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ABSTRACT. Let G be the homeomorphism group of a dendrite. We study the normal sub-
groups of G. For instance, there are uncountably many non-isomorphic such groups G that
are simple groups. Moreover, these groups can be chosen so that any isometric G-action on
any metric space has a bounded orbit. In particular they have the fixed point property (FH).

1. INTRODUCTION

This article investigates the class of groups G = Homeo(X) that appear as homeomor-
phism group of a dendrite X, recalling that a dendrite is a locally connected continuum with-
out simple closed curves.

Not much can be said unless we ask that the relationship between the group G and the
dendrite X has some substance: for instance, there exists complicated dendrites with triv-
ial homeomorphism group, and conversely the rather trivial “star” dendrite contains any
countable group in its homeomorphism group.

We shall therefore focus on dendro-minimal dendrites, namely dendrites X that do not ad-
mit a proper sub-dendrite Y ⊆ X invariant under G = Homeo(X).

Our main goal is to relate the properties of G, as an abstract group, with those of the
topological space X. Inbetween these two worlds, we can also consider G as a topological
transformation group and hence as a Polish group.

We start with some evidence that this whole entreprise has content:

Theorem 1.1. There is a family of 2ℵ0 dendro-minimal dendrites such that the corresponding groups
are pairwise non-isomorphic simple groups.

We prove Theorem 1.1 with the explicit family of generalised Ważewski dendrites DS, where
S is an arbitrary non-empty subset of {3, 4, . . . , ∞}. These classical dendrites are charac-
terised by the fact that the order of every branch point lies in S and that such branch points
are arcwise dense in DS for every order in S.

For the non-isomorphy statement of Theorem 1.1, we shall prove that Homeo(DS), as a
group, determines the set S. This can also be deduced from Rubin’s deep Reconstruction
Theorem [Rub89] but we provide a direct proof (see Section 7 for a discussion).

By contrast, the simplicity statement of Theorem 1.1 results from a general analysis of the
normal subgroups of G = Homeo(X) for all dendro-minimal dendrites X. A first distinction
to make is whether X contains a free arc, namely an embedded copy I ∼= [0, 1] of an interval
whose interior is open in X. This produces a copy in G of the orientation-preserving group
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Homeo+([0, 1]) and it turns out that G can be decomposed as a permutational wreath prod-
uct over the set Free(X) of all maximal free arcs, see Section 3 for exact definitions for the
following:

Proposition 1.2. Let X be a dendro-minimal dendrite. Suppose that X admits some free arc (but is
not reduced to an arc). Then

Homeo(X) ∼= ∏
I∈Free(X)

Homeo+(I) oAut(Free(X)).

For the analysis of the normal subgroups of G = Homeo(X) with X general, consider
the normal subgroup GEnds C G generated by all stabilisers of end points of X, and likewise
GBrC G the group generated by all stabilisers of branch points.

Theorem 1.3. Let X be any dendro-minimal dendrite not reduced to an arc. Then GEnds = G.
Moreover, any subgroup normalised by GBr either contains GBr or fixes Ends(X) pointwise.

This will imply the following simplicity statements.

Corollary 1.4. Let X be any dendro-minimal dendrite.
If X has no free arc, then GBr is a simple group.
If X admits some free arc (but is not reduced to it), then the image of GBr in Aut(Free(X)) is a

simple group.

The approach of the present article is in a sense opposite to our approach in [DM16], where
we studied obstructions for group actions on dendrites. There, we took the external view-
point of representing some other group into G. Several of these results pointed to analogies
with negative curvature, especially with results for isometric actions on trees. However, to
stress how different the topological setting of dendrites can be, we proposed the following
problem:

Find a Kazhdan group with a non-elementary action on a dendrite.
Such a group would have a fixed point for any isometric action on a tree, or on a complete
R-tree.

Currently we do not have such an example if Kazhdan group is understood in the context of
abstract groups, which must then be finitely generated. We do however have many examples
with property (FH), i.e. the fixed-point property for isometric actions on Hilbert spaces. The
latter property is precisely the consequence of Kazhdan’s property which forbids actions on
trees and on R-trees. It is moreover equivalent to Kazhdan’s property for countable groups.

In fact the next result is much stronger than property (FH) and shows that the dendrites
DS are strongly allergic to the very idea of any metric structure.

Theorem 1.5. Let S be a non-empty subset of {3, 4, . . . , ∞}. Then any isometric action of Homeo(DS)
on any metric space has a bounded orbit.

In particular, the group Homeo(DS) has property (FH).

Another way to come close to an answer to the problem of Kazhdan groups is to consider
Homeo(X) with its natural topology as a homeomorphism group. We can then use a result of
Evans–Tsankov [ET16] and deduce that certain dendrite groups even have the strong version
of Kazhdan’s property, namely admit a finite Kazhdan set.

Theorem 1.6. Let S be a finite non-empty subset of {3, 4, . . . , ∞}.
Then the Polish group Homeo(DS) has the strong Kazhdan property (T).
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Location of the proofs. The simplicity proof for Theorem 1.1 is completed in Corollary 6.4
and the non-isomorphy is Corollary 7.4. Proposition 1.2 is contained in Theorem 3.4. Theo-
rem 1.3 follows from Theorems 4.1 and 4.4. Corollary 1.4 is then deduced as Corollaries 4.5
and 4.6. Theorem 1.5 occurs as Corollary 6.12 below, and Theorem 1.6 as Corollary 6.9.
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2. PRELIMINARIES

A general reference for dendrites is §10 in [Nad92]. We shall also use the basic properties
of elementary and dendro-minimal actions on dendrites as discussed in [DM16]. We now recall
some of the background but refer to the above references for the points not justified below.

2.A. Dendrites. In the case of a dendrite X, the Menger–Urysohn order of a point x ∈ X
is simply the cardinality of the set of components of X \ {x}. The points of order one, two
or≥ 3 form respectively the sets Ends(X) of end points, Reg(X) of regular points and Br(X) of
branch points. For 3 ≤ n ≤ ∞, we write Brn(X) for the set of points of order n. The set Br(X)
is always countable, Reg(X) is arcwise dense and uncountable, and Ends(X) is non-empty
(assuming X is not reduced to a point).

If Y ⊆ X is a non-empty closed connected subset (thus a sub-dendrite), then there exists a
canonical continuous retraction X → Y called the first-point map.

Any pair of points x, y is connected by a unique topological arc in X, denoted [x, y]. A
free arc is an arc, not reduced to a point, whose interior is open in X. Since X is a dendrite,
it is equivalent to ask that the interior of the arc contains no branch point. Any free arc is
contained in a maximal free arc; we denote by Free(X) the set of all maximal free arcs of X,
which is a countable set. Two maximal free arcs meet at most at a common extremity, which
is then a branch point. The following are equivalent, provided X is not reduced to a point:
X has no free arc; Br(X) is dense in X; Ends(X) is dense in X.

Any continuous self-map of a dendrite has a fixed point. A non-trivial arc I = [x, y] in X
is austro-boreal for a given homeomorphism g ∈ Homeo(X) if the intersection of the fixed-
point set of g in X with I is {x, y}. In that case, g preserves I and its action on I \ {x, y} is
conjugated to a translation action on R.

The following lemma can be deduced e.g. from [KW30, §12].

Lemma 2.1. Let d be a metric inducing the topology of the dendrite X. For every ε > 0, there is a
finite set F such that the components of X \ F have d-diameter less than ε. �
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It could alternatively be deduced from the following special case of [Why42, V.2.6], which
we shall also need below.

Lemma 2.2. Any sequence of disjoint connected subsets of a dendrite is a null-sequence, i.e. the
diameter of its members tends to zero for any compatible metric. �

Remark 2.3. The set F of Lemma 2.1 can moreover be taken to belong to any given arcwise
dense subset of X. Indeed, if F0 is as in the lemma but for some ε0 < ε/2, then any set F
containing a point in [x, y] for all distinct x, y ∈ F0 will satisfy the condition for ε. On the
other hand, one cannot restrict F to lie in a subset that is merely dense, as evidenced by
dendrites with a dense set of ends.

2.B. Topologies on Homeo(X). A natural topology on the homeomorphism group Homeo(X)
of a dendrite X is the topology of uniform convergence. With this topology, Homeo(X) is
a Polish group (see e.g. [Kec95, §9.B.9]). When X has no free arcs, a homeomorphism is
completely determined by its action on Br(X) since Br(X) in dense is X. In particular, there
is a faithful representation Homeo(X) → Sym(Br(X)), where Sym is used to denote the
group of all permutations of a given set. Since the set of branch points Br(X) is countable,
Sym(Br(X)) is a Polish group for the pointwise convergence. This gives a priori two topolo-
gies on Homeo(X); in fact they coincide.

Proposition 2.4. If X is a dendrite without free arcs, the homomorphism Homeo(X)→ Sym(Br(X))
is a homeomorphism onto its image.

