
SOME COMMENTS ON PIECEWISE-PROJECTIVE GROUPS
OF THE LINE

NICOLAS MONOD

Abstract. We consider groups of piecewise-projective homeomorphisms
of the line which are known to be non-amenable using notably the Carrière–
Ghys theorem on ergodic equivalence relations. Replacing that theo-
rem by an explicit fixed-point argument, we can strengthen the conclu-
sion and exhibit uncountably many “amenability gaps” between various
piecewise-projective groups.

This note is dedicated with admiration to Rostislav Grigorchuk at the occa-
sion of his 70th birthday. Slava taught me about Thompson’s group when
I was a student — and many times since then.
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1. Introduction

The purpose of this note is to revisit and to strengthen the non-amenability
of the groupH(R) of piecewise-projective homeomorphisms of the real line
and of many of its subgroups.

The motivation to revisit the proof given in [Mon13] is that the method it
introduced to establish non-amenability relied on the theory of equivalence
relations, specifically on a remarkable theorem of Carrière–Ghys [CG85]
adressing a conjecture of Connes and Sullivan. We shall show that the
non-amenability can be established from first principles and without the
Carrière–Ghys theorem. This possibility was alluded to in Remark 11 of
[Mon13]; this time, we give an elementary group-theoretical proof of non-
amenability. Namely, in Section 3.C we exhibit concrete convex compact
spaces on which the groups act without fixed point. This applies to H(R)
and to subgroups defined over arithmetic rings such at Q, Z[

√
2], Z[1/p]

and their uncountably many variants.
1
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The two motivations to strengthen non-amenability are, first, that a num-
ber of amenability-like properties were established in [Mon13], most promi-
nently the fact thatH(R) does not contain non-abelian free subgroups. Sec-
ondly, the best-known piecewise-projective group is Thompson’s group F,
for which amenability remains a notorious open question. In fact, our cri-
terion fails precisely for F and we have repeatedly been asked: does the
non-amenability of the various other groups imply or suggest anything for
Thompson’s group?

Towards this question, we shall prove that there are infinitely many “lay-
ers” of non-amenability stacked atop one another within the subgroups of
H(R). To any set S of prime numbers, we associate the subgroup ΓS ofH(R)
obtained by restricting the coefficients of the projective transformations to
the ring Z[1/S] of S-integers. This defines a poset of 2ℵ0 subgroups and F
lies at the bottom in the group Γ

∅
with integral coefficient.

Theorem I. Let S,S ′ be any sets of prime numbers with S $ S ′.
Then ΓS is not co-amenable in ΓS ′ .

The definition of co-amenability is recalled below (Section 4.A); infor-
mally, this means that ΓS ′ is “even less amenable” than ΓS .

In particular, we obtain a mathematically well-defined version of this
heuristic answer to the above question: no, the non-amenability of our var-
ious subgroups of H(R) does not give any hint for Thompson’s group. In-
formally: for S non-empty, ΓS is non-amenable regardless of the amenability
status of F. Had F been co-amenable in ΓS , then our non-amenability re-
sults would have implied the non-amenability of F. Contrariwise, if F is
non-amenable, then ΓS is still “even less amenable” than F.

The reader might regret that one can nest only countably many sub-
groups ΓS into a chain of pairwise not co-amenable subgroups, whereas
the poset of all ΓS consists of continuum many subgroups of the countable
group H(Q).

Not to worry: Theorem I follows from a more general statement that
indeed allows us to distinguish any two ΓS from the perspective of “mutual
non-amenability”. A concrete way to state this is as follows:

Theorem II. Let S,S ′ be any sets of prime numbers with S , S ′.
Then there exists a convex compact (explicit) H(Q)-space in which one and

only one of the two subgroups ΓS and ΓS ′ admits a fixed point.

As it turns out, the latter statement is formally stronger than Theorem I
even when S ⊆ S ′. This will be explained in Section 4.A once the no-
tion of relative co-amenability will have been recalled. This “amenability
gap” between subgroups can also be reflected in the relative Furstenberg
boundary ∂(G,G1) introduced in [BK21, Mon21]; Theorem II implies:

Corollary III. The relative Furstenberg boundaries ∂(H(Q),ΓS ), where S ranges
over all subsets of prime numbers, are pairwise non-isomorphic compact H(Q)-
spaces.
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The next result goes back to completely general rings and states that the
non-amenability of H(A) can be strengthened to an amenability gap with
respect to the integral group Γ

∅
. In contrast to all other results stated in

this introduction, it will be proved using the relational method introduced
in [Mon13].

Theorem IV. If A < R is any ring other than Z, then Γ
∅

and a fortiori the
Thompson group are not co-amenable in H(A).

Finally, we mention that the methods used in this note can easily be
adapted to some variants of the above groups. As an example, we show
in Theorem 5.1 below that the Thompson group is also not co-amenable in
a larger group of C1-diffeomorphisms.

The considerations of relative co-amenability between various subgroups
of a given group G can be formulated using some sort of “spectrum” Ġ
which is a poset functorially attached to G. Loosely speaking, the points
of Ġ are defined by subgroups of G, where two subgroups are identified
whenever they concurrently do or do not admit a fixed point in any given
convex compact G-space, see Section 5.B.

Then Theorem II can be reformulated as stating that the poset of all sets
of prime numbers embeds fully faithfully into Ġ for G = H(Q). More gen-
erally, each Γ̇S contains a copy of the poset of all subsets of S, see Corol-
lary 5.4.

