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Abstract. A natural analogue of the Krein–Milman theorem is shown to fail
for CAT(0) spaces.

1. Introduction

Functional analysis sometimes offers inspiring analogies for the study of complete
metric spaces of non-positive curvature such as CAT(0) spaces. Certain classical
results from functional analysis translate into fundamental facts, others into open
problems, and others yet lead to counter-examples.

Let us illustrate the first outcome on a bounded closed convex subset C in a
complete CAT(0) space X. Typically X is not locally compact and C not compact.
In a reflexive Banach space, such a set would still be weakly compact. Here, C is
(quasi-) compact for the weakened “convex topology” [10, Thm. 14], defined as the
weakest (not necessarily Hausdorff) topology in which metrically closed convex sets
are closed.

Furthermore, in a rudimentary analogue of the Ryll-Nardzewski theorem [13],
every isometry of C has a fixed point [2, II.2.8].

The second outcome occurs for instance when trying to generalize Mazur’s com-
pactness theorem [9], because it is unknown if the closed convex hull of a compact
set in X remains compact [6, 6.B1(f)].

The purpose of this note is to establish the third outcome for the Krein–Milman
theorem about extreme points.

A point in a uniquely geodesic metric space is called extreme if it does not lie in
the interior of any geodesic segment. This definition is generalized beyond unique
geodesics in the presence of a bicombing, encompassing notably all linear spaces
(see e.g. [5] for bicombings).

The Krein–Milman theorem, originating in [8], states that a non-empty convex
compact subset of a locally convex space has extreme points, and indeed is the
closed convex hull of the set of extreme points. For more specific classes of Banach
spaces, much stronger conclusions hold, even for bounded closed convex sets C
that are not compact in any weakened topology. For instance, in spaces with the
Radon–Nikodym property, C has extreme points and is even the closed convex hull
of its strongly exposed points [11].

Turning back to the metric situation, it follows immediately from the CAT(0)
condition that any point maximizing the distance to some given point must be
extreme. For this reason, metrically compact CAT(0) spaces have extreme points.
In fact, in the compact case the existence of a convex bicombing is enough to retain
the full conclusion of the Krein–Milman theorem [3].

However, there is generally no point maximizing any distance in a bounded
closed convex set. An elementary example is obtained by gluing together at a
single endpoint segments of length 1 − 1/n for all n ∈ N. This example has, of

1



2 NICOLAS MONOD

course, plenty of extreme points: it still is the convex hull of its extreme points as
in Krein–Milman. The purpose of this note is to show that it ain’t necessarily so:

Theorem. There exists a bounded complete CAT(0) space X without extreme

points.

Moreover, one can arrange that X is compact Hausdorff for the convex topology

and that every finite collection of points in X is contained in a finite Euclidean

simplicial complex of dimension two. Alternatively, one can construct a CAT(−1)
example with hyperbolic simplicial complexes of dimension two.

Our proof uses the Pythagorean identity to play off the square-summability of
the harmonic series against its non-summability. This will ensure that we remain
in a finite radius while the search for extreme points can go on forever. A crucial
step is to establish completeness so that there is no extreme point hiding sub rosa
in the completion.

Remarks. (i) Our example is complementary to Roberts’ famous non-locally con-
vex linear counter-example [12] to Krein–Milman: since CAT(0) spaces satisfy a
strong convexity condition, it is the non-linearity that is to blame here.

(ii) Although there exist powerful barycentric methods for measures on CAT(0)
spaces [7],[14], the theorem shows that they cannot afford a Choquet theory [4].

(iii) Of course a space as in the theorem cannot be isometrically realized in
a space where Krein–Milman holds; therefore, our “rose” X will be folded in an
appropriate way. We shall nonetheless press it flat to measure angles, obtaining an
infinitely winding spiral of petals.

2. The rose

C’est le temps que j’ai perdu pour ma rose. . .

Antoine de Saint-Exupéry, Le Petit Prince, 1943

Define for each n ∈ N the radius rn =
√

∑n

p=1 1/p
2. The double petal Pn ⊆ R

2

shall be the closed set

Pn =
{

(x, y) : (n+ 1)rn|x| ≤ |y| ≤ rn

}

with the path-metric induced from R
2. In particular, Pn is a compact CAT(0)

space; it can also be viewed as two Euclidean triangles glued at a tip.
We refer to the locus x = 0 as the central segment of Pn; it has length 2rn. We

call the loci |y| = (n+1)rnx and |y| = −(n+1)rnx the right border and left border

of Pn; they are segments of length 2rn+1.
The rose is the CAT(0) space X obtained by inductively gluing 2n−1 copies of

Pn as follows, starting from a single copy of P1. For each n ∈ N and for each copy
of Pn we assign two new copies of Pn+1. The first is glued by identifying its central
segment with the right border of the given copy of Pn. The second is glued by
identifying its central segment with the left border. The gluings make sense since
these segments have all length 2rn+1, and X is defined to be the increasing union
of the successively glued spaces (Figure 1).