In particular, Homeo(X) embeds as a closed subgroup of Sym(Br(X)).

Since Homeo(X) is a closed subgroup of Sym(Br(X)), it implies in particular that it is a to-
tally disconnected group; more precisely, its open subgroups form a neighbourhood system
for the identity.

Proof. We first show that the topology induced from Sym(Br(X)) is finer than the uniform
topology. The pointwise stabiliser in Homeo(X) of a finite set F ⊆ Br(X) as in Lemma 2.1
permutes the components of X \ F. Let F′ ⊇ F be a finite set containing also a point of each of
these components. Then the pointwise stabiliser of F′ preserves each connected component
of X \ F and therefore is ε-close to the identity in the uniform metric.

Conversely, let (gn) be a sequence in Homeo(X) converging to the identity in the uniform
topology. For any b ∈ Br(X), we choose x1, x2, x3 in distinct components of X \ {b}. Since
the connected components of X \ {b} are open, we know that gn(xi) and xi belongs to the
same component for n large enough. Since b is the only point in [y1, y2]∩ [y2, y3]∩ [y3, y1] for
any choice of elements yi in the corresponding components, gn(b) = b follows.

Finally, the image of Homeo(X) in Sym(Br(X)) is closed because it is Polish, see Exer-
cise 9.6 in [Kec95]. �

2.C. Separating subsets. The following elementary disjunction is Lemma 4.3 in [DM16].

Lemma 2.5. Let G be a group with a dendro-minimal action on a dendrite X. For any proper sub-
dendrite Y ⊆ X there is g ∈ G such that gY ∩Y = ∅. �

The proof given in [DM16] was as follows: if gY ∩ Y were never empty, then by a basic
Helly theorem the intersection of gY over all g ∈ G would be non-empty, contradicting
dendro-minimality.

We shall use the following strengthening of Lemma 2.5.
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Lemma 2.6. Let G be a group with a dendro-minimal action on a dendrite X.
For any proper sub-dendrites Y, Y′ ⊆ X there is g ∈ G such that gY ∩Y′ = ∅.

Proof. We can assume that Y meets Y′ since otherwise g = e will do. Therefore, Y ∪ Y′ is a
sub-dendrite of X. If this sub-dendrite is proper, then Lemma 2.5 applied to Y ∪Y′ provides
g with g(Y ∪ Y′) ∩ (Y ∪ Y′) = ∅ and a fortiori gY ∩ Y′ = ∅. Therefore we can assume
Y ∪ Y′ = X. Now Lemma 2.5 yields g1 with g1Y ∩ Y = ∅ and hence g1Y ⊆ Y′. One last
application of that lemma gives us g2 with g2Y′ ∩Y′ = ∅. We conclude that g = g2g1 satisfies
gY ⊆ g2Y′ ⊆ X \Y′ as was to be shown. �

A minor variation of Lemma 2.6 is as follows.

Corollary 2.7. Let G be a group with a dendro-minimal action on a dendrite X.
For any connected set Z ⊆ X that is not dense, any point p ∈ X and any component C of X \ {p},

there is g ∈ G such that gZ ⊆ C.

Proof. The complement Y′ = X \ C is a proper sub-dendrite and we can therefore apply
Lemma 2.6 with Y = Z. �

We record a more technical variant of Corollary 2.7.

Lemma 2.8. Let G be a group acting dendro-minimally on a dendrite X. Let I ⊆ X be an arc and b
be a branch point in the interior of I. Let x ∈ X and let Y be a component of X \ {x}.

Then there is g ∈ G with gI ⊆ Y such that the image of x under the first-point map to gI is gb.

Proof. Upon replacing g by g−1, the task is to find g ∈ G such I ⊆ gY and b is the retraction
of gx on I. Let p be a regular point on an arc branching off from I at b, let C be the component
of X \ {p} not containing b and denote by Z the dendrite {x} ∪ (X \ Y). Then it suffices to
have gZ ⊆ C, which is possible by Corollary 2.7. �

2.D. Patchwork. The following patchwork for homeomorphisms fails already if we replace
dendrites by a disc.

Lemma 2.9. Let U be a family of disjoint open connected subsets of a dendrite X and let ( fU)U∈U

be a family of homeomorphisms fU ∈ Homeo(U) for U ∈ U . Suppose that each fU can be extended
continuously to the closure U by the identity on the boundary U \U.

Then the map f : X → X given by fU on each U ∈ U and the identity everywhere else is a
homeomorphism.

Proof. By compactness, it suffices to prove that there cannot be a sequence xn → x in X such
that f (xn) converges to some y 6= f (x). If there is such a sequence, then each U ∈ U contains
xn for at most finitely many indices n. Moreover, upon extracting we can assume that each
xn belongs to some Un ∈ U . By the previous observation, we can assume that all Un are
distinct and hence they form a null-sequence by Lemma 2.2. Since f (xn) = fUn(xn) belongs
also to Un, we conclude that f (xn) converges to f (x), contrary to our assumption. �

2.E. Uniform structure. Like any compact space, a dendrite admits a unique compatible
uniform structure.

Lemma 2.10. For any dendrite X, the sets

UF = {(x, y) ∈ X2 : |[x, y] ∩ F| ≤ 1}
form a basis of the uniform structure as F ranges over all finite subsets of X. Moreover, one can
restrict F to belong to any arcwise dense subset of X.
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Proof. These sets belong to the uniformity associated to the compact topology, i.e. they are
neighbourhoods of the diagonal in X× X: this follows from the fact that X is locally arcwise
connected (like any Peano continuum [Nad92, 8.25]). In order to prove that they form a
basis, choose a compatible metric d on X and ε > 0. Let F be a finite set as provided by
Lemma 2.1; we can assume that F is in a given arcwise dense subset by Remark 2.3. If now
(x, y) ∈ UF, then [x, y] \ F has at most two components and thus d(x, y) ≤ 2ε. �

2.F. Permutational wreath products. We begin with a result about Cartesian products.

Lemma 2.11. Suppose that the direct product P = ∏N∈N N of a family N of groups acts on a
dendrite. If each N ∈ N has fixed points, then so does P.

Proof. By a compactness argument, we can choose a minimal P-invariant sub-dendrite Y ⊆
X. Each N has fixed points in Y since the first-point map X → Y is P-equivariant by its
naturality. Since P normalises N it follows that [Y∩Fix(N)] is a P-invariant sub-dendrite and
hence [Y ∩ Fix(N)] = Y. It follow that Ends(Y) is contained in Fix(N) by [DM16, Lemma
2.3]. Since this holds for each N ∈ N , we conclude that P fixes Ends(Y). �

Proposition 2.12. Let N be a group without index two subgroup and let C be a set of cardinality
3 ≤ |C | ≤ ℵ0. Then every action of the full permutational wreath product

H = NC o Sym(C )

on a dendrite has a fixed point.

Proof. Let X be a dendrite with an H-action. Since NC is a product, one of its factors must
act elementarily on X by Corollary 4.6 in [DM16] (that reference considers products of two
factors, but the general case follows at once). Since N has no index two subgroup, elemen-
tarity means that this factor fixes a point in X. Since all factors of NC are conjugated in H,
they all fix some point. Therefore, NC has a fixed point by Lemma 2.11.

We consider first the case where C has finite size n ≥ 3. Then H has a finite orbit and
hence acts elementarily. If H does not fix a point, it preserves some arc I ⊆ X and admits
an index two subgroup H′ preserving the orientation of I. We claim that H′ is NC oAlt(n).
Since N has no index two subgroup, it suffices to check that Alt(n) is the only index two
subgroup of Sym(n), or equivalently that it has no index two subgroup itself. Indeed, for
n 6= 4 it is simple (of order 6= 2) and for n = 4 its only proper normal subgroup has index
three. This proves the claim.

Since the group of orientation-preserving homeomorphisms of an interval contains no
non-trivial finite subgroup, the image of Alt(n) in Homeo+(I) is trivial. There is an element
σ ∈ Sym(n) reversing the orientation of I; note that σ has a necessarily unique fixed point
p in the interior of I. It suffices to prove that every factor N1

∼= N of NC fixes p. If not,
then for some g ∈ N1 we have gp > p with respect to a choice of an orientation of I. Then
σgσ−1 p = σgp < p. On the other hand, Alt(n) acts transitively on C since n ≥ 3. Therefore
there is τ ∈ Alt(n) with τgτ−1 = σgσ−1. It follows τgτ−1 p < p, which contradicts gp > p
since τ acts trivially on I.

