
PRODUCT GROUPS ACTING ON MANIFOLDS

ALEX FURMAN* AND NICOLAS MONOD**

Abstract. We analyse volume-preserving actions of product groups on Rie-
mannian manifolds. To this end, we establish a new superrigidity theorem for
ergodic cocycles of product groups ranging in linear groups. There are no a
priori assumptions on the acting groups, except a spectral gap assumption on
their action.

Our main application to manifolds concerns irreducible actions of Kazh-
dan product groups. We prove the following dichotomy: Either the action
is infinitesimally linear, which means that the derivative cocycle arises from
unbounded linear representations of all factors. Otherwise, the action is mea-
surably isometric, in which case there are at most two factors in the product
group.

As a first application, this provides lower bounds on the dimension of the
manifold in terms of the number of factors in the acting group. Another appli-
cation is a strong restriction for actions of non-linear groups.

1. Introduction and Statement of the Main Results

1.A. Actions on Manifolds. Consider a group Γ acting on a compact Riemann-
ian manifold M by volume-preserving diffeomorphisms. What restrictions, if any,
does the structure of Γ impose upon the dimension of M and the dynamics of the
action?

When Γ is a lattice in a semi-simple group of higher rank, this investigation is
the object of Zimmer’s programme [58], which aims at a non-linear (or infinite-
dimensional) extension of Margulis’ work [35],[37] on superrigidity. (See e.g. [54],
[55], [56], [57], [30], [18], [16].) Zimmer conjectures that there is no (infinite)
action when the manifold has lower dimension than any linear representation of
the semi-simple group. In this setting, Zimmer’s cocycle superrigidity theorem
establishes the existence of an invariant measurable metric. Had it been a smooth
metric, the original action would have been smoothly conjugated to translations
on a homogeneous space of a compact group, thus answering the question. In [59],
Zimmer provides a measurable conjugation using Kazhdan property (T).

In this paper, we shall focus on the case where Γ = Γ1 × · · · × Γn is a product
of (at least two) groups or perhaps a lattice in suitable product groups. This
apparently weak hypothesis has recently been found to be a fertile ground for
very diverse rigidity phenomena (see e.g. [1], [2], [3], [6], [7], [23], [27], [38], [39],
[40], [43], [50]).
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One should of course discard the case where the action is a combination of
independent actions of the factors, for instance when M is a product M1×· · ·×Mn

with component-wise action. We shall impose the following condition, hereafter
called ergodic irreducibility : Each factor Γi act ergodically on M .

Very specific examples of ergodically irreducible actions are provided by al-
gebraic actions on homogeneous manifolds through linear representations of the
acting groups (see Section 1.C below for a description).

The main motivation of this paper is to show that from the measurable cocycle
viewpoint these linear examples are in fact essentially the only possibilities when
the groups have Kazhdan’s property (T). More precisely:

Theorem A. Let Γ = Γ1×· · ·×Γn be a product of n ≥ 2 groups with property (T)
with a smooth volume-preserving action on a compact Riemannian manifold M (of
non-zero dimension) such that each Γi acts ergodically. Then, either:
(Lin1) There are for each i finite index subgroups Γ∗i < Γi with Zariski-dense

representations Γ∗i → Hi in connected non-compact semi-simple Lie groups
Hi;

(Lin2) The product H = H1 × · · · × Hn is a subquotient of SLdim(M)(R); in
particular, dim(M) ≥ 3n;

(Lin3) The derivative cocycle of Γ y M is virtually semi-conjugated modulo an
amenable group to the product representation

∏
i Γ∗i → H;

Or otherwise, the following hold:
(Ism1) There are only two factors: Γ = Γ1 × Γ2;
(Ism2) There are homomorphisms τi : Γi → K with dense images in some compact

group K.
(Ism3) The Γ-action on M is measurably isomorphic to the bilateral action on K:

(g1, g2)k = τ1(g1) k τ2(g2)−1.

Remarks 1.1. (1) In case (Lin), the most visible consequence of our statement
is perhaps that each factor Γi of the group Γ must admit an unbounded real
linear representation, and the restriction on the dimension. As for the dynamical
conclusion (Lin3), it will be made more precise below; it involves a sequence of
reductions such as passing to an algebraic hull and dividing by the amenable
radical. This procedure still retains some basic characteristics of the derivative
cocycle which enables one to describe, for example, the Kolmogorov–Sinai entropy
h(g,M) of individual diffeomorphisms g of M :

(1.i) h(g,M) =
∑
k

mkλk
(
g ∈

∏
i

Γ∗i
)
,

where the λk are the positive Lyapunov exponents of %(g) and mk the correspond-
ing total multiplicities as explained in Section 3.B.

(2) The proof of Theorem A combines our superrigidity theorem (Theorem D
below) with Zimmer’s [59]. In our setting, the (Ism) alternative takes a particularly
precise form (only two factors, no isotropy subgroup of the compact group). The
problem of the smoothness of the conjugation remains.
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Theorem A is a rigidity statement describing suitable actions of product groups
as arising from linear representations and in particular providing dimension bounds.
As an immediate by-product, it rules out certain actions, see Section 1.C. For non-
Kazhdan groups, a number of the conclusions still hold as long as at least one factor
has property (T):

Variation (On Theorem A). Let Γ = Γ1 × · · · × Γn be a product of n ≥ 2 groups
with a smooth volume-preserving action on a compact Riemannian manifold M
(of non-zero dimension) such that each Γi acts ergodically. Assume that Γi has
property (T) for 1 ≤ i ≤ k, where k ≥ 1. Then, either:
(Lin′1) For i ≤ k, there are finite index subgroups Γ∗i < Γi with Zariski-dense

representations Γ∗i → Hi in connected non-compact semi-simple Lie groups
Hi;

(Lin′2) The product H = H1 × · · · ×Hk is a subquotient of SLdim(M)(R); in par-
ticular, dim(M) ≥ 3 k;

(Lin′3) The derivative cocycle of Γ1 × · · · × Γk y M is virtually semi-conjugated
modulo an amenable group to the product representation

∏
i≤k Γ∗i → H;

Or otherwise, (Ism1,2,3) hold as in Theorem A.

The possibility of non-Kazhdan factors actually restricts further the alterna-
tive (Ism), since for instance a compact group cannot contain both an infinite
Kazhdan group and a dense commutative (or more generally soluble) subgroup.
For example:

Let Γ = Γ1×Γ2 with Γ1 non-linear Kazhdan and Γ2 soluble. Then Γ admits no
ergodically irreducible smooth volume-preserving action on any compact Riemann-
ian manifold of non-zero dimension.

We now turn to actions of groups Γ which, rather than being products, are
lattices in a product G = G1 × · · · × Gn of n ≥ 2 locally compact groups. Such
lattices are assumed irreducible in the sense that Gi · Γ is dense in G for all i.

If the lattice is not cocompact, we shall need to assume it to be integrable; this
condition will be explained in more detail below and means that the canonical
cocycle class G × G/Γ → Γ has a representative c such that the word-length of
c(g,−) is in L1(G/Γ) for every g ∈ G.

Theorem B (Lattices in Products). Let G = G1 × · · · × Gn be a product of
n ≥ 2 locally compact second countable groups with property (T). Let Γ < G be a
cocompact or integrable irreducible lattice with a mixing smooth volume-preserving
action a compact Riemannian manifold M .

Then G admits an unbounded continuous real linear representation.
Moreover, this G-representation is virtually semi-conjugated modulo an amenable

group to the cocycle induced to G from the derivative cocycle of Γ y M .

The induced cocycle in the statement refers to the following construction. Let
G∗ < G be a closed subgroup such that G/G∗ carries a G-invariant probability
measure (e.g. G∗ is a lattice in G, or G∗ is closed of finite index). The canonical
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class is realized by the cocycles

c : G×G/G∗ −→ G∗, c(g, hG∗) = σ(ghG∗)−1gσ(hG∗)

where σ : G/G∗ → G is a measurable cross-section; different choices of σ give rise
to cohomologous cocycles. To any G∗-space X corresponds the induced G-space
G/G∗ nX with product measure and action g(hG∗, x) = (ghG∗, c(g, hG∗)x). To
any cocycle α : G∗ × X → H, e.g. a homomorphism G∗ → H, corresponds the
induced cocycle

G× (G/G∗ nX) −→ H, (g, (hG∗, x)) 7−→ α(c(g, hG∗), x).

1.B. Cocycle Superrigidity. The main new tool in the proofs of the above
results is a new cocycle superrigidity result for Lie-group-valued cocycles of er-
godically irreducible actions of product groups on probability spaces. This result
does not use property (T) of the acting group, but the weaker property of spectral
gap for the action. Our cocycle superrigidity theorem also requires some integra-
bility or boundedness condition on the values of the cocycle, which can always be
assumed for derivative cocycles arising from actions on compact manifolds.

We first state a simpler version of this result, although for the above applications
we shall need the more general statement of Theorem D below.

Theorem C (Cocycle Superrigity — Semi-Simple Hull). Let G = G1 × · · · ×Gn
be a product of n ≥ 2 locally compact second countable groups with a measure-
preserving action on a standard probability space X. Let α : G × X → H be a
measurable cocycle ranging in a connected centre-free semi-simple Lie group H
without compact factors. Assume:

(Zd) α is Zariski-dense in H, i.e. it is not cohomologous to a cocycle ranging
in a proper algebraic subgroup of H;

(SG) Each of the actions Gi y X is ergodic and has a spectral gap;
(L1) log ‖α(g,−)‖ ∈ L1(X) for very g ∈ G.

Then α is cohomologous to a continuous homomorphism % : G→ H.

Remark 1.2. The assumption that H has no compact factors is necessary, see
Section 9.B. On the other hand, our proof shows that one can drop the spectral
gap assumption for one of the factors Gi. This is also the case for the general form
in Theorem D below.