2. Notation and preliminaries

The group H(R) consists of all homeomorphisms h of the real line for
which the line can be decomposed into finitely many intervals so that on

each interval, h is given by h(x) = g(x) =
ax+ b
cx+ d

for some g =
(
a b
c d

)
in

SL2(R). This g depends on the interval; since we consider homeomor-
phisms of the line, the singularity x = −d/c cannot lie in the corresponding
interval.

The element g is locally uniquely defined in PSL2(R) but we use matrix
representatives in SL2(R) whenever no confusion is to be feared.

We write the projective line P1
R as R∪ {∞} using projective coordinates

[x : 1] for x ∈ R and ∞ = [1 : 0], but we also use the signed symbols ±∞ to
clarify the relative position of points in R and how they might converge to
∞ in P1

R.
By restricting the coefficients of the matrix g and the breakpoints in R,

we obtain a wide variety of subgroups of H(R):
Given a (unital) ring A < R and a set B ⊆ R such that B ∪ {∞} ⊆ P1

R is
SL2(A)-invariant, we denote by HB(A) the subgroup where matrices are
chosen in SL2(A) and breakpoints in B. A first example is HQ(Z), which
is isomorphic to Thompson’s group F, as observed by Thurston (this fact
follows by identifying the Stern–Brocot subdivision tree of Q ∪ {∞} with
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the dyadic subdivision tree of [0,1] used in the more common PL definition
of F [Imb97]; the proof given in [CFP96, §7] is a variant of this argument,
with piecewise-projective transformations of [0,1] itself).

The easiest way to construct a piecewise-projective transformation of R
is to cut P1

R in two. Any hyperbolic g ∈ SL2(A) has exactly two fixed points
in P1 which thus divide P1

R into two intervals. Then we can define an ele-
ment of H(R) by the identity on the component containing ∞ and by g on
the other. For that reason, we worked in [Mon13] with the set B of all such
fixed points, and denoted the resulting group simply by H(A).

It is perhaps even simpler to restrict only the matrix coefficients and
work with the group of all piecewise-SL2(A) homeomorphisms of the line.
In the above notation, this group is HR(A). In the main setting of this arti-
cle, namely S-integers A = Z[1/S], these two conventions coincide anyway:

Lemma 2.1. Let S be any non-empty set of prime numbers. Then all break-
points of any element ofH(R) with matrix coefficients in Z[1/S] are fixed points
of hyperbolic elements in SL2(Z[1/S]).

Thus the group ΓS defined in the introduction coincides with the countable
group H(Z[1/S]).

Proof. Write A = Z[1/S]. We first note that since S contains at least some
prime p, the points ∞ and 0 are fixed points of the hyperbolic element
h =

(
p 0
0 1/p

)
of SL2(A).

Let now x ∈ R be any breakpoint of an element g ∈ ΓS . Considering the
matrix representatives g−, g+ ∈ SL2(A) describing g on the intervals left and
right of x, we have g−x = g+x by continuity. Therefore g−1

− g+ is an element
of SL2(A) fixing x. This element is non-trivial since x is a breakpoint; it
is therefore hyperbolic or parabolic. In the first case we are done, and in
the second case x is rational because the characteristic polynomial of g−1

− g+
has only one solution and has its coefficients in A < Q. Since SL2(Z) acts
transitively on Q∪{∞}, there is k ∈ SL2(Z) with k.0 = x. Now the conjugate
khk−1 is a hyperbolic element of SL2(A) fixing x. �

Next, we recall the Frankensteinian cut-and-paste from [Mon13]. Since
we aim for elementary proofs of non-amenability, we give both the basic
dynamical explanation and the explicit algebraic computation from [Mon13,
Prop. 9] (especially since the latter has some “,” instead of “=” in the jour-
nal version).

Proposition 2.2. For every g ∈ SL2(R) and x ∈ R with gx , ∞, there is a
piecewise-projective homeomorphism h of R which coincides with g on a neigh-
bourhood of x.

Moreover, one can take h ∈ H(A) whenever A < R is a ring containing the
coefficients of g.

Dynamical explanation. The homeomorphism h of R is obtained as follows.
Keep g on a small interval around x and continue everywhere else with
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some translation y 7! y + n. Thus we just need our interval boundaries to
be two points left and right of x where g coincides with the translation by
n. The basic dynamics of projective transformations such as g imply that
for any large enough n ∈ R, there are exactly two such points where this
holds for n or possibly −n. The only exception is if g was already affine, in
which case the proposition is trivial. �

We now give a completely explicit algebraic proof to keep track of the
coefficients involved, following [Mon13]. The above translation by n will
now correspond to a column operation on the matrix for g and therefore
we take n ∈ Z to remain in A.

Algebraic proof. We can assume g∞ , ∞. Claim: there is q0 ∈ SL2(A) with
q0∞ = g∞ and with two fixed points ξ−,ξ+ ∈ R ⊆ P1

R such that the open
interval of R determined by ξ−,ξ+ contains gx but not g∞.

To deduce the proposition from this claim, consider the piecewise-SL2(A)
homeomorphism q of P1

R which is the identity on the above interval and is
given by q0 on its complement. This is indeed a homeomorphism since the
interval is defined by fixed points of q0. Now h = q−1g fixes∞ and is the de-
sired element h ∈ H(A). (Notice that the breakpoints of h are g−1ξ±, which
are the fixed points of the hyperbolic matrix g−1q0g.)