We now consider the case where C is infinite countable. Denote by Symf(C ) the normal
subgroup of finitely supported permutations of C and by Altf(C ) its alternating subgroup.
Since Symf(C ) is an amenable group and since NC fixes a point, Lemma 6.1 in [DM16]
implies that NC o Symf(C ) acts elementarily. Let thus I ⊆ X be an invariant arc; note
that NC fixes a point of I, namely the image of any fixed point under the first-point map
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X → I. As above, Altf(C ) acts trivially on I, being an increasing union of Alt(n). Therefore,
NC oAltf(C ) fixes a point. The non-empty set K ⊆ X of points fixed by NC oAltf(C ) is
closed, and therefore it is a compact metrisable space. It is H-invariant and the H-action on
K descends to an action of Sym(C )/ Altf(C ). If we endow Sym(C ) with its Polish topology,
the subgroup Altf(C ) is dense. However, Kechris–Rosendal have proved that any action of
Sym(C ) on a compact metrisable space is continuous for this topology, see Theorem 1.10
in [KR07]. Therefore, the Sym(C ) action on K is trivial and H fixes every point of K. �

We record the following for later use.

Lemma 2.13. Let N be any group and let C be an infinite countable set. Then the group

H = NC o Sym(C )

has no index two subgroup.

Proof. Schreier–Ulam proved in [SU33, §1.7] that the only proper normal subgroups of Sym(C )
are Symf(C ) and Altf(C ). Therefore, an index two subgroup of H would have to be of the
form Mo Sym(C ), where MC NC is of index two and Sym(C )-invariant. In particular, for
every y ∈ NC and every σ ∈ Sym(C ), we have yσy−1 ∈ M. Let now z be an arbitrary
element of NC . It suffices to express z as yσy−1. To this end, we take σ to be the shift under
identifying C with Z. We can now define y = (yn)n∈Z inductively by taking y0 arbitrary and
setting yn = zn−1yn−1 for n > 0 and yn = z−1

n yn+1 for n < 0. �

2.G. The generalised Ważewski dendrites DS. Let S be a non-empty subset of {3, 4, . . . , ∞};
here ∞, standing for “not finite”, will in fact be the cardinal ℵ0. There exists a dendrite, not
reduced to a point, whose branch points all have orders in S and with the following property:
for every n ∈ S, every arc contains an element of order n. It follows that Brn(DS) is arc-
wise dense. The existence of such a dendrite can be proved for instance by an inverse limit
construction following the procedure given in [Nad92, 10.37] for the special case S = {∞}.
In fact, such a dendrite is unique up to homeomorphism by Theorem 6.2 in [CD94]. It is
called the generalised Ważewski dendrite DS. The uniqueness implies:

Lemma 2.14. Every non-trivial sub-dendrite of DS is homeomorphic to DS. �

We point out that Ends(DS) is uncountable. Indeed, it has no isolated points and it is
Polish since it is a dense Gδ in DS. The latter is the case because its complement can be
written as the union of all arcs [x, y] where x, y range over the countable set Br(DS).

3. NORMAL SUBGROUPS FROM FREE ARCS

There are several natural normal subgroups of Homeo(X) related to free arcs: we define

Fix(Free(X)) < Stab+(Free(X)) < Stab(Free(X))

to consist of the homeomorphisms for which every I ∈ Free(X) is fixed pointwise, respec-
tively preserved together with its orientation, respectively just preserved.

Furthermore, we denote by Fix(Ends(X)) the normal subgroup of Homeo(X) consisting
of the elements that fix every end of X.

Proposition 3.1. Let X be a dendrite admitting some free arc.
Then the group Fix(Ends(X)) is contained in Stab+(Free(X)) and we have a decomposition

Stab+(Free(X)) = Fix(Free(X)) × Fix(Ends(X)).
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Moreover, the restriction maps to Homeo(I) induce an isomorphism

Fix(Ends(X)) ∼= ∏
I∈Free(X)

Homeo+(I).

Proof. We claim that Fix(Ends(X)) fixes every branch point p of X. Indeed, there exists three
arcs meeting only at p; by a maximality argument, the other extremity of each of those can
be taken to be an end of X. Any homeomorphism fixing these three ends fixes p, whence the
claim. Since any extremity of a maximal free arc is either an end, or a branch point, or a limit
of branch points, the claim shows already that Fix(Ends(X)) is contained in Stab+(Free(X)).

Next, we claim that the two normal subgroups Fix(Ends(X)) and Fix(Free(X)) intersect
trivially; hence they commute and generate their direct product. For this we need to show
that any homeomorphism in their intersection fixes every regular point of X. This is the case
by the previous claim since any regular point either is a limit of branch points or is contained
in a free arc.

Finally, we consider the restriction morphism from Stab+(Free(X)) to ∏I∈Free(X) Homeo+(I),
whose kernel is exactly Fix(Free(X)); in particular it is injective on Fix(Ends(X)). On the
other hand this map is surjective when restricted to Fix(Ends(X)) because of Lemma 2.9
applied to the interiors of all I ∈ Free(X). Both isomorphisms of Proposition 3.1 follow. �

Proposition 3.2. Let X be a dendrite admitting some free arc.
If X is dendro-minimal, then the union of all maximal free arcs is dense in X.

Proof. It suffices to prove that any branch point p ∈ X is a limit of points belonging to free
arcs. Choose q 6= p; we can assume that [p, q] contains a sequence (pn) of distinct branch
points pn converging to p because otherwise p would bound a free arc in [p, q]. Let cn be a
component of X \ {pn} not containing p nor q. Then all cn are pairwise disjoint and therefore
form a null-sequence by Lemma 2.2. It remains only to observe that each cn contains a free
arc; this follows from Corollary 2.7, choosing Z to be some free arc. �

Corollary 3.3. Let X be a dendrite admitting some free arc. If X is dendro-minimal, then

Stab+(Free(X)) = Fix(Ends(X)) ∼= ∏
I∈Free(X)

Homeo+(I).

Furthermore,
Stab(Free(X)) = Stab+(Free(X))

unless X is reduced to an arc.

Proof. By Proposition 3.2, the group Fix(Free(X)) is trivial. Therefore, the first statement
follows from Proposition 3.1.

It remains to justify that every element g of Stab(Free(X)) preserves the orientation of any
I ∈ Free(X) unless X = I. Thus we can assume that at least one extremity p of I is not an end
of X. Therefore, there is a component c of X \ {p} which does not meet I. By Corollary 2.7,
c contains a maximal free arc J, namely an image of I. Since g preserves J and I, it cannot
permute the extremities of I. �

Define Aut(Free(X)) to be the image of Homeo(X) in the permutation group of the count-
able set Free(X); in other words,

Aut(Free(X)) = Homeo(X)/ Stab(Free(X)).
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Theorem 3.4. Let X be a dendrite admitting some free arc, but not reduced to an arc.
If X is dendro-minimal, then Homeo(X) admits a semi-direct product decomposition

Homeo(X) ∼= Fix(Ends(X)) oAut(Free(X))

and hence it is the permutational wreath product

Homeo(X) ∼= ∏
I∈Free(X)

Homeo+(I) oAut(Free(X)).

Proof. We choose for each I ∈ Free(X) a homeomorphism αI : [0, 1] → I. We further choose
an involution τ of [0, 1] that exchanges the end-points.

If now g is an arbitrary element of Homeo(X), we define for I ∈ Free(X) the involution τ
g
I

of [0, 1] to be trivial if gαI and αgI give the same orientation to gI and to be τ otherwise. This

can be written more obscurely as τ
g
I = τα−1

gI gαI(0); in any case, we have the cocycle relation
τ

g1g2
I = τ

g1
g2 Iτ

g2
I . We define furthermore the map f g

I on I by f g
I = αI ◦ τ

g
I ◦ α−1

gI ◦ g|I . Then
f g
I is in Homeo+(I). Therefore, Proposition 3.1 ensures that there is f g ∈ Fix(Ends(X))

with f g|I = f g
I for all I ∈ Free(X). We can therefore define an element g ∈ Homeo(X) by

g = g ◦ ( f g)−1.
The cocycle relation for τ

g
I shows that the assignment g 7→ g is a group homomorphism.

More precisely, this holds by construction when we evaluate on any point in a free arc and
thus everywhere since the union of all free arcs is dense by Proposition 3.2.

This homomorphism is trivial on Stab(Free(X)). Indeed, any g in that group preserves
the orientation of every free arc since X is not an arc, see Corollary 3.3. Therefore the con-
struction of f g

I shows that f g
I = g|I , hence g is trivial. In conclusion, the morphism g 7→ g

provides a section from Aut(Free(X)) to Homeo(X) because f g is in Fix(Ends(X) which
coincides with Stab(Free(X)) by Corollary 3.3.

Finally, the wreath product statement follows from the naturality of the isomorphism be-
tween Fix(Ends(X)) and ∏I∈Free(X) Homeo+(I). �

4. NORMAL SUBGROUPS FROM STABILISERS

Let X be an arbitrary dendrite. A priori there is a number of natural normal subgroups
of Homeo(X) associated to point stabilisers. Just to keep the arguments below more legible,
we temporarily write G = Homeo(X) and introduce the following notation: GBr, GEnds
and GReg are the subgroups of G generated by all stabilisers of branch points, respectively
of end points and regular points. Similarly, GArc denotes the subgroup generated by all
pointwise stabilisers of non-trivial arcs, and GComp by all pointwise stabilisers of connected
components of the complement of points.

