algebraially irreduible. Thus we an apply The-orem 3.6 and dedue that G1 and eah fator Gi,j ontains a losed subgroup of �niteovolume whih is a simple algebrai group over a loal �eld.We now return to the initial lattie Γ in G, whih is algebraially irreduible by Propo-sition 2.2, and onlude the proof as in the end of the proof of Theorem 3.6. �Proof of Corollary 1.5. Sine Γ is irreduible and eah Gi is topologially simple (as realledin Setion 4.B), it follows that the projetion of Γ to eah Gi is faithful. In view of Theo-rem 1.1, we may assume that n = 2 and that Γ is not residually �nite. All we need to showis that Γ is virtually simple.Sine G1 and G2 are topologially simple and Γ is irreduible, it follows from [BS06,Theorem 1.1℄ that if Γ is uniform, then every non-trivial normal subgroup of Γ has �niteindex. If Γ is not uniform, then it has property (T) in view of our assumptions and, hene,the same onlusion on normal subgroups holds in view of [BS06, Theorem 1.3℄.Therefore Proposition 1 from [Wil71℄ ensures that Γ is virtually isomorphi to a diretprodut of �nitely many isomorphi simple groups. Sine Γ is irreduible as an abstratgroup by Proposition 2.2, we dedue that the latter diret produt has a single simple fator.Thus Γ is virtually simple. �Remark 5.2. As pointed out by the anonymous referee, the above arguments show alsothe following. Let Γ be a �nitely generated group without non-trivial in�nite index normalsubgroup. Suppose that Γ ats by isometries faithfully, minimally and without �xed pointat in�nity on an irreduible proper CAT(0) spae X. Then Γ is either residually �nite orvirtually simple.Indeed, in view of the above quoted result of Wilson, it su�es to show that Γ does nothave a �nite index subgroup Γ∗ ∼= Γ1 × Γ2 splitting as a produt of two in�nite groups Γi.Sine X is irreduible, we an assume that it has no Eulidean fator for otherwise X = Rin whih ase the statement is obvious. Therefore our �Borel density� in the generality ofProposition 2.1 (presently invoked with n = 1) implies that Γ∗ still ats minimally andwithout �xed point at in�nity. By the splitting theorem of [Mon06℄, this fores at least oneof the Γi to at trivially, a ontradition.New examples of groups to whih the above applies are provided in unpublished work ofShalom�Steger.Proof of Corollary 1.6. In view of Corollary 1.5, the assumption that the Gi's are of non-a�ne type implies that n = 2 in the above, and that any irreduible lattie Γ of G isvirtually simple. The �nite residual Γ(∞) of Γ is thus a normal subgroup of �nite index, andany subgroup of G ommensurating Γ normalizes Γ(∞). Thus CommG(Γ) = NG(Γ(∞)).Under the present hypotheses, the group G, and hene also Γ has Kazhdan's property(T). Thus Γ is �nitely generated and, hene so is the lattie Γ(∞). In view of [CM09b,Corollary 2.7℄, it follows that NG(Γ(∞)) is itself a lattie in G, whih is thus the desiredmaximal lattie. �5.C. A lattie in a produt of a simple algebrai group and a Ka�Moody group.Let G be an irreduible omplete Ka�Moody group of simply laed type over a �nite �eld
Fq. It is shown in [Rém99℄ (see also [CG99℄ and [CR09℄) that the group G × G ontainsan irreduible non-uniform lattie Γ, provided that q is larger than the rank r of the Weylgroup of G. Assume now that G is not of a�ne type. By Lemma 4.3 G ontains an opensubgroup P < G whih possesses a ompat normal subgroup K suh that P/K is a simplealgebrai group over a loal �eld. As in the proof of Theorem 3.6, we may onsider the
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