Our proof of Theorem C uses notably random walks and Oseledets’ theorem
(an influence of Margulis’ work [34],[35]). In Section 9.A, we also point to an
alternative geometric proof using the CAT(0) techniques of [38]. We also mention
that S. Popa established very general cocycle superrigidity results for products
with spectral gap [43]. A very striking feature of his results is that they have
no restriction at all on the target groups. On the other hand, they are about a
specific class of actions and therefore cannot be used for our present purposes.

The general result (Theorem D below) does not assume Zariski-density of the
cocycle. Therefore, its statement requires that we recall a few other basic con-
structions.
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Radical. For any topological group L one can define the amenable radical Ramen(L)
to be the maximal closed normal amenable subgroup in L (in analogy to Zassen-
haus’ classical definition [53]). If L is a connected real algebraic group, then the
quotient L/Ramen(L) can be obtained by dividing first by the soluble radical of
L, then by the centre of the resulting reductive group, and then by the product
of all the compact factors of the resulting connected semi-simple centre-free Lie
group.

Semi-conjugacy. Let α : G×X → V be a cocycle. If some conjugate of α ranges
in a subgroup L < V and p : L → H is (the canonical morphism to) a quotient
group, consider the corresponding cocycle ϑ : G×X → H. We shall say that α is
semi-conjugated to ϑ modulo Ker(p).

Hull. For a cocycle α : G ×X → V ranging in an algebraic group V (over R in
our case) there is a minimal algebraic subgroup L < V into which some conjugate
β = αf : G × X → L < V ranges; if G y X is ergodic, this group V is unique
up to conjugacy and is called the algebraic hull [55, 9.2]. The neutral component
(connected component of the identity) L0 of L is an algebraic subgroup of finite
index in L. There is an ergodic finite extension π : Y → X of the original action
such that the lift β̃ : G × Y → L of β is cohomologous to a cocycle into L0 (this
construction from [55, 9.2.6] is recalled in the proof of Theorem D below).

We are ready to state the general result; for the application to Theorem A, one
can assume that G is discrete.

Theorem D (Cocycle Superrigidity — Unrestricted Hull). Let G = G1×· · ·×Gn
be a product of n ≥ 2 locally compact second countable groups with a measure-
preserving action on a standard probability space X. Let α : G×X → GLd(R) be
a measurable cocycle. Assume:

(SG) Each of the actions Gi y X is ergodic and has a spectral gap;
(L∞) ‖α(g,−)‖ ∈ L∞(X) for every g ∈ G.

Let L be the algebraic hull of α, L0 / L the neutral component, and p : L0 → H =
L0/Ramen(L0) the quotient by the amenable radical. Then we have:

(1) A splitting H = H1 × · · · ×Hn into (possibly trivial) connected centre-free
semi-simple real Lie groups without compact factors;

(2) Finite index open subgroups G∗i < Gi and continuous homomorphisms
%∗i : G∗i → Hi with Zariski-dense image.

Upon lifting α to a finite ergodic G-extension Y → X, it is semi-conjugated to the
cocycle induced from the product representation

∏
i %
∗
i : G∗ → H of G∗ =

∏
iG
∗
i .

(The conclusion of this theorem is a precise formulation of what we called virtual
semi-conjugacy in Theorem A above.)

1.C. Further comments. There are three basic algebraic examples of volume-
preserving, ergodically irreducible actions on homogenous compact manifolds via
linear representations: semi-simple, nilpotent and compact.
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Semi-simple. Let Γ = Γ1 × · · · × Γn, where each Γi admits a representation
Γi → Hi with unbounded image in a real semi-simple Lie group Hi, and let
H = H1 × · · · × Hn. Embed H into some real semi-simple Lie group L (e.g.
L = SLN (R) with N ≥

∑
dimLie(Hi)) and choose an irreducible cocompact

lattice Λ in L. Then the Γ-action on M = L/Λ by left translations via Γ→ H < L
is ergodically irreducible, and even mixing (Howe-Moore theorem).

Nilpotent. Let N be a connected real nilpotent group with a lattice Λ < N ;
such lattices are always cocompact and arithmetic by a theorem of Mal’cev, see
e.g. [33] and [44]. If a group Γ admits a homomorphism ρ : Γ → Aut(N) where
ρ(Γ) normalizes Λ, one obtains a volume-preserving Γ-action on the compact nil-
manifold M = N/Λ. The standard SLd(Z)-action on the torus Td is a prime
example of this setting, and indeed it is the critical case to investigate ergodic
irreducibility since any compact nil-manifold admits such a torus as an equivariant
quotient. Let thus Γ = Γ1×· · ·×Γn with infinite homomorphims ρi : Γi → SLdi(Z).
Upon passing to finite index subgroups and reducing the dimensions di one may
assume that %i(Γ∗i ) is irreducible over Q for all finite index subgroups Γ∗i < Γi.
Let % = %1 ⊗ · · · ⊗ %n be the tensor representation taking values in SLd(Z) where
d =

∏
di. Then the corresponding Γ-action on M = Td is ergodically irreducible.

Indeed, a Fourier transform argument shows that the ergodicity of Γi is equivalent
to %(Γ∗i ) having no invariant vectors in Qd \ {0} for finite index subgroups Γ∗i <
Γi, which follows by construction. Note that the dimension d = dim(M) will
typically exceed that of semi-simple examples and in addition the required linearity
assumption is more stringent: Γi must have unbounded representations defined
over Z, rather than over R.

Compact (isometric). Let Γ = Γ1 × Γ2 and suppose there are homomorphisms
τi : Γi → K with dense images in some compact group K. Then the Γ-action on
M = K given by

(g1, g2)k = τ1(g1) k τ2(g2)−1 (gi ∈ Γi, k ∈ K)

is ergodically irreducible. If K is moreover a connected Lie group, we have an
ergodically irreducible volume-preserving action on a manifold, and this action is
even isometric.

An example where Theorem A rules out altogether certain actions is as follows.

Corollary 1.3. Let Γ = Γ1 × · · · × Γn be a product of n ≥ 2 infinite groups
with property (T), where one of the factors does not admit unbounded real linear
representations.

Then Γ has no smooth mixing volume-preserving actions on compact manifolds.

Mixing is a convenient strengthening of ergodic irreducibility, but the latter
more natural assumption suffices in various cases. For instance, the statement of
Theorem A shows that ergodic irreducibility suffices in Corollary 1.3 if in addition
n ≥ 3, or if Γ1 and Γ2 cannot not embed densely in the same compact group.
Further:
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Corollary 1.4. Let Γ = Γ1 × · · · × Γn be a product of n ≥ 2 groups with prop-
erty (T), where one of the factors admits only finitely many finite quotients.

Then Γ has no ergodically irreducible smooth volume-preserving actions on com-
pact manifolds of non-zero dimension.

We recall in Section 3.B that there are many infinite groups with Kazhdan’s
property (T) that do not admit unbounded linear representations over R and some
are known not to have finite quotients.

Acknowledgments. This article owes much to the work of H. Furstenberg, G. Mar-
gulis and R. Zimmer. We are grateful to D. Fisher and the anonymous referee for
interesting and useful remarks.

2. General Notations

Throughout the paper, a lcsc group will mean a locally compact second count-
able topological group. We denote by mG a choice of left Haar measure and recall
that its measure class depends only on G. If G is a lcsc group, a probability G-space
refers to a standard (Lebesgue) probability space endowed with a measurable G-
action that preserves the measure. All (ergodic-theoretical) cocycles are assumed
measurable. If α : G × X → H is a cocycle and f : X → H a measurable map,
the corresponding cocycle αf cohomologous (or conjugated) to α is defined by

αf (g, x) = f(gx)−1α(g, x)f(x).

For any subgroup L < G, we denote simply by α|L the restriction of α to L×X.
If Y is some H-space, one defines the skew product G-space X n Y by endowing
the product X × Y with the action g(x, y) = (gx, α(g, x)y). Notice that induced
actions, as defined in the introduction, are a special case of this construction.

A norm on a group H will mean a map ‖ · ‖ : H → [1,∞) such that ‖gh‖ ≤
‖g‖ · ‖h‖ and ‖g−1‖ = ‖g‖ for all g, h ∈ H; by default, we think of GLd(R) as
endowed with ‖g‖ = ‖g‖op · ‖g−1‖op, wherein ‖ · ‖op is the operator norm. (The
terminology conflicts of course with normed vector spaces.) The following fact is
well-known both in the measurable setting for lcsc groups and for Borel norms on
Baire topological groups:

Lemma 2.1. Any measurable norm on a lcsc groups is bounded on compact sets.
�

We write GL1
d < GLd for the subgroup of determinant ±1.

Let G be a lcsc group and (X,µ) an ergodic probability G-space. We say that
the G-action has a spectral gap if the G-representation on

L2
0(X) = L2(X,µ)	C =

{
f ∈ L2(X,µ) :

∫
f dµ = 0

}
does not almost have invariant vectors. This representation is the (Koopman)
representation given by gf = f ◦ g−1. Explicitly, the spectral gap means that
there is a compact subset K ⊂ G and an ε > 0 such that

(2.i) ∀F ∈ L2
0(X), ∃ g ∈ K : ‖gF − F‖ ≥ ε · ‖F‖.
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The action G y X is called mixing if the matrix coefficients of the representation
L2

0(X) are C0 (vanish at infinity).
We use � for the weak containment of unitary representations; the trivial repre-

sentation of a lcsc group G is denoted by 11G. Thus for instance the above spectral
gap property is L2

0(X) 6� 11G. This terminology is due to the following classical
characterization à la Kesten for arbitrary unitary representations π, see e.g. [4,
G.4.2].

Lemma 2.2. Let σ be a probability measure on G that is absolutely continuous
with respect to Haar measures and whose support generates G. Then π 6� 11G if
and only if the spectral radius of π(σ) satisfies ‖π(σ)‖sp < 1. �

All ergodic-theoretical statements regarding actions on compact Riemannian
manifolds are understood to refer to the normalised measure defined by the volume
form. We endow by default compact groups with their normalised Haar measure.
More generally, when H < G is a closed subgroup of a lcsc group such that K/L
admits a non-zero G-invariant measure, we endow it with such a measure which
we denote by mG/H . We normalise mG/H whenever it is finite.