To prove the claim, represent g as
(
a b
c d

)
and define q0 by

(
a b+na
c d +nc

)
,

where n ∈ Z is an integer yet to be chosen. Then q0∞ = [a : c] = g∞ holds.
Moreover, gx ,∞ forces c , 0 and we can hence assume c > 0. Therefore,
the trace

τ = a+ d +nc ∈ A
satisfies τ2 > 4 as soon as |n| is large enough. Then we have two real

eigenvalues λ± = 1
2 (τ ±

√
τ2 − 4) and the corresponding eigenvectors

(
x±
c

)
,

where x± = λ± − d − nc, represent the points ξ± = [x± : c]. Now we compute
limn!+∞ξ− = −∞ and limn!+∞ξ+ = [a : c] = g∞, with the latter limit ap-
proaching from the left because x+ < a. Conclusion: in case gx < g∞, any
sufficiently large n will ensure

ξ− < gx < ξ+ < g∞,
which yields the claim for that case. In the other case, when gx > g∞, the
result is obtained in the exact same way but with n! −∞. �

3. Amenability and fixed points

3.A. Convex compact spaces. If our goal is to give a simple and trans-
parent proof of non-amenability, we should choose which one of the many
equivalent definitions of amenability to use:

Definition 3.1. A group G is amenable if every convex compact G-space
K , ∅ admits a fixed point.
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It is implicit in this definition that G acts on K by affine homeomor-
phisms and that the convex compact structure of K is induced by some
ambient locally convex Hausdorff topological vector space containing K .

However, our starting point is a very concrete example of K without fixed
point, maybe the simplest and best-known such example:

Example 3.2 (Measures on the projective line). Let K = Prob(P1
R) be the

space of probability measures on P1
R, endowed with the weak-* topology.

This is the pointwise convergence topology when measures are seen as
functionals on the space C of continuous functions on P1

R. Then K is a
convex compact G-space for G = SL2(R) and it admits no G-fixed point.
In fact, if g ∈ G is a hyperbolic matrix, then any probability measure fixed
by g is supported on the two points ξ± ∈ P1

R fixed by g, namely the two
points defined by the eigenvectors of g. More precisely, given any x , ξ±,
gnx converges to the eigenvector with largest eigenvalue as n!∞ (this is
particularly clear after diagonalising g). Since this forces the same conver-
gence for any compact interval in P1

R r {ξ±}, it implies the statement for
measures.

In conclusion, no point of K can be fixed simultaneously by two hyper-
bolic matrices without common eigenvector. This classical “ping-pong”
argument shows much more: suitable powers of two such matrices freely
generate a free group.

Remark 3.3. The definition of amenability is generalised to topological
groups by requiring the action in Definition 3.1 to be jointly continuous,
i.e. the map G×K ! K must be continuous. This is therefore a weaker con-
dition than the amenability of the underlying abstract group G. The action
in Example 3.2 is jointly continuous for the usual topology on G. It there-
fore witnesses that G is non-amenable also when viewed as a topological
group.

Example 3.4 (Measures on the p-adic projective line). The exact same ar-
guments from Example 3.2 hold over Qp for any prime p. This shows
that K = Prob(P1

Qp
) is a convex compact G-space without fixed point for

G = SL2(Qp). Note however that the subgroup SL2(Zp) admits a fixed point
in K because it is a compact group in the p-adic topology for which the ac-
tion is continuous.

Next we introduce our only other source of convex compact spaces: a
construction that takes a convex compact space K0 and yields a new space
K by considering K0-valued maps. We will only apply this construction to
the case where K0 is given by Example 3.2 or Example 3.4.

Example 3.5 (Spaces of functions). Start with a convex compact G-space
K0 and define K to be the space of all measurable maps f : P1

R ! K0, where
two maps are identified when they agree outside a null-set.
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To define the compact topology on K , we assume for simplicity that K0
is metrisable and realised in the dual C′ of some Banach space C with the
weak-* topology. This is the case of Example 3.2 and Example 3.4, namely
C = C(P1) is the space of continuous functions on the projective line and
C′ the space of measures. Now K is endowed with the weak-* topology ob-
tained by viewing it in the dual of L1(P1

R,C). The compactness then follows
from Alaoglu’s theorem.

(Even beyond the simple needs of the present article, the above assump-
tions would not be restrictive: metrisability is not needed, and the reali-
sation in some C′ can always be obtained by taking C to be the space of
continuous affine functions on K .)

3.B. Piecewise action on maps. We now endow the convex compact spaces
of maps from Example 3.5 with group actions. If K0 is a convex com-
pact G-space and moreover G acts on P1

R, then G acts on f : P1
R ! K0 by

(g.f )(x) = g(f (g−1x)), where x ∈ P1
R. Thus f ∈ K is a G-fixed point if and

only if f is G-equivariant as a map. It is understood here that the G-action
on P1

R is supposed non-singular, that is, preserves null-sets. This ensures
that the G-action is both well-defined and by homeomorphisms.

If for instance G = SL2(R) and K0 = Prob(P1
R), then this G-action on K

admits a fixed point, namely the map sending x to the Dirac mass at x.

The crucial interest of Example 3.5 is that the action defined above makes
sense more generally for piecewise groups:

Let H be a group of piecewise-SL2(A) transformations of P1
R, where A <

R is any subring. At this point it is not even important that h ∈ H should
be a homeomorphism; we only need to know that the interior points of
the “pieces” cover P1

R up to a null-set, which is notably the case if we have
finitely many intervals as pieces. It is then well-defined to consider the
projective part h|x ∈ PSL2(A) of h at x ∈ P1

R, except for a null-set in P1
R that

we shall ignore. Notice that for h,h′ ∈ H we have the chain rule (hh′)|x =
(h|h′x)(h′ |x).