All these are closed normal subgroups of G.

Theorem 4.1. Let X be any dendro-minimal dendrite not reduced to an arc. Then

GArc = GBr = GComp < GReg < GEnds = G.

In fact, the first two equalities above are basic and more general:

Lemma 4.2. For any dendrite not reduced to a point, GArc = GBr = GComp < GEnds ∩ GReg.

Proof of Lemma 4.2. By definition, we have GComp < GArc ∩GBr ∩GEnds ∩GReg. We first claim
that GBr < GComp. Let thus g ∈ G fix a branch point x. We define a homeomorphism h that
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coincides with g on some component C of X \ {x}, that coincides with g−1 on gC and is the
identity elsewhere. Since X \ {x} has at least three connected components, h ∈ GComp. Now,
g = (gh−1)h and gh−1 fixes C pointwise. Therefore, g ∈ GComp. This proves the first claim
and hence GBr = GComp.

Our second claim is that any element g fixing a regular point r without exchanging the
two components C1, C2 of X \ {r} belongs to GComp. Indeed, g can then be written g = g1g2
where gi fixes pointwise Ci and acts as g does on the other component.

This second claim implies in particular GArc < GComp and thus GArc = GComp. �

Proof of Theorem 4.1. We claim that any element g ∈ G which admits an austro-boreal arc
belongs to GEnds. Indeed, this is the case if an extremity of such an arc is an end of X,
but also if it is a branch point since GBr < GEnds by Lemma 4.2. If on the other hand the
extremities are regular points, then g cannot exchange the corresponding components since
it preserves the arc. Thus we conclude again g ∈ GComp < GEnds, this time by the second
claim of the proof of Lemma 4.2.

Our main goal is to prove GReg < GEnds. It suffices to consider an element g ∈ G which
fixes a regular point r and exchanges the components C1, C2 of X \ {r}. By Theorem 10.5
in [DM16], G contains an element h admitting an austro-boreal arc I. By Lemma 2.8, we can
assume, after conjugating h, that I lies in C2 and that the first-point map sends r to some
branch point b in the interior of I.

We shall now prove that hg ∈ GEnds, which implies indeed g ∈ GEnds since h ∈ GEnds by
the above claim. We know that hg fixes some point p ∈ X. Given what we have established
so far, the only problematic case is if p is a regular point and if moreover hg permutes the
components of X \ {p}. We shall prove by contradiction that this cannot happen.

Indeed, in that case p is the only fixed point of hg and, moreover, for every x ∈ X the arc
[x, hgx] contains p. We first apply this observation to x = hb ∈ I. Then the arc [x, hgx] starts
from hb, crosses hr and ends in hC1. Our assumption on the respective position of I and r
shows that this entire arc projects to hb under the first-point map X → I. We now apply the
observation to x = (hg)−1b ∈ C1. This time the arc [x, hgx] starts in C1, crosses r and ends at
b. Therefore, this arc projects to b under the first-point map X → I. It follows that the two
arcs do not intersect, a contradiction.

At this point we know that both GBr and GReg are contained in GEnds; since any homeo-
morphism of X must fix some point, it follows that G = GEnds. �

Lemma 4.3. Let X be a dendrite and let N, H be subgroups of Homeo(X).
Suppose that H acts dendro-minimally on X and normalises N. Then either N acts dendro-

minimally on X or N fixes Ends(X) pointwise.
In particular, if X has no free arc, then any non-trivial normal subgroup of a dendro-minimal

subgroup of Homeo(X) is dendro-minimal as well.

Proof. If N has no fixed point in X, then there is a unique minimal N-invariant sub-dendrite
Y in X, see Remark 4.2 in [DM16]. Since H normalises N, it preserves Y and thus Y = X.

If on the other hand N has a fixed point x ∈ X, then the H-orbit of x consists of N-
fixed points, and hence so does its closure. This closure contains Ends(X) by Lemma 4.4
in [DM16].

The additional statement follows from the fact that Ends(X) is dense in X if X has no free
arc (see e.g. [DM16, 4.7]). �
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Theorem 4.4. Let X be any dendro-minimal dendrite not reduced to an arc. Let N < G =
Homeo(X) be any subgroup normalised by GBr.

Then either N contains GBr or N fixes Ends(X) pointwise.

If X has no free arc, we deduce:

Corollary 4.5. Let X be any dendro-minimal dendrite without free arc.
Then GBr is a simple group. �

If on the contrary X admits some free arc, then we appeal to Theorem 3.4 and deduce:

Corollary 4.6. Let X be any dendro-minimal dendrite with a free arc but not reduced to this arc.
Then the image GBr

/
Fix(Ends(X)) of GBr in Aut(Free(X)) is a simple group. �

The proof of Theorem 4.4 uses an idea of Tits from [Tit70], in the following setup. Let I
be an arc of a dendrite X. For any point t of I, denote by Xt(I) the preimage of t under the
first-point map X → I. Thus, if Xt(I) is not reduced to {t}, then t is either a branch point or
an extremity of I. For any space Y and any t ∈ Y, we denote by Homeot(Y) the stabiliser of
t in Homeo(Y).

Lemma 4.7. In the above notation, suppose we are given ht ∈ Homeot(Xt(I)) for each t ∈ I. Then
there is h ∈ Fix(I) such that h|Xt(I) = ht for all t ∈ I.

Proof. Whenever Xt(I) is not reduced to {t}, it is the closure of the set Xt(I) \ {t}, which
is the union of the components of X \ {t} that do not meet I. Therefore, the lemma is a
particular case of Lemma 2.9. �

Proof of Theorem 4.4. Assume that N does not fix Ends(X) pointwise. Two applications of
Lemma 4.3 show that N acts dendro-minimally on X because N is normalised by GBr which
is normal is G. Since GBr = GComp, it suffices to show that every g ∈ G fixing pointwise a
component Y of X \ {x} for some x ∈ X belongs to N.

We know from Theorem 10.5 in [DM16] that N contains an element n admitting and
austro-boreal arc I = [y, z]. By Lemma 2.8, we can assume, upon conjugating n within
N, that I lies in Y and that the image b of x under the first-point map to I is some branch
point in the interior of I.

The proof will be complete if we express g as g = [h, n] = hnh−1n−1 for some element h
of GArc = GBr, since then g = (hnh−1)n−1 ∈ N.

This element is provided by Lemma 4.7 as follows. Recall that the n-action on I \ {y, z} is
free by definition of austro-boreal arcs. We set ht to be the identity unless t = nkb for some
k ≥ 0. In that case, we set hnkb = nkgn−k, which defines indeed a homeomorphism of Xnkb(I)
fixing nkb. Now the identity g = [h, n] holds by construction, finishing the proof. �

We close this section with an observation about individual homeomorphisms fixing an
end point.

Lemma 4.8. Let g be a homeomorphism of a dendrite X not reduced to a point.
If g fixes an end point, then g fixes at least two points.

Proof. Let x be a g-fixed end point and let y be any other point. We denote by z ∈ [x, y] the
point at which [x, y] branches away from [x, gy]. Now gz belongs to [x, gy] and thus either
[x, gz] ⊆ [x, z] or [x, z] ⊆ [x, gz]. Upon replacing g by g−1 and y by gy, we may assume that
we are in the second case. Then the closure of

⋃
n∈N[x, gnz] is a non-trivial arc whose end

points are g-fixed. �
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5. SEMI-LINEAR ORDERS

The goal of this section is to relate dendrites to the classical theory of semi-linear or-
ders. This relation being fruitful in both directions, we investigate it slightly beyond what
is strictly needed for the results of the introduction. We begin by recalling some standard
notions about orders:

Let (T,≤) be an ordered set. A subset is a chain if it is linearly (=totally) ordered. One
writes x↓ = {y : y ≤ x} and x↑ = {y : y ≥ x}. An order is dense if for all x, y with x < y
there is t with x < t < y. More generally, a subset T0 ⊆ T is order-dense in T if for all x, y ∈ T
with x < y there is t ∈ T0 with x < t < y. A subset T0 ⊆ T is coinitial in T if for all x ∈ T
there is y ∈ T0 with y ≤ x.

Definition 5.1. An ordered set (T,≤) is (lower) semi-linear if the following two axioms hold:
T is downwards directed: ∀x, y ∃s : s ≤ x, y;
for all x ∈ T, the set x↓ is a chain.

Observe that any coinitial subset of a semi-linear order is still semi-linear.