3. From Cocycle superrigidity to Theorem A

In this section, we deduce Theorem A and its corollaries from the general cocycle
superrigidity Theorem D. To this end, we use also the main result of Zimmer’s [59]
which states that a smooth volume-preserving action of a property (T) group on
a compact manifold preserving a measurable Riemannian structure has discrete
spectrum. This result uses Kazhdan’s property (T) and smoothness in an essential
way (more than just the spectral gap for the action on the manifold).

3.A. Proof of Theorem A. A volume-preserving smooth action Γ y M defines
a Γ-action on the tangent bundle TM . The tangent bundle can be measurably
trivialised, thus defining the derivative cocycle (unique up to cohomology) α :
Γ×M → GL1

d(R) where d = dim(M). Moreover, one can assume that the norm
‖α(g,−)‖ is essentially bounded over M for each g ∈ Γ.

To see this, choose a measurable family {V px−→ Ux : x ∈ M} of volume-
preserving charts, where V and Ux are neighbourhoods of 0 ∈ Rd and x ∈ M
respectively, such that px(0) = x (it suffices to require |Jac(px)(0)| = 1), with
‖Dpx(0)‖ being uniformly bounded over x ∈M . This is possible by compactness
of M . Given such a family, one defines the measurable cocycle

(3.i) α : Γ×M −→ GL1
d(R) by α(g, x) = D(p−1

gx ◦ g ◦ px)(0).

Observe that changing {px}x∈M would yield cohomologous of cocycles. Note that
for each g ∈ Γ the cocycle α(g,−) is essentially bounded, due to the uniform
bound on ‖Dpx(0)‖ and on the derivative of g over the compact manifold M .

Since each Γi has property (T), the ergodicity of the action Γi y M , which is
equivalent to the absence of Γi-invariant vectors in L2

0(M), yields a spectral gap
in this representation. Hence we are in position to apply Cocycle Superrigidity
Theorem D, with Gi being Γi (endowed with the discrete topology) and X = M .
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Suppose first that all factors Hi appearing in the statement of Theorem D are
non-trivial (and thus non-compact). Then we have finite index subgroups Γ∗i with
Zariski-dense representations %∗i : Γ∗i → Hi and a virtual semi-conjugacy of the
derivative cocycle to the product representation %. This is precisely the case of the
linearity phenomena (Lin) in Theorem A; we just need to justify dim(M) ≥ 3n.
We first observe that each Hi has at least one simple factor with property (T).
Indeed, we recall that the image of a group with property (T) in a semi-simple
Lie group without (T) is always bounded (and thus not Zariski-dense) since such
Lie groups have the Haagerup property [9]. Now it suffices to observe that non-
compact simple Lie groups with property (T) have no unbounded real represen-
tation of dimension less than 3. (This follows immediately, for instance, from the
Haagerup property of SL2(R) together with the fact that Kazhdan groups have
compact Abelianization [29].)

It remains to show that the only alternative is the case described in (Isom1)–
(Isom3). Hence, assume that at least one of the factors Hi in Theorem D is
compact. In this case, at least one of the factors of Γ, say Γ1, has the property
that the restriction α|Γ1 is cohomologous to a cocycle ranging in an amenable
group (namely in a finite extension of the amenable radical of L0).

It is well-known [55, 9.1.1] that any measurable cocycle of an ergodic action of a
property (T) group to an amenable group is cohomologous to a cocycle ranging in
some compact subgroup. Hence the restriction α|Γ1 is cohomologous to a cocycle
ranging in a compact subgroup of GL1

d(R); upon conjugating further, we may
assume it ranges in Od(R). This is equivalent to saying that Γ1 preserves a
measurable Riemannian structure on M .

This is precisely a situation analysed by Zimmer in [59], where he proves (The-
orem 1.7) that in such case the action Γ1 y M has discrete spectrum: that
is, L2(M) splits as a direct sum of finite dimensional Γ1-invariant subspaces. By
Mackey’s measure-theoretical converse to the Peter–Weyl theorem [31], such an ac-
tion is measure-theoretically isomorphic to an isometric action (the case of a single
transformation was previously established by Halmos and von Neumann [52, 26]).
This means that there exist a compact group K, a homomorphism τ1 : Γ1 → K a
closed subgroup L < K, and a measure space isomorphism

T : M
∼=−→ K/L with T (g1x) = τ1(g1)T (x)

for a.e. x ∈M and all g1 ∈ Γ1. We can assume that L does not contain non-trivial
closed subgroups that are normal in K upon dividing by the kernel of the K-action
on K/L.

Note that the groupNK(L)/L acting onK/L faithfully from the right commutes
with the Γ1-action by left translations. Denote by Aut(K/L,mK/L) the group of
all measure space automorphisms, where everything is understood modulo null
sets. We recall the following easy

Lemma 3.1 (see [20, 7.2]). The centraliser of τ1(Γ1) in Aut(K/L,mK/L) is pre-
cisely NK(L)/L. �



10 ALEX FURMAN AND NICOLAS MONOD

Denote Γ′1 = Γ2× · · · ×Γn, so that Γ = Γ1×Γ′1. By the above Lemma, the Γ′1-
action, which commutes with the Γ1-action onM ∼= K/L, defines a homomorphism
τ : Γ′1 → NK(L)/L. Ergodicity of the Γ′1-action implies that NK(L)/L also acts
ergodically on K/L. But NK(L) and NK(L)/L are compact groups, so ergodicity
means that the action is transitive, i.e., NK(L) = K and L is normal in K. By
our convention this means that L is trivial, i.e. M ∼= K. In particular, the
representation τ of Γ′1 ranges into K itself.

The ergodicity assumption of the action of each Γi on M ∼= K means that the
images τ(Γi) are dense in K. We claim that n = 2, i.e. Γ′1 = Γ2. Indeed if n ≥ 3
then K contains two commuting subgroups τ(Γ2) and τ(Γ3), each being dense in
K. This forces K to be commutative. Property (T) of, say Γ1, implies that τ1(Γ1)
is finite, hence so is K. But this contradicts the measure-theoretic isomorphism
of K with M since the volume has no atoms. This completes the description of
Γ y M in this case, and thus the proof of Theorem A. �

For the variation on Theorem A, we recall from Remark 1.2 that cocycle su-
perrigidity also holds if the action of one factor lacks the spectral gap property.
Therefore, we can follow the above proof by grouping all factors without prop-
erty (T) into one factor and reason with

Γ1 × · · · × Γk ×
(
Γk+1 × · · · × Γn

)
.

Thus, the argument above can be repeated verbatim with the only difference that
the distinction of the two cases in the alternative hinges upon whether at least
one factor Hi is compact for i ≤ k. We emphasize that the conclusion (Ism1) is
still n = 2 (rather than only k = 2).

3.B. Corollaries. First we recall how to deduce the entropy formula (1.i). We
refer to [22] or [55, 9.4] for more precisions on the following exposition. For
any (finite-dimensional) linear operator A, denote by {λk} the set of Lyapunov
(characteristic) exponents, that is, the set of logarithms log |aj | of all eigenvalues
aj of A with |aj | > 1. Thus all λk are distinct and positive; the total multiplicity
mk is the sum of the multiplicities of all aj with log |aj | = λk. One has the relation∑

k

mkλk = max
p

lim
n→∞

1
n

log ‖ ∧p An‖,

wherein the symbol ∧ denotes the exterior p-power. Returning to Remark 1.1 and
taking A = %(g), we observe that the quantity

max
p

lim
n→∞

1
n

log ‖ ∧p %(gn)‖

is well-defined and is not affected by the (virtual) semi-conjugacy that Theorem A
produces. On the other hand, Pesin’s formula [42] gives

h(g,M) = max
p

lim
n→∞

1
n

log ‖ ∧p Dgn|x‖ (a.e. x ∈M)

and hence (1.i) follows as claimed. For more on convergence of the above limit
and characteristic exponents, see Section 6.
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Before continuing, we recall the elementary fact that if a group has a finite
index subgroup that admits a linear representation with infinite (or unbounded)
image, then so does the initial group.

Proof of Corollary 1.3. The statement follows immediately from Theorem A if one
recalls that mixing implies ergodic irreducibility (since the factors are assumed
infinite) and precludes discrete spectrum. �

Corollary 1.4 hinges on the well-known fact that a finitely generated group is
residually finite if and only if is has an injective morphism to a compact group,
see the proof:

Proof of Corollary 1.4. It suffices to show that both conclusions offered by Theo-
rem A are incompatible with our assumptions. We can suppose that Γ1 has only
finitely many finite quotients. Recall that property (T) implies that Γ1 is finitely
generated [29]. Since finitely generated linear groups are residually finite [32],
every linear image of Γ1 is finite. This already rules out case (Lin).

We consider now a homomorphism τ1 : Γ1 → K as in case (Ism) and seek a
contradiction. By the Peter–Weyl theorem, K embeds into a product

∏
n∈N Un

of (finite-dimensional) unitary groups Un. By the above discussion, the image of
τ1(Γ1) in each Un is finite, and hence by density the same statement holds for
K. Thus K is profinite; this implies that the image of Γ1 in K is finite. Thus
K is a finite group, contradicting the fact that M has positive dimension and is
measurably isomorphic to K. �

Finally, we briefly recall that there are many known infinite groups with Kazh-
dan’s property (T) that do not admit unbounded linear representations over R.
These include: (a) Quotients (by infinite kernels) of lattices in Spn,1(R), in view
of Corlette’s superrigidity [10]; (b) Lattices in semi-simple groups of higher rank
over non-Archimedean fields, by Margulis’ superrigidity [37]; (c) Suitable Kac–
Moody groups [46, 47, 8, 14]; (d) Gromov’s constructions of simple groups or
torsion groups as quotients of arbitrary non-elementary hyperbolic groups [24],
which are Kazhdan as soon as the corresponding hyperbolic group is so; (e) Gro-
mov’s random groups [25]. Some of the groups listed under (c) and (d) above have
no non-trivial finite quotients.