Given now a convex compact PSL2(A)-space K0, we define the H-action
on the space K of measurable maps f : P1

R ! K0 by

(h.f )(x) = h|h−1x(f (h−1x)), x ∈ P1
R.

ThisH-action on K is perfectly suited to the cut-and-paste method recalled
in Section 2. Indeed, noting that the chain rule gives h|h−1x = (h−1|x)−1, we
see that f is H-fixed if and only if

f (hx) = h|x(f (x)) for all h ∈H and a.e. x ∈ P1
R.

The key point is that this equation only involves the local behaviour of h at
x. Therefore, it immediately implies the following.

Proposition 3.6. Suppose that for every g ∈ PSL2(A) and almost every x ∈ P1
R

there is h ∈H with h|x = g.
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Then f ∈ K is H-fixed if and only if it is PSL2(A)-fixed.

Proof. Suppose that f is H-fixed. We want to show, given g ∈ PSL2(A) and
x ∈ P1

R, that f (gx) = gf (x) holds. The element h of the assumption satisfies
f (hx) = h|xf (x), which is exactly what is claimed since h|x = g. The converse
is tautological. �

3.C. The fundamental non-amenability argument. We already have all
the elements to deduce that many piecewise-projective groups H(A) are
non-amenable. We begin with the cases of A = Z[1/p] and more generally
of S-integral coefficients.

Theorem 3.7. Let S be any non-empty set of prime numbers and choose p ∈ S.
Then the group ΓS = H(Z[1/S]) has no fixed point in the convex compact

space K of measurable maps P1
R ! Prob(P1

Qp
).

In particular, this group is non-amenable.

Proof. It suffices to consider S = {p}. The cut-and-paste principle of Propo-
sition 2.2 shows that we are in the setting of Proposition 3.6. Thus it suf-
fices to show that SL2(Z[1/p]) has no fixed point in the space K of maps
f : P1

R ! Prob(P1
Qp

).
We write Λ = SL2(Z[1/p]), GR = SL2(R), GQp

= SL2(Qp) and G = GR ×
GQp

. By elementary reduction theory (recalled in Remark 3.8 below), the
diagonal image of Λ in G is discrete and of finite covolume.

We extend the Λ-action on K to a G-action by

((g1, g2).f )(x) = g2(f (g−1
1 x)), g1 ∈ GR, g2 ∈ GQp

.

This is a continuous action without fixed points: a map fixed by GR would
be constant and its constant value would be GQp

-fixed, but GQp
has no

fixed points in Prob(P1
Qp

), see Example 3.4. However, any point fixed by
Λ would yield another point fixed by G after integration over the quotient
G/Λ. Explicitly, if f ∈ K is Λ-fixed, then the orbit map g 7! g.f descends to
G/Λ and hence

∫
G/Λ

g.f d(gΛ) ∈ K is G-fixed. �

Remark 3.8 (Reduction theory). Since the proof of Theorem 3.7 used that
Λ is discrete and of finite covolume in GR ×GQp

, it is worth recalling that
this is elementary:

Discreteness holds because Z[1/p] is discrete in R ×Qp by definition of
the p-adic topology. As for a fundamental domain, we can take D×SL2(Zp)
whenever D is a fundamental domain for the modular group SL2(Z) in
SL2(R). Indeed, SL2(Zp) is a compact-open subgroup of GQp

(again be-
cause the corresponding fact holds for Zp in Qp by definition of the topol-
ogy) and Λ∩SL2(Zp) is SL2(Z). Finally, a very explicit domain D of finite
volume is familiar since Gauss, namely the pre-image in SL2(R) of the strip
|Re(z)| ≤ 1/2, |z| ≥ 1 in the upper half-plane.
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The case of other number fields, as in Example 3.9 below, is handled
by restriction of scalars, see e.g. Siegel, Satz 12 p. 233 in [Sie39]. (The
generalisation to arbitrary reductive groups, which soars far beyond our
needs, is the Borel–Harish-Chandra theorem [BHC62, Thm. 12.3], [Bor63,
§8].)

The proof of Theorem 3.7 is based on the p-adic completion of the num-
ber field Q. It holds exactly the same way for the two other types of places,
namely real and complex completions:

Example 3.9 (Other places). The argument given above for the ring A =
Z[1/p] can be applied to any other ring A of S-integers (or integers) in any
other real number field F < R, except A = Z. Indeed, when we used Qp
in the proof of Theorem 3.7, we only needed some completion of F = Q in
addition to the given completion R used to define the action on the variable
x ∈ P1

R.
In particular, this also works if the second completion happens to be R

as well. For instance, consider A = Z[
√

2], which is the ring of integers
of Q(

√
2) [Sam70, §2.5]. We let Λ = SL2(A) act on Prob(P1

R) via the second
embedding Λ! GR given by the negative root of two. Reasoning exactly as
above, the action of Λ on the space K of maps P1

R ! Prob(P1
R) has no fixed

points because Λ is a lattice in GR ×GR. Therefore, Proposition 3.6 shows
that H(A) has no fixed points in K and in particular it is non-amenable.

Likewise, if a real number field F < R is not totally real, it can happen
that the only other Archimedean completion is complex. This is the case
for instance of pure cubic fields, e.g. F = Q( 3

√
2). Denoting its ring of inte-

gers by OF , we can thus use that H(OF) has no fixed points in the convex
compact space of maps P1

R ! Prob(P1
C).