The definitions are readily checked in the following example:

Example 5.2. Let X be a dendrite and z ∈ X an end of X. Then the relation defined on X by

x ≤ y⇐⇒ [z, x] ⊆ [z, y]

is a dense semi-linear order.
More generally, any subset T ⊆ X that is arcwise dense (in the topological sense) is order-

dense in (X,≤) and is a semi-linear order. (Although T is not coinitial in X if z /∈ T, it is then
coinitial in X \ {z}, which is still a semi-linear order.)

The main purpose of this section is to construct and study a functor reverting Example 5.2:
to any semi-linear order T, we shall associate a “completion” T̂ containing it. Under natural
assumptions, T̂ will be a dendrite inducing the given order on T. See Remark 5.12 for the
relation to known completions.

Definition 5.3. Let (T,≤) be a semi-linear order. We define the ordered set (T̂,≤) to be the
set of all full down-chains of T endowed with the inclusion order (induced from the set of all
subsets of T). Here a chain C ⊆ T is a down-chain if x↓ ⊆ C for all x ∈ C. It is called full if it
contains its supremum or has no supremum in T.

Recall that for a subset S of an ordered set T, an element s ∈ T is a supremum of S in T if
it is an upper bound for S and if s ≤ s′ for every upper bound s′ ∈ T for S. In particular, a
supremum is unique if it exists; it is sometimes denoted by ∨S. We should however remem-
ber that the definition depends on T since S might not have a supremum anymore in a larger
ordered set containing T. The infimum is defined dually.

Remark 5.4. The empty set has a supremum in a semi-linear order T if and only if T admits
a (necessarily unique) minimal element t. In that case, {t} is a unique minimal element of T̂.
On the other hand, T admits no minimum if and only if ∅ ∈ T̂. In that case, ∅ is a unique
minimal element of T̂.

Thus, in any case T̂ admits a unique minimum; this will turn out to be our end z.

The definitions imply readily the following.
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Lemma 5.5. Let (T,≤) be a semi-linear order. Then the map

T −→ T̂, x 7−→ x↓
is well-defined, injective, and realizes T as a subset of T̂ with the same induced order. �

Lemma 5.6. Let (T,≤) be a semi-linear order. Then (T̂,≤) is a semi-linear order too.

Proof. The ordered set T̂ is downwards directed since it has a minimum by Remark 5.4. For
the other axiom, we pick C ∈ T̂ and need to check that C↓ is a chain in T̂. This holds because
the collection of down-chains in any chain is linearly ordered by inclusion. �

Recall that an ordered set is ∨-complete if every non-empty subset admits a supremum;
∧-completeness is defined dually.

Proposition 5.7. Let (T,≤) be a semi-linear order. Then (T̂,≤) is ∧-complete.
Moreover, any non-empty chain C ⊆ T̂ admits a supremum in T̂. In particular, all maximal

chains C ⊆ T̂ are Dedekind-complete.

Proof. Let C ⊆ T̂ be a non-empty subset. Then E =
⋂

C∈C C is a down-chain in T. If E has a
supremum ∨E in T, the fact that each C ∈ C is a full down-chain implies ∨E ∈ C and thus
∨E ∈ E. Therefore E ∈ T̂ and E is an infimum for C in T̂.

Suppose that C is moreover a chain. Consider F =
⋃

C∈C C; it is a down-chain in T. If F
has no supremum in T, then F ∈ T̂ and F is a supremum for C in T̂. If on the other hand
F has a supremum ∨F in T, let F∗ = F ∪ {∨F}. Then F∗ ∈ T̂ and F∗ is an upper bound for
C . We claim that F∗ is a supremum for C in T̂. Indeed, let F′ ∈ T̂ be an upper bound for
C . We need to show F∗ ⊆ F′ and know already F ⊆ F′. Since F is not full, F 6= F′. Let thus
t ∈ F′ \ F. Then t is an upper bound for F since F′ is a chain and F′ a down-chain. Therefore
∨F ≤ t and since F′ is a down-chain we deduce ∨F ∈ F′ as desired.

Finally, for Dedekind-completeness, it suffices to observe that the supremum and infimum
constructed in T must automatically belong to any maximal chain containing C . �

In the converse direction, we have:

Lemma 5.8. Let (T,≤) be a semi-linear order. Suppose that every non-empty chain in T has a
supremum and an infimum in T. Then the morphism T → T̂ is an isomorphism.

Proof. We need to prove that any C ∈ T̂ is of the form C = x↓ for some x ∈ T. We begin
by noting that C 6= ∅, or equivalently by Remark 5.4, that T has a minimum. Indeed, the
infimum of any maximal chain in T is a minimum for T since T is downwards directed.
Being non-empty, C has a supremum x in T. Being a full down-chain, C coincides with
x↓. �

Remark 5.9. The above proof shows that Lemma 5.8 holds under the formally weaker as-
sumption that every non-empty chain in T has a supremum in T and that T has a minimum.

Taking into account Proposition 5.7, we deduce:

Corollary 5.10. Let (T,≤) be a semi-linear order. Suppose that every non-empty chain in T has a
supremum in T and that T has a minimum. Then (T,≤) is ∧-complete. �

Combining again Proposition 5.7 with Lemma 5.8, we also deduce that the operation T 7→
T̂ is idempotent.
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Corollary 5.11. For any semi-linear order (T,≤), the morphism T̂ → ̂̂T is an isomorphism. �

Remark 5.12. The above results show that T̂ is a completion of T in some sense. It is larger
than the Dedekind-type completion of [Dro85, 5.3], [Mar89, 1.3] but smaller than the Mac-
Neille completion [Mac37].

Example 5.13. Consider the subset T = [−1, 0) ∪ {i,−i} of the complex numbers endowed
with the order given by the usual order on the real part (but i incomparable to −i). This is
a dense semi-linear order. Moreover, T̂ can be identified with the closure T ∪ {0} with the
order extended by 0 ≤ i, 0 ≤ −i. This semi-linear order is however not dense anymore.

The construction of T̂ is functorial in the following sense.

Lemma 5.14. Let (T,≤) be a semi-linear order and T0 ⊆ T a subset. Suppose that (T0,≤) is semi-
linear (e.g. it is coinitial in T). Then there is a canonical inclusion of ordered sets T̂0 → T̂ making the
diagram

T // T̂

T0

OO

// T̂0

OO

commutative.

Proof. In view of Lemma 5.8 and Corollary 5.11, we can simplify the notation by assuming
that T admits a supremum and infimum for each of its non-empty chains; we then construct
a suitable map T̂0 → T. Namely, we associate to C ∈ T̂0 its supremum in T.

This map is injective. Indeed, if C, C′ ∈ T̂0 admit the same supremum s in T, they are
both subsets of the chain s↓ ∩ T0. But full down-chains contained in a same chain in T0
coincide when they have the same supremum in T. Finally, it is straightforward that the
order induced from T under this map coincides with the order on T0. �

In the next statement, the isomorphism T ∼= T̂ is implicitly understood.

Proposition 5.15. Let (T,≤) be a semi-linear order such that every non-empty chain in T has a
supremum and an infimum in T. Let further T0 ⊆ T be a subset such that (T0,≤) is semi-linear.

If T0 is order-dense in T, then the canonical map T̂0 → T is an isomorphism.

Proof. We know already that there is a canonical inclusion of semi-linear orders T̂0 → T
defined by mapping C ∈ T̂0 to its supremum in T. We need to prove that it is surjective.
Choose thus some t ∈ T. We define C = t↓ ∩ T0 and observe that the supremum of C in T is
t by order-density. It suffices therefore to show that C is a full down-chain in T0; the fact that
it is a down-chain is immediate. Suppose therefore that C admits a supremum s in T0. Since
s is an upper bound for C, it is also an upper bound for the chain t↓ by order-density. Thus
s ≥ t. Applying again order-density, we deduce s = t. It follows s ∈ C as desired. �

Contrary to linear orders, partial orders admit a number of unrelated natural topologies,
see e.g. [Red76, §3]. We introduce a topology on an arbitrary semi-linear order (T,≤) as
follows.

Definition 5.16. Let (T,≤) be a semi-linear order. We endow T with the topology generated
by all sets T \ x↑ and x↑ \ {x}, where x ranges over T.
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We recall that an ordered set is a ∧-semi-lattice if any pair {p, q} of elements admits an
infimum, denoted by p ∧ q. This is of course the case if the order is ∧-complete.

We shall say that two points x, y of a topological space are separated by a point t if the
complement of t can be partitioned into two open sets, each containing one of x, y.

Lemma 5.17. Let (T,≤) be a dense semi-linear order which is a ∧-semi-lattice. Then any two
distinct points can be separated by a point; in particular, T is Hausdorff.

Proof. Let x, y be distinct points in T; by symmetry, we can assume x � y without loss of
generality. Thus x ∧ y < x and by order-density there is t with x ∧ y < t < x. Notice that
t � y. Now t separates x and y because x ∈ t↑ \ {t} and y ∈ T \ t↑. �

Lemma 5.18. Let (T,≤) be a semi-linear order which is a ∧-semi-lattice. If T contains a countable
order-dense subset, then T is second countable as a topological space.