Of course it is expected that there are many more property (T) groups out-
side the linear realm. In fact, several of the above examples have much stronger
properties than those needed for Corollary 1.3 and are therefore not really an il-
lustration of our results. It has been observed on several occasions (we learned it
from Sh. Matsumoto) that the random groups of [25] do not have mixing smooth
volume-preserving actions on compact manifolds. Indeed, they have the fixed
point property for isometric actions on “induced” spaces of the form∫

M
GL(TxM)/O(gx) dx,
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where g is the Riemannian metric; see e.g. [38, Ex. 47] and compare Section 9.A
below.∗ Groups as in (a) also have strong restrictions on their cocycles, see Fisher–
Hitchman [15].

4. Preliminaries for the Cocycle Superrigidity Theorem

We recall that a group action on a standard Borel space is tame (or “smooth”
in [55]) if the quotient Borel structure is countably separated. For continuous
actions of lcsc groups on separable metrisable spaces, this is equivalent to having
locally closed orbits by the Effros–Glimm theorem [55, 2.1.14]. We shall repeatedly
use the following fundamental facts.

Theorem 4.1. Let G < GLN (R) be a real algebraic group.
(i) If H,L < G are algebraic subgroups, then the H-action on G/L is tame.
(ii) The G-action on Prob(PN−1) is tame.

On the proof. The first statement is apparently an unpublished result of Chevalley
from the 1950s, see the introduction of [12]; for the proof, see [13] and [55, 3.1.3].
The second statement is due to Zimmer (see [55, 3.2.12]) and uses a result of
Furstenberg [21]. (A statement for measurable maps was given by Margulis in [36],
see also [54, §7].) �

The following fact adapted from [39] is very general; it holds even for cocycles
over not necessarily measure-preserving actions.

Proposition 4.2 (Cocycle Splitting). Let G = G1 × G2 and H be lcsc groups,
G y (X,µ) a measurable measure class-preserving action on a standard probability
space and α : G×X → H a cocycle. Assume:

• The restriction α|G1 ranges in a closed subgroup H1 < H, and is not
cohomologous to a cocycle ranging in any proper subgroup of H of the
form h−1H1h ∩H1 for some h ∈ H;
• The action of H1 on H/H1 is tame;
• G1 y (X,µ) is ergodic.

Then α ranges in the normaliser NH(H1) of H1 and, passing to the quotient, the
cocycle G × X → NH(H1)/H1 is a homomorphism G → NH(H1)/H1 factoring
through G2.

Proof. The arguments given on page 413 of [39] apply word for word (with G1 and
G2 = G′1 exchanged; the more specific assumptions in [39] are not used for that
proposition). �

The following is probably well-known.

∗D. Fisher has informed us that upon reading the preprint version of this paper he made the
following observation with L. Silberman [17]: if a group fixes a point in the above Hilbert manifold
and has no finite quotient, then the underlying action on the manifold is trivial. (Indeed, one
combines as above Zimmer’s result [59] with Peter–Weyl and Mal’cev.) The authors of [17] then
give many very interesting illustrations of this statement.
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Lemma 4.3. Let G be a lcsc group, X an ergodic probability G-space and α :
G × X → H a cocycle ranging in an algebraic subgroup H < L of an algebraic
group L.

Then the algebraic hull of α viewed as a cocycle in H is the same as in L.

Proof. Without loss of generality, α is Zariski-dense in H. Let H ′ < L be its hull
in L; we have to show that H,H ′ are conjugated and it suffices to show that H
can be conjugated into H ′.

Let ϕ : X → L be a measurable map with αϕ ranging in H ′. The condition
αϕ(g, x) ∈ H ′ can be written as

ϕ(gx)H ′ = α(g, x)ϕ(x)H ′.

Since the left H-action on L/H ′ is tame by Theorem 4.1, it follows by the ergod-
icity that almost all ϕ(x)H ′ belong to a single H-orbit H`0H ′. Hence for some
measurable ψ : X → H we have

ϕ(x)H ′ = ψ(x)`0H ′,

which means that αψ ranges in `0H ′`−1
0 , and thus in `0H ′`0∩H. By Zariski-density

of α in H, that range is H and thus indeed `−1
0 H`0 ⊆ H ′. �

We shall prove the following statement, which is a variant of the ideas used by
Zimmer in [57] for the case where L is compact.

Proposition 4.4 (Controlled Conjugation). Let G,H be lcsc groups, L < H a
closed subgroup, (X,µ) a probability G-space and α : G ×X → H a cocycle. Fix
some measurable norm on H and assume that for some measurable f : X → H
the cocycle αf ranges in L. Assume:

(SG) The G-action on X has a spectral gap;
(L∞) ‖α(g,−)‖ ∈ L∞(X) for every g ∈ G.

Then there exists a measurable map F : X → H with ‖F (−)‖ ∈ Lδ(X) for some
δ > 0 and such that αF also ranges in L. In particular,

(L1)
∫
X

log ‖αF (g, x)‖ dµ(x) <∞ (∀ g ∈ G).

Lemma 4.5 (Zimmer [57]). Let G be a lcsc group and (X,µ) an ergodic probability
G-space with spectral gap. Then there is a compact subset K ⊆ G and 0 < λ < 1
such that for every measurable A0 ⊂ X with µ(A0) ≥ 1/2, there exists a sequence
{gn} in K such that the sequence of sets defined by An+1 = An ∪ gnAn satisfies
µ(An) ≥ 1− λn.

Proof. Recall from (2.i) that there is K compact and ε > 0 such that

∀ϕ ∈ L2
0(X) ∃ g ∈ K : ‖ϕ ◦ g − ϕ‖ ≥ ε · ‖ϕ‖.

Define λ = 1− ε2/4. For a measurable set A ⊂ X, the function pA(x) = 1A(x)−
µ(A) is in L2

0(X) and has ‖pA‖2 = µ(A) · (1−µ(A)). If A,B ⊂ X are of the same
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measure, then ‖pA − pB‖2 = µ(A4B). It now follows that for any A ⊂ X with
µ(A) > 1/2 there exists g ∈ K such that

µ(gA ∩ (X \A)) =
1
2
µ(gA4A) ≥ ε2

2
µ(A)(1− µ(A)) ≥ ε2

4
µ(X \A)

and therefore 1 − µ(A ∪ gA) ≥ λ(1 − µ(A)). Applying this argument inductively
starting from A = A0, the claimed estimates follow. �

Proof of Proposition 4.4. As αf ranges in L, for g ∈ G a.e. f(gx)L = α(g, x)f(x)L.
We shall construct a measurable F : X → H with ‖F‖δ integrable and such that
a.e. F (x)L = f(x)L. Let K, ε and λ be as before; we claim that the expression

C = sup
g∈K

ess sup
x∈X

‖α(g, x)‖

is finite. Indeed, the map G → L∞(X) defined by g 7→ ‖α(g,−)‖ is weak-*
continuous, and thus the image of K is weak-*bounded. By the Banach–Steinhaus
principle, it is norm bounded, whence the claim.

Choose now δ > 0 small enough to ensure λCδ < 1 and M < ∞ large enough
so that the set

A0 = {x ∈ X : ‖f(x)‖ ≤M}
satisfies µ(A0) ≥ 1/2. Construct a sequence {An} as in Lemma 4.5. We define F
on the conull set

⋃∞
n=0An ⊂ X by induction: Let F (x) = f(x) for x ∈ A0, and

for x ∈ An+1 \An
F (x) = α(gn, y)F (y)

where x = gny with y ∈ An. Thus ‖F (x)‖ ≤ C‖F (y)‖ because gn ∈ K. This gives
the estimate

‖F (x)‖ ≤M · 1A0(x) +
∞∑
n=1

M · Cn+1 · 1An+1\An(x).

Since µ(An+1 \ An) ≤ λn, the choice of δ yields integrability of ‖F‖δ. We claim
that F (x)L = f(x)L holds on the conull set

⋃∞
n=0An. Indeed, for x ∈ A0 one has

F (x) = f(x); for x ∈ An+1 \An, writing y = g−1
n x ∈ An, we have

F (x)L = α(gn, y)F (y)L = α(gn, y)f(y)L = f(x)L

using F (y)L = f(y)L in the induction assumption. �

Let α : G ×X → H be any cocycle satisfying the (L1) condition, where G,H
are lcsc groups and H has some measurable norm. Consider the (finite) expression

(4.i) `(g) =
∫
X

log ‖α(g, x)‖ dµ(x).

We observe that ` is subadditive since

`(g1g2) ≤
∫
X

log ‖α(g1, g2x)‖ dµ(x) +
∫
X

log ‖α(g2, x)‖ dµ(x)

= `(g1) + `(g2).
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In other words, exp(`) is a measurable norm on G; moreover, ` is bounded on
compact sets (Lemma 2.1).

Remark 4.6. Subadditivity implies also that if G is a finitely generated group
with some word-length `G, then ` admits a linear bound in terms of `G.

5. Cocycles, Unitary Representations and Invariant Measures

This section contains some general considerations relating quasi-regular repre-
sentations and existence of invariant measures. These are used in the proof of
Theorem 6.1, but seem to be of independent interest.

Let G be lcsc group and (X,µ) an ergodic probability G-space. Denote by π
the unitary representation on L2(X) and by π0 its restriction to L2

0(X). Let B
be a compact metrisable space with some given Borel-regular probability measure
ν of full support, and let H < Homeo(B) be a (lcsc) group of homeomorphisms
which leaves the measure class of ν invariant. Let α : G×X → H be a measurable
cocycle. We denote by π̃ the quasi-regular unitary G-representation on L2(X n
B,µ× ν). Therefore, writing everything explicitly,

(π̃(g−1)F )(x, b) =
( dα(g, x)−1

∗ ν

dν
(b)
)1/2

F (gx, α(g, x)b).