Remark 3.10 (Produced spaces). It is well-known that if a (discrete) group
Γ contains a non-amenable group Λ < Γ , then Γ is also non-amenable. With
Γ = H(R) in mind, the reader might ask: does this fact also admit an el-
ementary proof in terms of fixed points in convex compact spaces? The
question is legitimate since this fact has no analogue for general topologi-
cal groups, whereas the fixed-point condition is completely general.

There is indeed such a direct argument. Let K0 , ∅ be a convex compact
Λ-space without fixed points. Define the produced space K by

K =
{
f : Γ ! K0 : f (hg) = hf (g) ∀h ∈Λ, g ∈ Γ

}
which is convex and compact in the product topology, i.e. the topology of
pointwise convergence for maps Γ ! K0. This is a Γ -space for the right
translation action (γf )(g) = f (gγ). Now any Γ -fixed point f in K would be
constant, and by construction the constant value f (g) would be a Λ-fixed
point in K0.

Our only scruple could be to verify that K is non-empty; we note that
any transversal S ⊆ Γ for Λ gives by restriction an isomorphism K � KS0 .



10 NICOLAS MONOD

4. Refining and strengthening non-amenability

4.A. Relativisation. A key concept here is the notion of co-amenability
for a subgroup G1 < G of a group G, due to Eymard [Eym72]. Informally,
it means that G is “as amenable as G1”, or “amenable conditioned on G1
being so”. Neither G1 nor G need be amenable when the question of co-
amenability is raised. If for instance G1 is a normal subgroup of G, then
co-amenability amounts simply to the amenability of the quotient group
G/G1.

To motivate the general definition, recall that a group G is amenable iff
every non-empty convex compact G-set admits a G-fixed point.

Definition 4.1. A subgroup G1 < G of a group G is co-amenable in G if
every convex compact G-set with a G1-fixed point admits a G-fixed point.

This notion, which makes sense in the generality of topological groups
and their subgroups, has been extensively studied by Eymard [Eym72] in
the context of locally compact groups.

There is a further generalisation ([Por13, §2.3], [CM14, §7.C]) that com-
pares two subgroups G1,G2 < G that are not necessarily nested:

Definition 4.2. The subgroup G1 is co-amenable to G2 relative to G if
every convex compact G-space which has a G1-fixed point also has a G2-
fixed point.

Again, this definition extends to arbitrary topological groups simply by
requiring that all actions on convex compact spaces be jointly continuous.

Back to the discrete case, we record the following standard equivalences.

Lemma 4.3. Given two subgroups G1,G2 of a group G, the following are equiv-
alent:

(i) G1 is co-amenable to G2 relative to G;
(ii) the G2-action on G/G1 admits an invariant mean;

(iii) the restriction to G2 of the quasi-regular G-representation λG/G1
weakly

contains the trivial representation.

The reformulation (iii) suggests to use Theorem II as an input for C*-
algebra arguments; this is pursued in [GM23].

Proof of Lemma 4.3. The equivalence of (ii) and (iii) is the usual Hulanicki–
Reiter condition for any action on any set, here the G2-action on G/G1. The
implication (i)⇒(ii) follows by considering the convex compact G-space of
all means on G/G1, noting that it indeed has a G1-fixed point, namely the
Dirac mass at the trivial coset.

Finally, for (ii)⇒(i), consider an arbitrary convex compact G-space K
which contains some G1-fixed point x ∈ K . The orbital map g 7! gx in-
duces a G-equivariant map G/G1 ! K and hence by push-forward we ob-
tain a G2-invariant mean on K . The barycentre of this mean is a G2-fixed
point. (We recall here that the usual notion of barycentre for probability
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measures applies to means. Indeed, probability measures are states on con-
tinuous functions, while means are states on bounded functions; but any
continuous function on K is bounded.) �

With the statements of Theorem I and Theorem II in mind, the impor-
tance of relative co-amenability is as follows. By exhibiting a large poset of
subgroups Gi < G that are pairwise not co-amenable to one another relative
to G, we strengthen the non-amenability of G. Every chain of inclusions in
such a poset can be thought of as a gradient of increasing non-amenability.

We underline that even when the subgroups are nested G1 < G2 < G,
this relative non-amenability is stronger than simply stating that G1 is not
co-amenable in G2:

Example 4.4. Consider a situation withG1 < G2 < GwhereG1 is co-amenable
in G but not in G2. Examples are given in [MP03] and [Pes03], for instance
G = (

⊕
ZF2)oZ,G2 =

⊕
ZF2 andG1 =

⊕
NF2. ThenG1 is still co-amenable

to G2 relative to G.

We can now complete the proof of both Theorem I and Theorem II from
the introduction. Recall that for any set S of prime numbers, ΓS denotes
the group of piecewise-SL2(Z[1/S]) homeomorphisms of the line and that
when S is non-empty, ΓS coincides withH(Z[1/S]). The more explicit state-
ment is as follows:

Theorem 4.5. Let S,S ′ be any sets of primes. If p is in S ′ r S, then the convex
compact H(Q)-space of measurable maps P1

R ! Prob(P1
Qp

) admits a ΓS-fixed
point but no ΓS ′ -fixed point.

In particular, ΓS is not co-amenable to ΓS ′ relative to H(Q).
A fortiori, if S $ S ′ then the subgroup ΓS < ΓS ′ is not co-amenable in ΓS ′ .