Proof. Let T0 ⊆ T be a countable order-dense subset. It suffices to verify that the sets T \ t↑
and t↑ \ {t} form a sub-base of the topology when t ranges over T0. Consider first a point y of
T \ x↑ for an arbitrary x ∈ T. Then x∧ y < x and therefore there is t ∈ T0 with x∧ y < t < x.
In particular, y ∈ T \ t↑ and T \ t↑ ⊆ T \ x↑. Next, consider y ∈ x↑ \ {x}. There is now
t ∈ T0 with x < t < y and y ∈ t↑ \ {t} ⊆ x↑ \ {x}. �

We shall use again the more precise fact established above that the sets T \ t↑ and t↑ \ {t}
form a sub-base when t ranges over T0.

Theorem 5.19. Let (T,≤) be semi-linear order admitting a countable order-dense subset. Suppose
that every non-empty chain in T has a supremum in T and that T has a minimum.

Then T is a dendrite for the topology that we introduced.

Proof. By Remark 5.9, T ∼= T̂. Therefore Proposition 5.7 implies that (T,≤) is ∧-complete. In
particular, T is Hausdorff and second countable by Lemma 5.17 and Lemma 5.18.

Moreover, every maximal chain C ⊆ T is Dedekind-complete by Proposition 5.7; since
moreover C admits a countable order-dense subset and has a maximum and a minimum, it
is order-isomorphic to a closed interval by Cantor’s theorem [Can95, p. 511]. Our topology
is the usual order-topology when restricted to C and it follows that every point of T can be
connected to the minimum by an arc.

We claim that T is compact. Being second countable, it suffices to find an accumulation
point for an arbitrary sequence (xn) in T. Suppose for a contradiction that there is no ac-
cumulation point and let T0 ⊆ T be a countable order-dense subset. Upon extracting a
subsequence for each t ∈ T0 in a diagonal process, we can assume that (xn) has the follow-
ing property. For every t ∈ T0 there is an integer nt such that one of the following holds:
either ∀n ≥ nt : xn > t, or ∀n ≥ nt : xn � t.

Let C ⊆ T be the collection of all x ∈ T such that xn > x holds for all but finitely many
n; in particular C contains all t ∈ T0 satisfying the first case of the above alternative. We can
assume C 6= ∅ because if C does not contain the minimum z of T then xn = z for n large
enough. The set C is a chain since any two of its elements belong to some xn ↓. Therefore, C
admits a supremum s in T and we proceed to show that xn converges to s using the sub-base
of neighbourhoods determined by T0.

To this end, consider first t ∈ T0 such that s ∈ T \ t↑. If xn did not belong to this neigh-
bourhood T \ t↑ for a cofinal set of integers n, then ∀n ≥ nt : xn > t by the above alternative.
This would imply t ∈ C and thus s ≥ t, which is absurd. Consider next t ∈ T0 such that
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s ∈ t↑ \ {t}. Suppose again that xn is not almost always in t↑ \ {t}; this time, it follows that
∀n ≥ nt : xn � t. On the other hand, t is not an upper bound for C; since s↓ is a chain, this
implies that there is x ∈ C with x > t. For n large enough, we have xn > x > t, which is
absurd.

This completes the proof that T is compact.
At this point, we know in particular that T is connected, compact, Hausdorff and second

countable; thus T is a continuum. For continua, one of the equivalent characterisation of
dendrites is that any two distinct points of can be separated by a point, see [Nad92, 10.2]. In
our case, this criterion is satisfied by Lemma 5.17. �

If we start with a dendrite X and order as in Example 5.2 by choosing z ∈ Ends(X),
then the topology that we defined on this ordered set is the original dendrite topology by
construction. It follows by naturality of the construction that every automorphism of the
ordered set (X,≤) preserves this topology. Conversely, every homeomorphism of X fixing z
preserves the order. We record this as follows.

Proposition 5.20. There is a canonical identification Homeoz(X) ∼= Aut(X,≤). �

We shall be more interested in certain countable subsets of X viewed as ordered sets.

Corollary 5.21. Let X be a dendrite and z ∈ Ends(X). Let T ⊆ X be an arcwise dense subset that is
invariant under the stabiliser Homeoz(X) of z and endow T with the semi-linear order determined
by z. Then the natural map

Homeoz(X) −→ Aut(T,≤)
is an isomorphism of groups.

Proof. The above map is a group homomorphism which is injective because T is dense in X;
we need to prove that it is onto. By naturality of the construction of T̂ and of the topology,
every automorphism of T extends to a homeomorphism of T̂. By Proposition 5.15, we have
a canonical homeomorphism T̂ ∼= X and the statement follows. �

6. GENERALIZED WAŻEWSKI DENDRITES

This section investigates homogeneity properties of the generalized Ważewski dendrites
DS. We start with a general definition.

To any finite subset F of a dendrite X we associate a finite vertex-labelled simplicial tree
〈F〉 as follows. The sub-dendrite [F] is a finite tree in the topological sense, i.e. the topological
realization of a finite simplicial tree. Such a simplicial tree is not unique because degree-two
vertices can be added or removed without changing the topological realization. We choose
for 〈F〉 to retain precisely one degree-two vertex for each element of F which is a regular
point of the dendrite [F]. Thus, 〈F〉 is a tree whose vertex set contains F. Finally, we label the
vertices of 〈F〉 by assigning to each vertex its order in X.

We observe that this is a labelling by elements of N∪ {∞} and that the labellings that can
arise in this way are precisely those which are bounded below by the degree of x in 〈F〉, i.e.
by the order of x in [F].

Proposition 6.1. Fix S ⊆ {3, 4, . . . , ∞} non-empty. Given two finite subsets F, F′ ⊆ DS, any
isomorphism of labelled graphs 〈F〉 → 〈F′〉 can be extended to a homeomorphism of DS.
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Proof. To produce a homeomorphism h of an arbitrary topological space X, it suffices to
cover X by a finite family Y of closed subsets and to specify for each Y ∈ Y a homeomor-
phism hY : Y ∼= hY(Y) ⊆ X such that {hY(Y)}Y∈Y is also a cover by closed sets and with the
compatibility conditions

hY|Y∩Z = hZ|Y∩Z, hY(Y ∩ Z) = hY(Y) ∩ hZ(Z)

for all Y, Z ∈ Y . In the case at hand, we use 〈F〉 to decompose DS into a family Y of
sub-dendrites, as follows. First, for any adjacent vertices x, y of 〈F〉, we define DS(x, y) as
the closure of the component of DS \ {x, y} containing the interior of the arc [x, y]. Next,
for each individual vertex x of 〈F〉, we let Yx be the union of {x} and of all components of
DS \ {x} that do not meet any of the DS(x, y) where y ranges over the vertices adjacent to x.
We take for Y the collection of all these DS(x, y) and Yx.

We define likewise the decomposition Y ′ associated to 〈F′〉 and observe that any iso-
morphism 〈F〉 → 〈F′〉 of labelled graphs induces a bijection H : Y → Y ′. Moreover,
the intersection of two distinct elements of Y is either empty or reduces to a single point
(which is a vertex of 〈F〉). Therefore, it suffices to exhibit for each Y ∈ Y a homeomorphism
hY : Y → H (Y) which has the prescribed behaviour on the intersection of Y and the vertex
set of 〈F〉.

At this point, we can conclude by the well-known homogeneity properties of DS as fol-
lows. All DS(x, y) are homeomorphic to DS itself, and the homeomorphism can be chosen
to send x and y to any given pair of distinct ends of DS. This follows from Theorem 6.2
in [CD94], compare also Corollary 3.3 in [Cha95]. As for Yx, it can be written as the union
of DS(x, x′) where we choose some x′ ∈ Ends(DS) in each component of DS \ {x} meet-
ing Yx. The (possibly infinite) number of these components is the difference between the
orders of x in DS and in [F], and therefore it is the same number as for H (Yx). Hence the
required homeomorphism Yx ∼= H (Yx) is obtained by patching together the various home-
omorphisms on each DS(x, x′). The possibility of infinitely many such components does not
raise any continuity issue since they will then form a null-sequence, just as in the proof of
Lemma 2.9. �

The following very special case of Proposition 6.1 in fact hardly different from the ingre-
dient from [CD94] that we used in the proof, but we isolate it for further reference:

Corollary 6.2. For any S ⊆ {3, 4, . . . , ∞} and any n ∈ S, the action of Homeo(DS) on Brn(DS),
on Ends(X) and on Reg(X) is doubly transitive. �

An elementary consequence of double transitivity is the following.

Corollary 6.3. Let S ⊆ {3, 4, . . . , ∞} be a non-empty set and n ∈ S ∪ {1, 2}. Then any element of
Homeo(DS) is the product of two elements fixing each some point of order n in DS.