Let Probµ(X × B) denote the space of all probability measures on X × B that
project to µ. The G-action on XnB defines a G-action on Probµ(X×B) since µ is
G-invariant. By disintegration with respect to µ, any measure η ∈ Probµ(X ×B)
can be written as

η =
∫
X

(δx × ηx) dµ(x)

where x 7→ ηx ∈ Prob(B) is a measurable map. Such a measure η is G-invariant
if and only if ηgx = α(g, x)∗ηx holds for all g ∈ G and µ-a.e. x ∈ X.

It is straightforward to verify that π̃ contains 11G if and only if G preserves a
measure in Probµ(X×B) that is absolutely continuous with respect to µ× ν. We
shall however need a more refined statement relating the existence of arbitrary
G-fixed measures in Probµ(X ×B) and the spectral properties of π̃, as follows.

Proposition 5.1. If π0 6� 11G but π̃ � 11G, then G preserves some measure
η ∈ Probµ(X ×B).

Proof. Suppose that Fn is a sequence of unit vectors in L2(X ×B) with

dn(g) = ‖π̃(g)Fn − Fn‖ −→ 0

uniformly on compact sets. Upon replacing Fn by |Fn| the value dn will only
decrease, so we can assume Fn ≥ 0. Consider the sequence of unit vectors {fn} ∈
L2(X) given by

fn(x) =
(∫

B
Fn(x, b)2 dν(b)

)1/2

.
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We claim that fn is a sequence of almost invariant unit vectors for π, and thus
the assumption π0 6� 11G gives

(5.i) ‖fn − 1‖ −→ 0.

To verify almost invariance of {fn}, note that in view of the elementary inequality
|a− b|2 ≤ |a2 − b2| we have

‖fn − π(g)fn‖2 ≤
∫
X

∣∣f2
n − (π(g)fn)2

∣∣ dµ

≤
∫
X

∫
B

∣∣F 2
n − (π̃(g)Fn)2

∣∣ dµ dν

=
∫
X

∫
B
|Fn + π̃(g)Fn| · |Fn − π̃(g)Fn| dµdν

≤ ‖Fn + π̃(g)Fn‖ · ‖Fn − π̃(g)Fn‖
≤ 2 · dn(g) −→ 0

uniformly on compact sets in G; hence (5.i) follows. We shall now define a proba-
bility measure η on X×B as a functional on L1(X,µ)⊗C(B). Let ψi : X → [0, 1]
be a sequence of measurable functions spanning a dense subspace in L1(X,µ), and
ϕj : B → [0, 1] be a sequence of continuous functions spanning a dense subspace
in C(B). Assume that ψ0 = 1X and ϕ0 = 1B constant one functions. For each
i, j the following sequence in n is non-negative and satisfies

〈
ψi ⊗ ϕj , F 2

n

〉
=

∫
X

∫
B
ψi(x)ϕj(b)Fn(x, b)2 dν(b) dµ(x)

≤
∫
X
f2
n dµ −→ 1.

Applying the diagonal process, one finds a subsequence {nk} along which the LHS
above converges for all i, j. We can now define η by∫

X×B
ψi(x)ϕj(b) dη(x, b) = lim

k→∞

〈
ψi ⊗ ϕj , F 2

nk

〉
.

More precisely, extending η linearly to the span of ψi ⊗ ϕj we note that it is a
positive, normalised functional satisfying

〈ψi ⊗ 1B, η〉 = lim
k→∞

∫
X
ψif

2
n dµ =

∫
X
ψi dµ

Thus it corresponds to a measure η on X ×B projecting onto µ. This measure is
G-invariant; indeed for fixed ψi, ϕj we have

〈ψi ⊗ ϕj , gη − η〉 = lim
n→∞

〈
ψi ⊗ ϕj , (π̃(g)Fnk)2 − F 2

nk

〉
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whilst∣∣〈ψi ⊗ ϕj , (π̃(g)Fnk)2 − F 2
nk

〉∣∣
≤
∫
X

∫
B
ψiϕj |π̃(g)Fnk + Fnk | · |π̃(g)Fnk − Fnk | dµdν

≤ ‖π̃(g)Fnk + Fnk‖ · ‖π̃(g)Fnk − Fnk‖ ≤ 2dnk −→ 0.

�

We now specialise to the case where: H = SLd(R), B = Pd−1 is the projective
space and ν is the unique SOd(R)-invariant probability measure on B.

Lemma 5.2 (Zimmer’s Cocycle Reduction). Let G be a lcsc group, (X,µ) an
ergodic probability G-space and α : G×X → SLd(R) a cocycle. If the corresponding
G-action on XnPd−1 preserves a probability measure η projecting to µ, then either

(1) α is cohomologous to a cocycle α′ : G×X → SOd(R), or
(2) α is cohomologous to a cocycle α′ : G×X → L where L has a finite index

subgroup that is reducible on Rd.
If η ≺ µ× ν, then case (1) holds.

Proof. A G-invariant measure has the form η =
∫
X(δx × ηx) dµ(x) with

ηgx = α(g, x)∗ηx µ-a.e. on X.

The action of H = SLd(R) on the space Prob(Pd−1) of probability measures is
tame by Theorem 4.1. In view of the ergodicity of G-action on (X,µ) this implies
that µ-almost all ηx lie on a single H-orbit:

ηx = ϕ(x)η0

for some η0 ∈ Prob(Pd−1) and a measurable map ϕ : X → H. Denoting by
H0 = {h ∈ SLd(R) : h∗η0 = η0} the stabiliser of this measure, we get that the
cocycle

α′(g, x) = ϕ(gx)−1 α(g, x)ϕ(x)
ranges in H0. Furstenberg’s Lemma, which can be found e.g. as Corollary 3.2.2
in [55, Cor 3.2.2], implies that H0 is either compact or virtually reducible on Rd,
and that moreover the former case holds when η0 ≺ ν. It remains only to observe
that η ≺ µ× ν implies η0 ≺ ν and to recall that any compact subgroup of SLd(R)
can be conjugated into SOd(R). �

6. Random Walks and a Furstenberg Condition

This section investigates the growth of matrix-valued cocycles along random
walks. The main result is a cocycle analogue of the famous Furstenberg condi-
tion for positivity of the top Lyapunov exponent. We recall the definition of the
following integrability condition:

(L1)
∫
X

log ‖α(g, x)‖ dµ(x) < ∞ (∀ g ∈ G).

Our presentation is based on [19].
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Theorem 6.1 (Cocycle Version of Furstenberg’s Theorem). Let G be a lcsc group,
(X,µ) an ergodic probability G-space with spectral gap and α : G×X → SLd(R) a
cocycle satisfying (L1). Suppose that α is not equivalent to a cocycle ranging into
a compact or virtually reducible subgroup of SLd(R).

Then, for any absolutely continuous generating measure σ on G:

lim inf
n→∞

∫
G

∫
X

1
n

log ‖α(g, x)‖ dµ(x) dσ∗n(g) > 0.

This result will be applied when σ satisfies∫
G

∫
X

log ‖α(g, x)‖ dµ(x) dσ(g) <∞,

in which case the limit in the theorem is finite and will be denoted by λ1 = λ1(α, σ).
We begin with some preparations and recall the subadditive function ` from (4.i).

Lemma 6.2. There exist symmetric absolutely continuous probability measures σ
of full support on G such that ` ∈ L1(G, σ), i.e.:

(6.i)
∫
G

∫
X

log ‖α(g, x)‖ dµ(x) dσ(g) <∞.

(In the case where G is discrete, this is obvious.)

Proof. Let U be a compact neighbourhood of the identity in G; in particular,
mG(gU) = mG(U) < ∞ for all g. By Lemma 2.1, ` is bounded on U . Choose a
countable set {gn} so that G =

⋃
giU and let σ′ =

∑
2−n`(gi)−1 · mgnU where

mA is the restriction of mG to a Borel subset A ⊂ G. Then σ′ is a finite positive
measure, equivalent to mG, and ` ∈ L1(G, σ′). We may now take σ to be the
normalised symmetrised measure

σ(E) = (σ′(E) + σ′(E−1))
/

2σ′(G) (E ⊂ G).

�

Proof of Theorem 6.1. We consider the G-space X n Pd−1 as in Lemma 5.2 and
recall that we chose for ν the (unique) SOd(R)-invariant probability measure on
Pd−1. Consider the quasi-regular G-representation π̃ on L2(X n Pd−1, µ × ν)
defined in Section 5. Applying Proposition 5.1 and Lemma 5.2, we deduce that π̃
has a spectral gap. By the Kesten-type characterization (Lemma 2.2), it follows

(6.ii) ‖π̃(σ)‖sp < 1

for an arbitrary absolutely continuous generating probability measure σ on G.
This gap will allow us to estimate the growth of the cocycle using the following
lemma; for shorter notation, we denote by

%(h, ξ) =
dh−1
∗ ν

dν
(ξ)

the Radon–Nikodým derivative for h ∈ SLd(R), ξ ∈ Pd−1.
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Lemma 6.3.

‖h‖ ≥
(∫

Pd−1

√
%(h, ξ) dν(ξ)

)−d/2
Proof. Let %max(h) = maxξ∈Pd−1 %(h, ξ). Since

∫
Pd−1 %(h, ξ) dν(ξ) = 1, we have

1 ≤
√
%max(h) ·

∫
Pd−1

√
%(h, ξ) dν(ξ).

It now suffices to show that %max(h) = ‖h‖d. Using the Cartan (polar) decompo-
sition and since ν is SOd(R)-invariant, it is enough to consider for h a diagonal
matrix h = diag[a1, . . . , ad] with a1 ≥ a2 ≥ · · · ≥ ad > 0 and a1 · · · ad = 1, where

%max(h) = %(h,Re1) =
a1

a2
× · · · × a1

ad
= ad1.