Proof. We proved in Theorem 3.7 that ΓS ′ has no fixed point. By contrast,
ΓS fixes the constant map whose value is the SL2(Zp)-invariant measure on
P1

Qp
(see Example 3.4) since Z[1/S] is contained in Zp. �

The fact that Corollary III follows from Theorem 4.5 is established in
Corollary 4.2 of [Mon21].

As discussed in the introduction, the above results also illustrate that
the open problem of the (non-)amenability of Thompson’s group HQ(Z)
is completely decoupled from the non-amenability of the various groups
H(A) with A non-discrete. In the above poset, HQ(Z) lies in Γ

∅
and is there-

fore not co-amenable in any of the other ΓS , nor even co-amenable to ΓS
relative to H(Q).

4.B. Other rings. The goal of this note until this point was to establish
variations and stronger forms of the non-amenability theorem from [Mon13],
but without the theory of measured equivalence relations. Instead, we ar-
gued from first principles using simple cut-and-paste and leveraging the
very basic fact that SL2(Z) has finite covolume in SL2(R).
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This was enough to be able to deal with the rings A = Z[1/S] and applies
also to the ring of integers in any other real number fields, such as A =
Z[
√

2], or their S-arithmetic generalisations.

In order to justify Theorem IV from the introduction even when A is
not some S-arithmetic ring, we prove the following, which does rely on the
Carrière–Ghys theorem.

Theorem 4.6. Let Λ < H(R) be any subgroup containing Γ
∅

. Suppose that Λ
has the same same orbits in P1

R as a countable dense subgroup ∆ < SL2(R) (after
discarding a null-set in P1

R).
Then Γ

∅
is not co-amenable in Λ.

The same statement holds with Γ
∅

replaced throughout by Thompson’s group.

This can be applied for instance when Λ is the group studied by Lodha–
Moore [LM16].

To prove Theorem 4.6, we shall need the following general fact about
relative amenability in relation to relations; this is a relative of the fact
related in Proposition 9 of [Mon22].

Proposition 4.7. Let Λ be a countable group with a non-singular action on a
standard probability space X. Let Γ <Λ be a co-amenable subgroup of Λ.

If the orbit equivalence relation produced by Γ on X is amenable, then so is
the relation produced by Λ.

Proof of Proposition 4.7. Let L , ∅ be a compact metrisable space and let
α : Λ × X ! Homeo(L) be a relation cocycle to the group of homeomor-
phisms of L. Being a cocycle means that α(λ, ·) is a measurable map for each
λ ∈ Λ and that for λ,η ∈ Λ the chain rule α(λη,x) = α(λ,ηx)α(η,x) holds
for a.e. x ∈ X. Being a relation cocycle means that α(λ,x) depends only on
the pair (λx,x) of points.

Hjorth proved (Theorem 1.1 in [Hjo06]) that the relation produced by
Λ on X is amenable if and only if for any such L and α, there exists a
measurable map f : X! Prob(L) such that for every λ ∈Λ and a.e. x ∈ X

f (λx) = α(λ,x)f (x).

This is equivalent to f being Λ-fixed for the action

(λ.f )(x) = α(λ,λ−1x)(f (λ−1x)).

Exactly as in Section 3.B, we have now a convex compact Λ-space K of
maps. Hjorth’s criterion tells us that Γ has a fixed point in K , and therefore
the co-amenability of Γ in Λ yields the conclusion. �

Proof of Theorem 4.6. The Carrière–Ghys theorem states that the orbit equiv-
alence relation produced by ∆ on SL2(R) is not an amenable equivalence
relation. As recalled in [Mon13], this implies that the relation produced



COMMENTS ON PIECEWISE-PROJECTIVE GROUPS 13

on P1
R is not amenable either. (This follows from the fact that P1

R can be re-
alised as the quotient of SL2(R) by an amenable subgroup, namely the upper
triangular matrices.) Thus the relation produced by Λ is not amenable.

On the other hand, the relation produced by Γ
∅

is amenable since it co-
incides with the relation produced by SL2(Z), which is amenable because
SL2(Z) is discrete in SL2(R), see [Zim84, 4.3.2].

At this point, the statement follows from Proposition 4.7. �

Note that Theorem 4.6 implies in particular Theorem IV for any count-
able ring Z � A < R.

There remains one issue, namely that the ring is not supposed countable
in Theorem IV. The remedy should be to consider Γ

∅
< H(A′) < H(A) for

some countable ring Z � A′ < A. The problem with this approach is that
given nested subgroups Γ < Λ1 < G, there is generally no implication be-
tween the co-amenability of Γ in Λ1 or in G. Indeed, examples to this end
can be found in [Pes03] and [MP03], as already mentioned in Example 4.4.

We can overcome this difficulty if we observe that (co-)amenability, being
an analytic property, is countably determined:

Proposition 4.8. Let Γ < G be a countable co-amenable subgroup of a group G.
For every countable Λ1 < G containing Γ , there is a countable subgroup Λ <

G containing Λ1 such that Γ is co-amenable in Λ.
If we are moreover given any cofinal family H of countable subgroupsH < G

which is closed under countable increasing unions, then we can choose Λ ∈H .

(Cofinal means that every countable subgroup of G is contained in some
H ∈H . In our case, H will consist of the groups of the form H(A).)

We note that Proposition 4.8 has a trivial converse:
Let H be a family as above and let Γ < G be a countable subgroup. Sup-

pose that for every countable Λ1 < G containing Γ there is Λ ∈H contain-
ing Λ1 such that Γ is co-amenable in Λ. Then Γ is co-amenable in G.

This directly follows from the definition of co-amenability (Definition 4.1)
by a compactness argument.