This clarifies the simplicity statement of Corollary 4.5 above:

Corollary 6.4. Homeo(DS) is a simple group for any non-empty S ⊆ {3, 4, . . . , ∞}.
Proof. By Corollary 4.5, GBr is a simple group, where G = Homeo(DS). On the other hand,
Corollary 6.3 implies, in particular, that G = GBr. �

Recalling the basic fact that doubly transitive actions are primitive, we also deduce:

Corollary 6.5. The stabiliser in Homeo(DS) of any point of DS is maximal as a proper subgroup of
Homeo(DS). �
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Recalling that the set of branch points is always countable whilst both Reg(DS) and Ends(DS)
are uncountable, Corollary 6.2 implies also the following.

Corollary 6.6. The stabilizer of x ∈ DS has countable index in Homeo(DS) if and only if x is a
branch point. �

In the case where S is finite, there are only finitely many labelled trees as above for any
given number of vertices. Therefore, we deduce the following from Proposition 6.1.

Corollary 6.7. If S is finite, then the action of Homeo(DS) on DS (viewed simply as a set) is
oligomorphic. �

Here oligomorphic means that for each p ∈ N the diagonal action of Homeo(DS) on (DS)
p

has finitely many orbits [Cam90]. When S is infinite, we recover likewise from Proposi-
tion 6.1 the weaker fact that Homeo(DS) has countably many orbits on (DS)

p, first estab-
lished in [Cam11].

We recall that a topological group is Roelcke pre-compact if for every identity neighbour-
hood U there is a finite set F in G with G = UFU. This holds in particular for groups
that can be represented as closed oligomorphic permutation groups of countable sets (see
e.g. [ET16, §1.2]). Therefore, considering the representation of Homeo(DS) into Sym(Br(X))
as in Proposition 2.4, we have:

Corollary 6.8. If S is finite, then the Polish group Homeo(DS) is Roelcke pre-compact. �

By a result of Evans–Tsankov, we can deduce that Homeo(DS) has the strong Kazhdan
property (T) as a topological group (which is not the case for all oligomorphic groups,
see [Tsa12, §6]).

Corollary 6.9. If S is finite, then the Polish group Homeo(DS) has the strong Kazhdan property (T)
as a topological group.

Proof. In view of Theorem 1.1 in [ET16] and of the oligomorphic presentation of Homeo(DS)
into Sym(Br(X)), it remains only to justify that Homeo(DS) has no open subgroup of finite
index. This follows from the abstract simplicity of Homeo(DS) established in Corollary 6.4.

�

Another application of Proposition 6.1 provides a link with semi-linear orders:

Corollary 6.10. Fix S ⊆ {3, 4, . . . , ∞}, n ∈ S and any end z of DS. Then the action of the stabiliser
Homeoz(DS) on the subset of pairs{

(x, y) : x, y ∈ Brn(DS), x 6= y and x ∈ [y, z]
}

is transitive.
In particular, the semi-linear order (T,≤) induced on T = Brn(DS) as in Example 5.2 is weakly

two-transitive.

We recall here that a semi-linear order (T,≤) is called weakly two-transitive if Aut(T,≤)
acts transitively on the set of pairs (x, y) satisfying x < y.

Proof of Corollary 6.10. For any such pair (x, y), the labelled tree 〈{z, x, y}〉 has always the
same isomorphism type: namely, the vertices z, x, y are aligned and in this order, with labels
respectively 1, n, n. Therefore the statement follows from Proposition 6.1. �
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A group G is said to have property (OB) if every isometric G-action on any metric space has
bounded orbits. Amongst equivalent definitions is that every left-invariant metric on G is
bounded, see e.g. [Ros09, 1.2]. The above results allow us to leverage a theorem from [DT09]
on semi-linear orders and deduce:

Theorem 6.11. Let S ⊆ {3, 4, . . . , ∞} be a non-empty set and pick z ∈ Ends(DS).
Then the group Homeoz(DS) has property (OB).

Proof. Choose any n ∈ S and let T = Brn(DS). We endow DS and T with the semi-linear
order determined by z as in Example 5.2. By Corollary 6.10, the order (T,≤) is weakly two-
transitive. By Theorem 3.1 in [DT09], it follows that the group Aut(T,≤) has property (OB).
Finally, Corollary 5.21, states that Homeoz(DS) is isomorphic to Aut(T,≤). �

Corollary 6.12. For any non-empty S ⊆ {3, 4, . . . , ∞}, the group Homeo(DS) has property (OB).

Proof. Let z be an end of DS. By Theorem 6.11, H = Homeoz(DS) has property (OB). By
Corollary 6.2 the action of G = Homeo(DS) on G/H is doubly transitive. Now Lemma 6.13
below completes the proof. �

Lemma 6.13. Let G be a group and H < G a subgroup such that the G-action on G/H is doubly
transitive. If H has property (OB), then so does G.

The same holds more generally if H has the relative property (OB) in G, as defined in [Ros14].

Proof. The assumption on G/H is equivalent to the fact that we have G = H ∪ HgH for
some g ∈ G; hence the statement follows from the characterisation in terms of left-invariant
metrics. �

Another application of the isomorphism afforded by Corollary 5.21 between end stabilis-
ers in Homeo(DS) and Aut(T,≤) will be useful in Section 7, namely:

Proposition 6.14. Let S ⊆ {3, 4, . . . , ∞} be non-empty and let z ∈ Ends(DS). Let MCHomeoz(DS)
be the normal subgroup of elements fixing pointwise some non-trivial arc containing z.

Then M contains all proper normal subgroups of Homeoz(DS).
Furthermore, Homeoz(DS) has no proper subgroup of finite index.

Proof. As before we fix n ∈ S and consider the countable semi-linear order (T,≤) for T =
Brn(DS) as in Example 5.2, recalling that it is weakly two-transitive by Corollary 6.10. More-
over, H = Homeoz(DS) is canonically isomorphic to Aut(T,≤) by Corollary 5.21. Therefore,
we can apply Theorem 1.3 in [DHM89] which holds for all countable weakly two-transitive
semi-linear orders. This result implies that every proper normal subgroup N CAut(T) is
contained in the normal subgroup R(T)CAut(T) of elements that fix pointwise {y : y < t}
for some t ∈ T. As a subgroup of Homeo(DS), this is precisely the group M.

For the additional statement, it suffices to prove that the group H/M is infinite since
every finite index subgroup contains a normal finite index subgroup. Let g ∈ Homeo(DS)
be a homeomorphism admitting an austro-boreal arc ending at z; in particular, g ∈ H. Such
an element g exists by Lemma 6.15 below. We claim that g /∈ M. This claim then also holds
for any non-trivial power of g and hence the group generated by the image of g in H/M is
indeed infinite.

To prove the claim, it suffices to observe that any arc terminating at z must meet I at more
than just z because z is an end; therefore the claim follows since the only g-fixed points in I
are the two extremities of I. �
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Lemma 6.15. Any non-trivial arc of DS is austro-boreal for some element of Homeo(DS).

Proof. Let [x, y] be a non-trivial arc of DS. By Theorem 10.5 in [DM16], we know that there
is an element g′ of Homeo(DS) admitting some austro-boreal arc [x′, y′]. By [CD94, 6.2],
both DS(x, y) and DS(x′, y′) are homeomorphic to DS and hence to each other (these sub-
dendrites were defined in the proof of Proposition 6.1). We can now define g ∈ Homeo(DS)
by transporting the g′-action from DS(x′, y′) to DS(x, y) and letting g acts trivially outside
DS(x, y). �

7. NON-ISOMORPHIC HOMEOMORPHISM GROUPS

Consider any non-empty set S ⊆ {3, 4, . . . , ∞}. The initial goal of this section is to prove
that the homeomorphism group of the generalised Ważewski dendrite DS, as an abstract
group, determines the set S. The proof will show that the space DS can be recovered from the
mutual positions of the stabilisers of branch points as abstract subgroups of Homeox(DS).

Given a point x ∈ DS, denote by Cx the set of connected components of DS \ {x}. For
each C ∈ Cx, the closure C = C ∪ {x} is homeomorphic to DS by Lemma 2.14. The stabiliser
Homeox(DS) has a natural representation to the permutation group Sym(Cx). Moreover,
this representation is split surjective and yields a permutational wreath product:

Lemma 7.1.

Homeox(DS) ∼=
(

∏
C∈Cx

Homeox(C)

)
o Sym (Cx) .

Proof. The kernel of the representation to Sym(Cx) is all of ∏C∈Cx
Homeox(C) because of

Lemma 2.9. Therefore it suffices to prove that there is a subgroup of Homeox(DS) mapping
isomorphically onto Sym(Cx) under this representation.