This rose X is indeed a CAT(0) space, see [2, II.11.1]. Notice that each verifica-
tion of the CAT(0) condition takes place in a finite gluing since the convex hull of
a set of point does not visit petals of higher index than these points. The rose is
bounded because every point of Pn is at distance at most rn+1 of the center, which
is the common intersection of all copies of all petals. Thus X has radius π/

√
6.

Furthermore, by construction X has no extreme point. Indeed, if a point in some
Pn were extreme in X, it would a fortiori be extreme in Pn and hence it would be
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Figure 1. The first petals, up to P6, of the (Euclidean) rose.

one of the four outer corners of Pn. These four points are, however, all midpoints
of segments in appropriate copies of Pn+1.

We now turn to the critical point and prove that X is complete.
Let (xj)

∞

j=1 be a Cauchy sequence in X. Suppose for a contradiction that (xj)
does not converge. Upon discarding finitely many terms, we can assume that (xj)
remains at distance at least ǫ of the center for some ǫ > 0. Define the index n(x)
of a point x ∈ X to be the smallest n such that some copy of Pn contains x; if x
is not the center, then it is contained in at most one other petal, namely a copy
of Pn(x)+1. The indices n(xj) are unbounded as j varies, because otherwise (xj)
would be confined to the gluing of finitely many petals, which is a compact metric
space; this would imply that (xj) converges.

In order to contradict the Cauchy assumption, it suffices to prove that for any
j there is i > j with d(xj , xi) ≥ ǫ. Fix thus j and consider only those i > j with
n(xi) ≥ n(xj) + 2.

We can assume that the segment [xj , xi] avoids the center of the rose since
otherwise d(xj , xi) ≥ 2ǫ. It follows that [xj , xi] traverses notably a non-trivial
portion of successive copies of Pn(xj)+1, Pn(xj)+2, . . . , Pn(xi)−1, each time entering
on the central segment and leaving through a border. Thus, the Alexandrov angle

formed at the center of X by xj and xi is at least
∑n(xi)−1

n=n(xj)+1 ϑn, where ϑn is

the angle between the central segment and the borders of Pn (Figure 2). That

angle satisfies ϑn > sinϑn >
√
6/π(n + 1). It now follows from the divergence of

the harmonic series that if we choose i so that n(xi) is large enough compared to
n(xj), then the angle at the center between xj and xi will be at least π/3 and hence
d(xj , xi) ≥ ǫ.

We observe in passing that the above argument with π/3 replaced by π shows
in fact that [x, y] contains the center as soon as n(y) is large enough compared to
n(x). Therefore, any sequence (yj) with n(yj) going to infinity will converge to the
center in the convex topology.

To prove that the convex topology of X is Hausdorff amounts to the following.
Given distinct points x, y ∈ X, we need to cover X with finitely many closed
convex subsets Ui, Vi ⊆ X such that x /∈ Ui and y /∈ Vi for all i. We shall apply the
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ϑ1

ϑ2

Figure 2. The petals up to P50, folded and pressed flat in a circle
of radius π/

√
6; ultimately, the Pn wind around infinitely often.

following sufficient condition: it is enough to find a (metrically) compact convex
subset K containing x, y such that X \K can be covered by finitely many closed
convex subsets Wi ⊆ X with y /∈ Wi for all i. This is indeed sufficient because
we can first cover K with finitely many closed convex subsets Ui, Vi ⊆ K as above
since the convex topology of K coincides with the metric topology [10, Lem. 17],
hence is Hausdorff. These sets Ui, Vi are still closed and convex as subsets of X
and it now suffices to add all Wi to the collection of Vi to cover X.

We now verify the condition. Upon possibly exchanging x and y we can assume
that y is not the center. Choose n > n(x), n(y) and define K to be the union of all
copies of Pm over all m ≤ n with the gluings of the rose. Then define W1, . . . ,W2n

to be the 2n connected components of the union of all copies of Pm over m > n,
with the gluings specified by the construction for m > n only. These sets are all
closed convex and satisfy the criteria of the sufficient condition.

This concludes the proof of the theorem for the CAT(0) statement. The CAT(−1)
construction is virtually identical with hyperbolic triangles, the key being that the
trigonometric estimates remain the same at the first order as the angles ϑn converge
to zero.

We observe that in either case the full isometry group of the rose is an infinite
iterated wreath product of Klein four-groups (see e.g. [1, §IV.4] for such iterated
products).
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pp. 33–47.

[5] Dominic Descombes and Urs Lang, Convex geodesic bicombings and hyperbolicity, Geom.
Dedicata 177 (2015), 367–384.
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