Proof of Proposition 4.8. We inductively construct an increasing sequence
of countable subgroups Λn < G, each enumerated as {λn,j : j ∈ N}, and a
sequence of functions vn ∈ `1(G/Γ ) such that∥∥∥λi,jvn − vn∥∥∥ < 1

n
‖vn‖ ∀ i, j ≤ n

holds for the quasi-regular (translation) G-representation on `1(G/Γ ). Sup-
posing Λn already given, the existence of vn follows from the co-amenability
of Γ in G (see e.g. [Eym72, p. 44]). We then define Λn+1 to be the subgroup
generated by the union of Λn and the pre-image in G of the support of vn,
noting that the latter is a countable set. If some H is given, we replace
Λn+1 by an element of H containing it.
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Define now Λ to be the union of all Λn. Since the support of every vn is
contained in Λ/Γ ⊆ G/Γ , any accumulation point of the sequence vn in the
space of means on `∞(G/Γ ) defines in fact a mean on `∞(Λ/Γ ). This mean
is Λ-invariant, thus verifying another equivalent characterisation [Eym72]
of the co-amenability of Γ in Λ. �

Proof of Theorem IV. Suppose for a contradiction that Γ
∅

is co-amenable in
G = H(A) for a ring Z � A < R. Let H be the family of all H(A′), where A′

ranges over all countable rings with Z � A′ < A. Let Λ1 =H(A′) be one such
group and let Λ = H(A′′) be the countable group given by Proposition 4.8.
Thus A′′ is a countable ring in A and SL2(A′′) is dense in SL2(R) because
A′ < A′′. Therefore, the co-amenability of Γ

∅
in Λ contradicts Theorem 4.6.

�

5. Additional comments

5.A. Breaking up smoothly and rationally. The breakpoint convention
chosen in [Mon13] to define H(A) has an aesthetic drawback in the case of
A = Z. Namely, the fixed points of hyperbolic elements are surds (solutions
of quadratic equations) while the fixed points of parabolic elements are
rational. In particular, the analogue of Lemma 2.1 does not hold in that
case.

Thus the Thompson group HQ(Z) and the group H(Z) are two different
subgroups of Γ

∅
(though H(Z) contains isomorphic copies of Thompson’s

group, see [Sta21]).

In addition to having rational breakpoints, the Thompson group HQ(Z)
exhibits another pleasant quality: since Z has no non-trivial positive unit,
these piecewise-projective elements are actually C1-smooth. This is the
maximal smoothness for breakpoints because projective transformations
are entirely determined by their C2-jet at any point. We could therefore
also ask to strengthen our non-amenability results for groups of C1-diffeo-
morphisms.

The method of proof employed above can indeed be adapted to this set-
ting; here is an example.

Theorem 5.1. The Thompson group HQ(Z) is not co-amenable in the group
HQ(Q) of piecewise-SL2(Q) homeomorphisms of the line with rational break-
points.

It is also not co-amenable in the smaller subgroupHC1

Q (Q) ofC1-diffeomorphisms.

All that is needed is to revisit the cut-and-paste of Proposition 2.2 and
perform a more cosmetic type of surgery:

Proposition 5.2. For every g ∈ SL2(Q) and x ∈ R with gx , ∞, there is a
piecewise-SL2(Q) homeomorphism h of R with breakpoints in Q and which co-
incides with g on a neighbourhood of x.

Furthermore, we can choose h to be a C1-diffeomorphism of R.
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Proof of Proposition 5.2. We first justify why we can take breakpoints in Q.
Thus, in the proof of Proposition 2.2, we want the fixed points ξ± of q0 to
be rational. Equivalently, the root

√
τ2 − 4 must be rational, recalling that

τ is the trace a+ d +nc.
The point is that we were completely free to choose n as long as we can

take |n| arbitrarily large and with a sign prescribed by the relative position
of gx and g∞. Since we work now in SL2(Q), we just need to show that
there are such n ∈Q with moreover

√
τ2 − 4 ∈Q.

The solution to this Diophantine problem was already know to Euclid
(see Book X, Proposition 29 in the Elements), as follows. Given any integer
N , let define n ∈ Q by n = (N + 1/N − a − d)/c. Then τ = N + 1/N and thus
τ2 − 4 = (N − 1/N )2 is indeed a square. Moreover, n can indeed be chosen
arbitrarily large of either sign simply by letting N ! ±∞ in Z.

We now turn to the C1 condition, which will require additional dissec-
tions to assemble a polytomous spline.

The only singularities introduced in the proof of Proposition 2.2 arise
from the two points ξ±, where q has breakpoints, transitioning from q0 to
the identity and back. The strategy is to smoothen q near one breakpoint
at the time, which is sufficient provided the modification can be done in a
small enough neighbourhood of the breakpoint. Since ξ± are rational and
SL2(Q) acts doubly transitively on the rational points of the projective line,
it suffices to prove the following claim:

For any ε > 0 and for any p0 ∈ SL2(Q) fixing 0 and ∞, there exists a C1-
smooth piecewise-SL2(Q) homeomorphism p1 of R with breakpoints in Q
and which coincides with the identity on (−∞,−ε] and with p0 on [ε,+∞).