To this end, we select an end z of DS and choose for each C ∈ C a homeomorphism
ϕC : C → DS such that ϕC(x) = z. Given a permutation σ ∈ Sym(Cx), we obtain σ̃ ∈
Homeox(DS) by defining σ̃ to be ϕ−1

σ(C) ◦ ϕC on C for each C ∈ Cx. The fact that σ̃ is indeed a
homeomorphism even if C is infinite follows from the fact that C is a null-family, as in the
proof of Lemma 2.9. Now σ 7→ σ̃ is indeed a section of Sym(Cx). �

Corollary 7.2. If x ∈ DS is a point of finite order, then every finite index subgroup of Homeox(DS)
contains the kernel of the representation onto Sym(Cx).

Proof. Since C ∼= DS and since Cx is finite, Proposition 6.14 implies that this kernel, namely
the product ∏C∈Cx

Homeox(C), has no finite index (proper) subgroup. �

Theorem 7.3. Let S, S′ ⊆ {3, 4, . . . , ∞} be two non-empty subsets. Suppose that there is a group
isomorphism

Φ : Homeo(DS) −→ Homeo(DS′).
Then there is a map ϕ : DS → DS′ which is a Φ-equivariant homeomorphism.

In particular, Theorem 7.3 shows that S is determined by the group Homeo(DS).

Corollary 7.4. The groups Homeo(DS) and Homeo(DS′) are isomorphic if and only if S = S′. �

Another consequence of Theorem 7.3 is the following.

Corollary 7.5. The group Homeo(DS) has no outer automorphisms.
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Proof of Corollary 7.5. Let Φ be an automorphism of the group Homeo(DS). Then Theo-
rem 7.3 provides ϕ ∈ Homeo(DS) which is Φ-equivariant. This means by definition that
for all x ∈ DS and all g ∈ Homeo(DS) we have ϕ(gx) = Φ(g)ϕ(x). In other words,
Φ(g) = ϕgϕ−1; this shows that Φ is inner. �

Proof of Theorem 7.3. Throughout the proof, we consider Homeo(DS) as acting on DS but also
on DS′ via Φ; we only mention Φ explicitly when a confusion could occur. We begin with
the following claim:

For every branch point x ∈ DS, the stabiliser Homeox(DS) fixes a branch point in DS′ ;
moreover this point is unique.

Indeed, consider the decomposition of Homeox(DS) given by Lemma 7.1 and let n ∈ S
be the order of x. Since C ∼= DS, Proposition 6.14 shows that we can apply Proposition 2.12
and deduce that Homeox(DS) fixes a point y in DS′ . We recall that all point stabilisers are
maximal by Corollary 6.5. Therefore, since Φ is an isomorphism, we deduce that the im-
age of Homeox(DS) is exactly Homeoy(DS′). Now y must be a branch point in view of
Corollary 6.6. The uniqueness follows from the maximality of stabilisers, since otherwise DS
would have two branch points y, y′ with the same stabilisers; this is readily seen to contra-
dict the double transitivity of Corollary 6.2, using that Brm(y) is arcwise dense, where m is
the order of y in DS′ .

Next, we claim that the order of y is also n. It suffices to prove that n is an invariant
of the abstract group H = Homeox(DS) amongst stabilisers of branch points. Indeed, the
case n = ∞ is characterised as the only case when H has no index two subgroup thanks to
Lemma 2.13. When n ≥ 3 is finite, it can be recovered from the index of the minimal finite
index subgroup given by Corollary 7.2.

At this point, we can already define a natural map ϕ : Br(DS) → Br(DS′) that preserves
the Menger–Urysohn order. This map is Φ-equivariant by construction and bijective because
it is natural in Φ. We note that we have incidentally already S = S′. Since Br(DS) is dense
in DS, it suffices now to show that ϕ is uniformly continuous with respect to the uniform
structure on Br(DS) induced by DS. This then implies that ϕ has a continuous extension to
DS. Such a continuous extension is automatically an equivariant homeomorphism.

By Lemma 2.10, this uniform structure is generated by the entourages UF (restricted to
Br(DS)), where F ranges over the finite subsets of Br(DS). Therefore, it suffices to prove that
the map ϕ preserves the ternary relation on Br(DS) given by x ∈ [y, z] for x, y, z ∈ Br(DS).

We first show that ϕ preserves the following weaker ternary relation: {x, y, z} are con-
tained in a common arc. It suffices to express this relation purely in terms the stabilizers of
branch points. This can be done because {x, y, z} are not contained in a common arc if and
only if there is w 6= x, y, z such that

Homeow(DS) ⊇ Homeox(DS) ∩Homeoy(DS) ∩Homeoz(DS).

The “only if” direction holds by considering the centre w of a tripod (x, y, z). The “if” direc-
tion follows readily from the transitivity properties of Proposition 6.1.

It only remains to express the relation x ∈ [y, z] in terms of the above weaker ternary
relation on Br(DS). This is done as follows: x ∈ [y, z] if and only if for all w ∈ Br(DS),
either {w, x, y} or {w, x, z} are contained in a common arc. The “only if” direction holds
by definition. For the “if” direction, suppose that x /∈ [y, z]. Then the arc I connecting
x to its first-point projection to [y, z] is not reduced to a point. Therefore, we can choose
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w ∈ Br(DS) which does not lie in any arc containing I, and thus neither {w, x, y} nor {w, x, z}
are contained in a common arc. �

Theorem 7.3 can also be deduced from Rubin’s much more general (and correspondingly
more difficult) Theorem 0.2 in [Rub89]. Indeed:

Proposition 7.6. For any non-empty set S ⊆ {3, 4, . . . , ∞}, the pair (DS, Homeo(DS)) satisfies
Rubin’s condition (∗).

Recall here that a pair (X, G), where X is a Hausdorff topological space and G is a sub-
group of Homeo(X), satisfies Rubin’s condition (∗) from [Rub89] if the following hold:

(1) (X, G) is regionally disrigid: for any non-empty open subset U ⊆ X, there is a non-
trivial g ∈ G such that g is the identity on X \U.

(2) Any non-empty open subset U ⊆ X contains a non-empty open subset U1 ⊆ U which
is flexible with respect to G, i.e. for any open subsets V, W ⊆ U1 with gV ∩W 6= ∅ for
some g ∈ G, there is g′ ∈ G such that g′V ∩W 6= ∅ and g′ is the identity on X \U.

Proof. We claim first that every non-empty open subset U ⊆ DS contains an open subset
U1 homeomorphic to DS \ {z}, where z ∈ Ends(DS). Indeed, by density of Ends(DS), we
can choose an end z0 ∈ U. Since z0 is an end, it admits a neighbourhood U1 ⊆ U whose
topological boundary in DS is reduced to a single point z (compare e.g. [Nad92, 9.3]). Since
the closure of U1 is homeomorphic to DS by Lemma 2.14, the claim follows.

It suffices to prove that the disrigidity and flexibility conditions hold for such a set U1. In
both cases, we can work directly with the action of the stabiliser Homeoz(DS) on DS, then
transport the resulting homeomorphisms to U1 and extend them by the identity on DS \U1.
In that setting, both conditions are immediate consequences of the fact that Homeoz(DS)
acts transitively on Brn(DS) (Proposition 6.1 or Corollary 6.10) and that Brn(DS) is dense in
DS. �

We expect that general dendro-minimal dendrites cannot be reconstructed from their
homeomorphism groups. However, besides the case of the generalised Ważewski dendrites,
this reconstruction is also possible as soon as there is a free arc:

Theorem 7.7. Let X be a dendro-minimal dendrite with a free arc. If G = Homeo(X) is isomorphic,
as a group, to G′ = Homeo(X′) for any dendro-minimal dendrite X′, then X′ ∼= X.

Moreover, the isomorphism of groups is induced by such a homeomorphism; therefore, G has no
outer automorphisms.

Notice that Theorem 7.7 does not, at first sight, fit into Rubin’s setting since X and X′ are
not assumed to belong both to the same class (of dendro-minimal dendrites with free arcs).
But in fact, the first step of the proof is to establish that the group isomorphism forces X′ to
admit a free arc; from then on, one can invoke Rubin’s theorem.

Proof of Theorem 7.7. Let I be a maximal free arc of X. Combining the automatic continu-
ity of [RS07] with the extreme amenability of [Pes98], it follows that any group action of
Homeo+(I) on any compact metrisable space has a fixed point, see Corollary 7 in [RS07]. In
particular, it follows that Homeo+(I) fixes a point in X′.

Next, we recall from Proposition 3.1 that G contains the product ∏I∈Free(X) Homeo+(I) as
a normal subgroup. Lemma 2.11 implies that this product group fixes a point in X′. Since it
is a normal subgroup and since X′ is dendro-minimal, Lemma 4.3 implies that this product
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fixes Ends(X′) pointwise. Recalling that the set of ends is dense unless X′ admits a free arc,
we conclude that X′ does indeed admit a free arc.

As mentioned above, this is a point where Rubin’s theorem can be applied. Indeed, the
condition (∗) can be readily verified after observing that any non-empty open set contains
some free arc, which follows from Proposition 3.2. �
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