On the other hand, ‖h‖ = a1. �

Using the above estimate we deduce:∫
G

∫
X

log ‖α(g, x)‖dµ(x) dσ(g)

≥
∫
G

∫
X
−d

2
· log

(∫
Pd−1

√
%(α(g, x), ξ) dν(ξ)

)
dµ(x) dσ(g)

≥ −d
2
· log

(∫
G

∫
X×Pd−1

√
%(α(g, x), ξ) dσ(g) d(µ× ν)(x, ξ)

)
= −d

2
· log 〈π̃(σ)1,1〉 ≥ −d

2
· log ‖π̃(σ)‖.

Replacing σ by σ∗n, where σ is generating, we get

lim inf
n→∞

1
n

∫
G

∫
X

log ‖α(g, x)‖ dµ(x) dσ∗n(g)

≥ lim
n→∞

−d
2
· log ‖π̃(σ∗n)‖1/n = −d

2
· log ‖π̃(σ)‖sp.

This last term is strictly positive by (6.ii), concluding the proof of Theorem 6.1. �

We shall now recall Oseledets’ multiplicative ergodic theorem and establish
some additional information that becomes available when λ1 > 0 thanks to the
above theorem.

Let σ be a probability measure as in Lemma 6.2. Consider the one-sided
Bernoulli shift ϑ acting on Ω = GN equipped with the product measure σN

by (ϑω)i = ωi+1. Using the G-action on X, one defines a transformation T on
Z = Ω×X, preserving the measure σN × µ, by

T (ω, x) = (ϑω, ω1x).

In fact, by Kakutani’s random ergodic theorem [28], the assumption that σ has
full support on G together with ergodicity of the G-action on X implies that T is
ergodic. The cocycle α : G×X → SLd(R) gives rise to a function A : Z → SLd(R)

A(ω, x) = α(ω1, x)



20 ALEX FURMAN AND NICOLAS MONOD

for which log ‖A(−)‖ is in L1(Z, σN × µ) by (6.i). The associated N-cocycle
N× Z → SLd(R) takes the following form

An(ω, x) = (A ◦ Tn−1) · · · (A ◦ T )A(ω, x) = α(ωn · · ·ω1, x).

To such a function one associates the non-negative quantity

λ1 = λ1(α, σ) = lim inf
n→∞

∫
X

1
n

log ‖An(z)‖dz

= lim inf
n→∞

∫
X

∫
G

1
n

log ‖α(g, x)‖ dµ(x) dσ∗n(g).

It follows from Kingman’s subadditive ergodic theorem that the above lim inf is
actually a limit (converging to the infimum); moreover, the convergence to the
constant function λ1 holds not only for the integral, but also almost-everywhere
and in L1.

When λ1 > 0, Oseledets’ theorem ([41]; see also [45, 49]) gives further structure,
namely there exist:

• An integer 1 < k ≤ d, integers d = d1 > · · · > dk > dk+1 = 0 and reals
λ1 > · · · > λk;
• A measurable family {Eω,j(x)} of (d1, d2, . . . , dk)-flags

Rd = Eω,1(x) ⊃ Eω,2(x) ⊃ · · · ⊃ Eω,k(x)

with dimEω,j = dj and such that for a.e. (ω, x) ∈ Ω×X

Eω,j(x) =
{
v ∈ Rd : lim sup

n→∞

1
n

log ‖α(ωn · · ·ω1, x)v‖ ≤ λj
}
.

Proposition 6.4. Let G = G1 ×G′1 be a lcsc group, (X,µ) a probability G-space
on which G1 is ergodic and α : G×X → SLd(R) a cocycle satisfying (L1).

Then G′1 leaves invariant the characteristic filtrations associated to random
walks on G1. More precisely, if σ is a probability measure on G1 satisfying (6.i)
and λ1(α|G1 , σ) > 0, then

α(h, x)Eω,j(x) = Eω,j(hx) (∀h ∈ G′1, a.e. x ∈ X,ω ∈ Ω).

Proof. Fix some h ∈ G′1. Given g ∈ G1, x ∈ X and v ∈ Rd, we write y = hx and
w = α(h, x)−1v. Since g and h commute, we have

α(g, x)w = α(h−1g h, x)w

= α(h−1g, hx)α(h, x)w = α(h−1g, y)v

= α(h−1, gy)α(g, y)v

which gives the estimate∣∣∣ log ‖α(g, x)w‖ − log ‖α(g, y)v‖
∣∣∣ ≤ f(gy)
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with f(−) = log ‖α(h−1,−)‖ ∈ L1(X). Recall that for any L1-function ϕ on an
ergodic system (Z, T ), Birkhoff’s ergodic theorem implies

1
n
ϕ(Tnz) =

1
n
ϕ(z) +

1
n

n−1∑
k=0

(ϕ ◦ T − ϕ) (z) −→ 0

for a.e. z. Viewing f as an L1-function on Z = Ω×X, we deduce∣∣∣∣ 1n log ‖α(gn, x)w‖ − 1
n

log ‖α(gn, hx)v‖
∣∣∣∣ ≤ 1

n
f(gny) −→ 0

for a.e. x ∈ X and a.e. ω ∈ Ω. This shows that v ∈ Eω,j(hx) is equivalent to
w ∈ Eω,j(x), finishing the proof. �

7. The Cocycle Superrigidity Theorems

7.A. Semi-Simple Hulls. We will construct the homomorphism % : G → H
as a product of homomorphisms %i : Gi → Hi, where H = H1 × · · · × Hn will
be a splitting of the given connected centre-free group H into (possibly trivial)
connected semi-simple Lie groups.

We first consider the case of H simple (thus the above splitting will have only
one non-trivial factor). We recall that it was assumed in Theorem C that H has
no compact factors; in particular, H is non-compact (compare with Section 9.B).

Proof of Theorem C for H simple. The assertion to prove is that there exists a
single factor Gi1 and a representation %i1 : Gi1 → H with Zariski-dense image
such that

α(g, x) = f(gx)−1 %i1 (gi1) f(x)

for some f : X → H.

Write G = G1 × G′1 where G′1 = G2 × · · · × Gn, and let H1 and H ′1 be the
algebraic hulls in H of the restrictions α|G1 and α|G′1 , respectively. Thus there are
measurable maps f, f ′ : X → H such that αf ranges in H1 on G1 × X and αf

′

ranges in H ′1 on G′1 ×X.
Since H1 < H is an inclusion of algebraic groups, the action H1 y H/H1

is tame by Theorem 4.1. Hence, applying Proposition 4.2, we deduce that the
cocycle αf ranges in NH(H1). Since α was assumed to be Zariski-dense in H, the
same holds for αf . But NH(H1) being an algebraic subgroup of H, it follows that
NH(H1) = H. As H is simple, we have either H1 = H or H1 = {e}.

Case H1 = {e}. It follows from Proposition 4.2 that the restricted cocycle
αf |G′1 is a homomorphism %′ : G′1 → H. Note that the image %′(G′1) is Zariski-
dense in H. Observe that for each 2 ≤ i ≤ n the image %′(Gi) is normalised
by %′(G′1), and therefore by all of H, hence each %′(Gi) is either trivial, or is
Zariski-dense in H. However, for all but one 2 ≤ i ≤ n the image %′(Gi) is trivial,
for otherwise the simple group H would contain two commuting Zariski-dense
subgroups %′(Gi) and %′(Gj), which is impossible. Hence %′ factors through a
Zariski-dense homomorphism %i1 : Gi1 → H of a single factor.
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We can thus assume H1 = H for the remainder of this proof. Applying Propo-
sition 4.2 to αf

′ |G′1 , we deduce that H ′1 / H and therefore either H ′1 = {e} or
H ′1 = H. If H ′1 = {e}, then Proposition 4.2 shows that the cocycle αf

′
, being

trivial on G′1 ×X, is a homomorphism %1 : G1 → H when restricted to G1 ×X.
Therefore, the main point is to prove the following key proposition, for which we
shall also indicate an alternative approach in Section 9.A.

Proposition 7.1. One cannot have H ′1 = H.

Towards a contradiction, let us assume H ′1 = H. Choose an irreducible faithful
representation π : H → SLr(R) and consider the resulting linear cocycle

β = π ◦ α : G×X α−→ H
π−→ SLr(R).

Lemma 7.2. The restrictions β|G1 and β|G′1 are both not cohomologous to cocycles
ranging in a compact subgroup, nor in a subgroup leaving invariant a finite family
of proper subspaces in Rr.

Prof of the lemma. Recall that compact groups, or groups leaving invariant a fi-
nite union of subspaces in Rr, are both examples of R-algebraic groups in SLr(R).
Lemma 4.3 implies that the algebraic hull of β|G1 is π(H). Had β|G1 been coho-
mologous to a cocycle ranging in an algebraic subgroup L < SLr(R), it would
follow that π(H) < L up to replacing L by its conjugate. However π(H) is not a
subgroup of a compact group and does not leave invariant a finite union of proper
subspace, because π(H) is connected, irreducible and non-compact.

The same argument can be applied to β|G′1 since we are assuming H ′1 = H. �

The pointwise integrability condition (L1) on α is inherited by β, and passed on
to β|G1 . Choose a probability measure σ on G1 as in Lemma 6.2 for β|G1 . That
is, σ is absolutely continuous, symmetric and satisfies the average integrability
condition ∫

G1

∫
X

log ‖β|G1(g, x)‖ dµ(x) dσ(g) <∞.

One may now look at the behavior of β|G1 along a path of a σ-random walk as is
described in Section 6. In particular, Lemma 7.2 allows us to apply Theorem 6.1
which ensures strict positivity of the top Lyapunov exponent

λ(β|G1 , σ) = lim
n→∞

1
n

∫
G1

∫
X

log ‖β|G1(g, x)‖ dµ(x) dσ∗n(g) > 0.