The assumptions on p0 imply that it is given by a diagonal matrix, or
equivalently that there is a ∈ Q with p0(x) = a2x for all x; without loss of
generality, a > 0. Let ε1 > 0 be rational with ε1 ≤ ε,ε/a and define u ∈
SL2(Q) by

u =
1

a+ 1

(
2a ε1a(a− 1)

(1− a)/(ε1a) 2

)
(The conceptual explanation for this choice is that u is a unipotent, which
allows us to match derivatives.) We now define p1 as follows for x ∈ R:

p1(x) =


x if x ∈ (−∞,−ε1a],

u(x) =
2ax+ ε1a(a− 1)

(1− a)x/(ε1a) + 2
if x ∈ (−ε1a,ε1],

p0(x) = a2x if x ∈ (ε1,+∞).

Thus we only have to check that p1 is indeed a C1-smooth homeomor-
phism. Note first that the denominator in u(x) vanishes only at x = 2ε1a/(a− 1),
which is outside the interval (−ε1a,ε1] where u is applied. Now we turn to
the breakpoints, where p1 is continuous since u(−ε1a) = −ε1a and u(ε1) =
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a2ε1. Furthermore, computing

u′(x) =
(

(1 + a)aε1

(1− a)x+ 2aε1

)2

we find that u′(x) = 1 at x = −ε1a and u′(x) = a2 at x = ε1. This verifies that
p1 is a C1-smooth homeomorphism. �

Remark 5.3. If we consider h as a transformation of P1
R fixing ∞ rather

than as a transformation of R, then it remains true that h is C1. Indeed,
recall from the proof of Proposition 2.2 that h is just a translation in some
neighbourhood of ∞; this fact has not been altered by the smoothing op-
eration of the above proof. Thus h is projective (in particular smooth) in a
neighbourhood of∞ in P1

R.

Proof of Theorem 5.1. It suffices to exhibit a convex compact HQ(Q)-space
admitting a HZ(Q)-fixed point but no point fixed by the smooth group
HC1

Q (Q). Choose any prime p. Then the space of measurable maps P1
R !

Prob(P1
Qp

) will do. Indeed, Proposition 5.2 allows us to apply Proposi-
tion 3.6. Thus it suffices to show that SL2(Q) has no fixed point in K . This
follows from the case of its subgroup SL2(Z[1/p]) established in the proof
of Theorem 3.7. �

5.B. Organising the layers of non-amenability. This last section is purely
descriptive and is placed in the context of completely general topological
groups G and arbitrary subgroups of G.

We propose to consider some sort of “spectrum” Ġ recording the layers
of non-amenability to be found between subgroups G; in particular, Ġ will
be reduced to a point if and only if G itself is amenable.

Recall that given any two subgroups L,H < G, we say that L is co-amenable
to H relative to G if any (jointly continuous) convex compact G-space with
an L-fixed point has an H-fixed point.

We write L �G H , of simply L � H when the ambient group does not
vary. This is a pre-order relation.

We denote by Ġ the quotient of the set of all subgroups of G under the
equivalence relation associated to the pre-order �G. Thus Ġ is a poset and
we still denote its order relation by �G or �. We denote the equivalence
class of a subgroup H < G by [H]G ∈ Ġ, or simply [H].

It is sufficient to consider closed subgroups ofG because the closureH of
H inG satisfies [H] = [H]. Furthermore, [H] only depends on the conjugacy
class of H . For two subgroups H,L < G we trivially have

H < L =⇒ [H] �G [L].

In complete generality, Ġ admits an upper bound, [G], and a lower bound,
[1]. The former coincides with the set of all co-amenable subgroups of G,
while the latter coincides with the set of all relatively amenable subgroups



COMMENTS ON PIECEWISE-PROJECTIVE GROUPS 17

of G. (Relative amenability, defined in [CM14], boils down to amenability
in the case of discrete groups.)

In particular, Ġ is reduced to a point if and only if [G] = [1], which hap-
pens if and only if G is amenable. It can happen that Ġ consists precisely
of two points, e.g. when G is a non-amenable Tarski monster.

Regarding functoriality, we note that any morphism ϕ : G! H of topo-
logical groups induces a morphism of posets Ġ ! Ḣ , where for L < G the
point [L]G is mapped to [ϕ(L)]H . This follows immediately from pulling
back convex compact H-spaces to G-spaces via ϕ.

This map Ġ ! Ḣ is onto if G ! H is onto, but monomorphisms might
induce non-injections, for instance in the setting of Example 4.4. Indeed,
if L < G < H is such that L is co-amenable in H but not in G, then the
inclusion morphism G ! H maps the point [L]G ∈ Ġ to [L]H ∈ Ḣ , but we
have [L]G , [G]G and [L]H = [H]H = [G]H .

It would be interesting to find examples where Ġ can be completely de-
scribed (without being trivial). We expect that for most familiar discrete
groups this object is too large to be described, even though the case of
Tarski monsters shows that there are exceptions.

Theorem II can be reformulated as exhibiting a huge part of Ġ for vari-
ous piecewise-projective groupsG, as follows. The poset of all sets of prime
numbers is isomorphic to the poset of subgroup ΓS < H(Q). Then Theo-
rem II states that this uncountable poset is fully faithfully represented (as
a poset) into Ḣ(Q).

More generally, fixing S, we can consider the poset of all subsets T ⊆ S,
which again gives us a poset of subgroups which is uncountable as soon
as S is infinite. The non-co-amenability of various ΓT relative to H(Q) a
fortiori implies non-co-amenability relative to ΓS . Thus Theorem II implies:

Corollary 5.4. The canonical map T ! [ΓT ] is a fully faithful embedding of the
poset of all subsets T ⊆ S into Γ̇S . �

On the other hand we expect that non-discrete groups will provide more
tractable examples. For instance, what is Ġ for G = SLn(R) ?
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