This fact yields the non-triviality of the Lyapunov filtrations (see Section 6). In
particular, for some proper intermediate dimension 0 < d2 < r there is a measur-
able family {Eω,2(x)}ω∈Ω of d2-dimensional vector subspaces Eω,2(x) < Rr which
are intrinsically defined by β|G1 : G1 ×X → SLr(R) (describing the exceptional
space of “slow” vectors under the ω-path of the random walk).

Being naturally associated to G1-action each of these sections Eω,2 : X →
Gr(r, d2) is invariant under the action of the commuting group G′1. Namely by
Proposition 6.4, for almost every ω ∈ Ω the section Eω,2 satisfies

β|G′1(g, x)Eω,2(x) = Eω,2(gx) (g ∈ G′1).
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Fix a d2-dimensional subspace E0 < Rr, and choose a measurable map ϕ : X →
SOr(R) such that Eω,2(x) = ϕ(x)E0. Then the ϕ-conjugate of β|G′1 : G′1 ×X →
SLr(R) ranges in the group {g ∈ SLd(R) : gE0 = E0}, contradicting Lemma 7.2.
This contradiction proves Proposition 7.1 and therefore completes the proof of
Theorem C in the case of H being simple. �

Completion of the proof of Theorem C in general. Now consider a general connected
centre-free semi-simple Lie group H without compact factors. Then H can be
written as a direct product of simple factors H = S1 × · · · × SN . (Indeed, the
connectedness implies that H is the product of its simple factors, and the triviality
of the centre implies that the latter product is direct.) Let πt : H → St denote
the projections and apply the case of a simple target to the cocycles

πt ◦ α : G×X −→ H −→ St (t = 1, . . . , N).

We get homomorphisms τt : Gi(t) → St, where i(t) ∈ {1, . . . , n}, and corresponding
conjugating maps ft : X → St. For j = 1, . . . , n we define

Hj =
∏
i(t)=j

St, %j =
∏
i(t)=j

τt : Gj → Hj

being understood that the product over an empty set is the trivial group or mor-
phism. We have an identification H = H1 × · · · × Hn. Arranging the maps ft
accordingly into a single map f : X → H, we have

α(g, x) = f(gx)−1 (%1(g1), . . . , %n(gn)) f(x).

Note that %j(Gj) is Zariski-dense in Hj because α is Zariski-dense in H; define
% =

∏
i %i. This concludes the proof. �

7.B. Unrestricted Hulls. We turn now to the proof of Theorem D, where the
cocycle is no longer assumed to be Zariski-dense in a connected semi-simple Lie
group. There is a number of issues to address before it is possible to reduce the
argument to the proof of the semi-simple case, notably:

— Controlled conjugation into the algebraic hull;
— Non-connectedness of the algebraic hull;
— The amenable radical.

Proof of Theorem D. Keep the notation of the theorem. Let

β(g, x) = f(gx)−1 α(g, x) f(x)

be a conjugate of α that ranges in L. Conditions (SG) and (L∞) allow us to apply
Proposition 4.4 in order to choose f such that ‖f‖δ is integrable for some δ > 0.
Recall that L0 / L is the connected component of the identity. Consider the finite
extension Y = X n (L/L0) of the G-action on X, which is the skew product by β
endowed with the invariant measure ν = µ×mL/L0 . It is shown in [55, 9.2.6] that
this action is ergodic (otherwise, one could conjugate β to a cocycle ranging in an
intermediate subgroup L0 < L1 < L, which is incompatible with Zariski-density).

The point of the finite extension π : Y → X is that the lift of the cocycle
β to G × Y → L becomes cohomologous to a cocycle ranging in L0. Indeed, if
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ξ : L/L0 → L is a choice of coset representatives and ϕ(x, `L0) = ξ(`L0), then the
cocycle G× Y → L defined by ϕ(gy)−1 β(g, π(y))ϕ(y) ranges in L0 (in fact, L0 is
its algebraic hull [55, 9.2.6]).

We now have a finite ergodic G-equivariant extension π : Y → X such that the
lift of α to G× Y → GL1

d(R) is cohomologous to a cocycle ranging in L0:

ϑ : G× Y −→ L0, ϑ(g, y) = ϕ(gy)−1f(π(y))−1 α(g, π(y)) f(π(y))ϕ(y).

Our restriction on f and the fact that ϕ has finite range imply that ϑ satisfies the
integrability condition

(L1)
∫
Y

log ‖ϑ(g, y)‖ dν(y) <∞ (∀ g ∈ G).

Let p : L0 → H = L0/Ramen(L0) denote the quotient by the amenable radical.
Then the cocycle

(7.i) p ◦ ϑ : G× Y −→ L0 −→ H

is a Zariski-dense in a connected centre-free semi-simple Lie group H without
compact factors. This cocycle satisfies the (L1) condition as well, and is almost
ready for an application of Theorem C.

The only issue here is that the action of G = G1×· · ·×Gn on (Y, ν) might fail to
be ergodically irreducible: although G y (Y, ν) is ergodic, this may not be true for
the actions of the individual factors Gi. However, since each Gi acts ergodically on
(X,µ), the Gi-action on the finite extension (Y, ν) has a finite number of ergodic
components (at most [L : L0]). For i = 1, . . . , n denote by

P (i) = (Y (i)
1 , . . . , Y

(i)
ki

)

the partition of (Y, ν) into the Gi-ergodic components.

Lemma 7.3.
(1) The partitions P (i) are independent and the elements of the joint partition

P = P (1) ∨ · · · ∨ P (n) are transitively permuted by G;
(2) If G∗ denotes the stabiliser of an element, say Z =

⋂n
i=1 Y

(i)
1 , of the joint

partition P , then the map

q : Y −→ G/G∗, q|gZ ≡ gG∗

is G-equivariant;
(3) The group G∗ is a direct product G∗ = G∗1 × · · · × G∗n of finite index

subgroups G∗i < Gi, and the action of each of G∗i on Z is ergodic.

Proof. We describe the case n = 2, the general case following by induction. Since
G acts ergodically on (Y, ν), the group G2

∼= G/G1 permutes transitively the
collection P (1) of G1-ergodic components. Hence, for each 1 ≤ i ≤ k2, the G2-
action transitively permutes the k1 sets Y (1)

j ∩ Y (2)
i , 1 ≤ j ≤ k1. In particular,

each of these sets has size µ(Y (1)
j ∩ Y (2)

i ) = µ(Y (2)
i )/k1. Similarly, G1 transitively
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permutes the collection {Y (1)
j ∩ Y (2)

i : 1 ≤ i ≤ k2} and we obtain µ(Y (1)
j ∩ Y (2)

i ) =

µ(Y (1)
j )/k2. Thus P (1) ⊥ P (2) and we proved claim (1).

It further follows that the G-action on the elements of the joint partition P (1)∨
P (2) is through G2 in the P (1)-coordinate, and through G1 in the P (2)-coordinate.
Thus, the stabiliser of Z = Y

(1)
1 ∩Y (2)

1 has the form G∗ = G∗1×G∗2 with [G1 : G∗1] =
k2 and [G2 : G∗2] = k1. Therefore, the G-action on the elements of P = P (1)∨P (2)

is through G/G∗ as in (2).
Finally, to see the ergodicity of the G∗-action on Z, consider a positive measure

subset A ⊂ Z and a generic point z ∈ Z. Viewing z and A in Y , one can use
the ergodicity of G y (Y, ν) to deduce that gz ∈ A for some g ∈ G. But since
both z and gz are in Z ⊂ Y

(1)
1 , the G2-component of g ∈ G = G1 × G2 is in G∗2.

Similarly, z, gz ∈ Z ⊂ Y (2)
1 implies that the G1-component of g is in G∗1. Hence we

proved that for a generic z ∈ Z and a positive measure A ⊂ Z there is an element
g ∈ G∗ = G∗1 ×G∗2 with gz ∈ A. This proves the ergodicity claim in (3). �

We now return to the cocycle p ◦ ϑ in (7.i). Let Z ⊂ Y and G∗ be as in
Lemma 7.3. Then the restriction δ : G∗ × Z −→ H of p ◦ ϑ to G∗ × Z satisfies
the (L1) condition, and the action G∗ y Z is ergodically irreducible. The G∗i -
representation on L2

0(Z) is easily seen to inherit the spectral gap property from
the Gi-representation on L2

0(X). Hence we may apply Theorem C to deduce that
δ is cohomologous to the homomorphism %∗ : G∗ → H obtained in Section 7.A.
Using a measurable cross-section H → L0 < GLd(R) we may re-adjust the initial
conjugation map f : Y → GLd(R) to achieve a situation where the cocycle β̃ lifted
from β

β̃ : G× Y −→ L0 β̃(g, y) = f(gy)−1 α(g, π(y)) f(y)

has the property that its restriction to G∗ × Z projected via L0 p−→ H is the
homomorphism %∗ : G∗ → H

f(gz)−1 α(g, π(z)) f(z) = %∗(g) (g ∈ G∗ < G, z ∈ Z ⊂ Y ).

Finally, the fact that the G y Y has G y G/G∗ as a factor with Z being the
preimage of eG∗ ∈ G/G∗ means that the whole cocycle p ◦ β : G × Y → H is
induced from the homomorphism %∗ : G∗ → H via Y → G/G∗ as claimed. �

8. Lattices in Products

In this section, we address Theorem B. As a general fact for a lattice Γ in a
product group G, recall that it is equivalent to assume property (T) for Γ or for
G or for all factors of G, see e.g. [11].

Completion of the proof of Theorem B. We have a cocycle α : Γ ×M → GL1
d(R)

verifying the (L∞) condition just as in the proof of Theorem A. Since Γ is finitely
generated by property (T) [29], we may choose a word-length `Γ, noting that what
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follows will not depend on this choice. The integrability assumption on Γ means
that there is a cocycle c : G×G/Γ→ Γ in the canonical class such that

(8.i)
∫
G/Γ

`Γ(c(g, q)) dmG/Γ(q) <∞ (∀ g ∈ G).

This integrability condition is known to hold for classical lattices (see § 2 in [50])
and for Kac–Moody groups viewed as lattices (see [48]).

Let L be the algebraic hull of α, L0 its neutral component andH = L0/Ramen(L0).
We record the following.

Lemma 8.1. The group H is non-compact.

Proof. Otherwise, L would be amenable since L0 has finite index in L. Since Γ
has property (T), we recall that this would imply that the hull L is compact [55,
9.1.1]. In other words, α could be conjugated into Od(R), which means that it
preserves a measurable Riemannian structure on M . Thus, Γ y M would have
discrete spectrum by Zimmer’s result recalled in Section 3.A, contradicting the
mixing assumption. �

We consider now the induced G-space X = G/Γ nM .

Lemma 8.2. Each Gi acts ergodically and with spectral gap on X.

Proof. The ergodicity of Gi y G/Γ n M is equivalent to the ergodicity of Γ on
G/Gi × M (Gel’fand–Fomin duality principle). Since Γ is irreducible in G, it
acts ergodically on G/Gi. Thus the ergodicity on G/Gi × M is a well-known
consequence of the fact that Γ y M is mixing (see e.g. [51, 3.7]). The spectral
gap follows from ergodicity by property (T) of Gi. �

By property (T) of Γ, any ergodic Γ-action has the spectral gap; using Proposi-
tion 4.4, we can assume that some conjugate αf of α ranges in L and at the same
time satisfies the (L1) condition. Consider the induced cocycle

β : G×X −→ L, β(g, (q, x)) = αf (c(g, q), x).

It is a general fact that the operation of inducing cocycles does not change the
algebraic hull, see Lemma 3.1 in [51]. Therefore:

Lemma 8.3. The cocycle β is Zariski-dense in L. �

Further, we claim that induction using an integrable cocycle c preserves inte-
grability:

Lemma 8.4. The cocycle β : G×X → L satisfies the (L1) condition.

Proof. Let g ∈ G and decompose G/Γ =
⊔
γ∈ΓAγ along the fibres Aγ of c(g,−)

over Γ. Thus (8.i) can be written∑
γ∈Γ

mG/Γ(Aγ) · `Γ(γ) <∞.
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Let µ denote the probability measure on M defined using the volume form. Our
choice of the conjugate αf ensures

`(γ) :=
∫
X

log ‖αf (γ, x)‖ dµ(x) <∞ (∀ γ ∈ Γ).

Now the lemma follows from the identity∫
G/Γ×M

log ‖β(g, (q, x))‖ d(mG/Γ × µ)(q, x)

=
∑
γ∈Γ

∫
Aγ

∫
X

log ‖αf (γ, x)‖ dµ(x) dmG/Γ =
∑
γ∈Γ

mG/Γ(Aγ) · `(γ)

together with the fact that ` is linearly controlled by `Γ, see Remark 4.6. �

We now argue as in the proof of Theorem D and consider theG-equivariant finite
extension π : Y → X given by Y = X n (L/L0), which we recall is G-ergodic. As
we have seen in that proof, this provides us with a cocycle

η : G× Y −→ L0 −→ H

which still retains the integrability and Zariski-density conditions established above
for β. We can therefore continue as in Section 7.B. Thus we have Zariski-dense
representations of finite index subgroups G∗i < G to connected groups Hi such that
H =

∏
iHi and such that the product representation of G∗ =

∏
iG
∗
i is conjugate

to η|G∗ . Upon possibly passing to finite extensions, this yields a representation of
G which is unbounded by Lemma 8.1. �

9. Additional Considerations

9.A. Geometric Approach to Cocycle Superrigidity. Let (M, g) be a com-
pact Riemannian manifold. For each x ∈ M , consider the symmetric space
GL(TxM)/O(gx). The Pythagorean integral (or induced space)∫

X
GL(TxM)/O(gx) dx

is by definition the space of L2-sections of this bundle ([38, Ex. 47]) and is a com-
plete CAT(0) space, indeed a Hilbert manifold of non-positive sectional curvature.
Volume-preserving diffeomorphisms of M yield isometries of this space, and thus
our original motivation for investigating actions of product groups upon M was
the possibility to apply to this situation the splitting theorem for general CAT(0)
spaces given in [38]. Whilst we have prefered in this article to take advantage
of the projective dynamics available in the much more specific case of symmetric
spaces, we shall nevertheless give below a very brief outline of this alternative
approach.

The assumption of the splitting theorem is that the action on the CAT(0)
space is not evanescent, which means that there should not be an unbounded set
on which each group element has bounded displacement. In order to reduce to
that situation, one first replaces the above bundle by a smaller sub-bundle. More
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specifically, we shall now sketch how to prove Theorem C following this geometric
approach. In view of the definition of the Pythagorean integral, we shall however
replace the L1-condition by the slightly stronger L2-condition (which holds in the
situation arising from actions on compact manifolds).

As we have seen in Section 7.A, we may assume that our cocycle α : G×X → H,
with G = G1×G′1, is Zariski-dense when restricted to G1 and we need to prove that
its restriction to G′1 cannot be Zariski-dense. In other words, we shall explain how
geometric splitting implies the key Proposition 7.1 for a simple group H. In view of
the cocycle reduction (Lemma 5.2), it essentially suffices to derive a contradiction
from the assumption that neither G1 nor G′1 admits an equivariant measurable
map from X to probability measures on the geometric boundary of the symmetric
space Y of H. Consider the induced G-space S =

∫
X Y ; the L2-condition ensures

that the obvious isometric G-action is well-defined. The proof of Proposition 5.1
can be modified to yield the following statement for any proper CAT(0) space Y :

Let L < G be a subgroup whose action on X has the spectral gap. If the L-action
on S is evanescent, then there is an α|L-equivariant measurable map from X to
probabilities on ∂Y .

In particular, the G-action is non-evanescent and therefore the splitting theorem
(Theorem 9 in [38]) provides a canonical G-invariant subspace Z ⊆ S with an
isometric equivariant splitting Z = Z1 × Z ′1 into G1- and G′1-spaces.

In fact, we shall use only a weaker statement which is a preliminary step in
this splitting theorem, namely the fact that S contains a minimal (non-empty)
G′1-invariant CAT(0) subspace Z ′1, compare Proposition 35 in [38].

We now have the following dichotomy. Either Z ′1 is bounded, in which case it
is a point by minimality (and the circumcentre lemma). Then G′1 fixes a point
in S, which means that α|G′1 is conjugated into a compact subgroup, contrary to
our assumption. (Notice that this argument would not be possible if the simple
Lie group H were allowed to be compact, compare Section 9.B.) If on the other
hand Z ′1 is unbounded, then it witnesses the evanescence of the G1-action on S.
Indeed, minimality and convexity of the metric forces the displacement lengths of
elements of G1 to be constant on Z ′1. Applying the above statement to L = G1,
we have also a contradiction.

We observe that in the above outline of argumentation, just like in our main
random walk argument, one needs only to assume the spectral gap property for
all but one factor (Remark 1.2).

9.B. Compact Targets. Finally, we explain why it is necessary in Theorem C
to assume that the semi-simple target group H has no compact factors. More
specifically, the standard arithmetic construction below shows that the conclusions
of that theorem fail if the target group is a simple compact Lie group (compare
with Proposition 7.1).

Fix some n ≥ 2. Let F = Q(ξ) be a totally real separable extension of Q of
degree n+ 1; we denote by Gal(F/Q) the corresponding Galois group and realize
it as Gal(F/Q) = {σ0, . . . , σn} where σi : F → R are Galois embeddings. Upon
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replacing ξ by a suitable rational translate, one can assume that σ0(ξ) < 0 <
σ1(ξ), . . . , σn(ξ). Let D denote the diagonal matrix D = diag[1, 1, 1,−ξ,−ξ] and
consider the algebraic group G = {A ∈ SL5 | ATDA = D} defined over F . Under
the Galois embeddings σi, the quadratic form defined by D has signature (3, 2)
for 1 ≤ i ≤ n, and is positive definite for i = 0. Denoting by ki the Archimedean
completions coming from σi : F → R, we get Gi = G(ki) ∼= SO3,2(R) for 1 ≤ i ≤
n, and K = G(k0) ∼= SO5(R). Let OF denote the ring of integers of F . The group
Γ̃ = G(OF ) embeds as a (uniform) lattice in the locally compact group

G̃ =
n∏
i=0

G(ki) = K ×G1 × · · · ×Gn

having dense injective projections on every sub-factor of the product [5]. In par-
ticular, the projection τ : G̃ → G = G1 × · · · × Gn maps Γ̃ to a lattice Γ < G,
while π : Γ̃→ K is a dense embedding. Starting from a cocycle c : G×G/Γ→ Γ
in the canonical class, construct the cocycle

(9.i) α = π ◦ τ−1 ◦ c : G×G/Γ→ K.

We claim that its restriction α|Gi is Zariski dense in K ∼= SO5(R) for each 1 ≤
i ≤ n. Since all the groups Gi have Kazhdan’s property (T) which ensures the
spectral gap assumption, this claim indeed shows that Theorem C cannot hold for
compact targets.

The proof of the claim relies on a well-known change of viewpoint (which we
have already used in an earlier section); namely, it is equivalent to the ergodicity
of the Gi-action on the skew product G/Γ nK associated to α. This latter action
is isomorphic to

Gi y G̃/Γ̃ = (K ×G)/Γ̃.
We now recall that the following conditions are equivalent (Gel’fand–Fomin duality
principle):

(1) Gi y G̃/Γ̃ is ergodic;
(2) Γ̃ y G̃/Gi = K ×G′i is ergodic, where G′i =

∏
j 6=iGj ;

(3) Γ̃ has a dense projection to K ×G′i;
(4) Γ has a dense projection to G′i.

These conditions are satisfied by construction, proving the claim.
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