
EQUIVARIANT MEASURABLE LIFTINGS

NICOLAS MONOD

Abstract. We discuss equivariance for linear liftings of measurable
functions. Existence is established when a transformation group acts
amenably, as e.g. the Möbius group of the projective line.

Since the general proof is very simple but not explicit, we also pro-
vide a much more explicit lifting for semi-simple Lie groups acting on
their Furstenberg boundary, using unrestricted Fatou convergence. This
setting is relevant to L∞-cocycles for characteristic classes.
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1. Introduction

1.A. Context. Let f be a measurable function on R, in the sense of Le-

besgue (real or complex). In many cases, two such functions are identified

if they agree almost everywhere. That is, the actual function f is forsaken

for its function class [f ].

It is not just a mere convenience to ignore null-sets; it is indeed unavoid-

able when we use certain tools of functional analysis for the Lebesgue spaces

Lp of p-summable function classes. For instance, Lp is a dual Banach space

for 1 < p ≤ ∞ and therefore one can use weak-* compactness arguments.
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2 N. MONOD

Such tools are not available if one insists instead to work with the spaces

L p of actual functions.

However, neglecting null-sets is a luxury that cannot always be afforded;

for instance, when it is needed to evaluate a function at a specific point

or on a locus of interest which happens to be negligible in measure. This

situation arises for cocycles representing characteristic classes, see [BI:2002],

[BM:2012], [HO:2013] and [BBI:2013].

Von Neumann [vN:1931] has investigated the possibility to choose a sec-

tion or “lifting”

λ : L∞(R) −→ L∞(R)

of the quotient map f 7→ [f ]. Another instance where such a lifting is

needed is for the proof of the general Dunford–Pettis theorem, as observed

by Dieudonné [Die:1951]. As to von Neumann, he mentions an unspecified

operator-theoretical motivation suggested by Haar. It is time to recall the

formal definition(s) of liftings:

Definition. Let X be a locally compact space endowed with a Radon mea-

sure. A linear lifting is a positive linear map λ : L∞(X) → L∞(X) such

that λ(ϕ) ∈ ϕ for all ϕ ∈ L∞(X) and λ([1X ]) = 1X . It is a strong linear

lifting if λ([f ]) = f whenever f is continuous.

Awkwardly, a (strong) linear lifting is simply called a (strong) lifting

when it is moreover multiplicative.

Remarks. (a) A linear lifting does not increase the norms, where L∞ is

endowed with the sup-norm and L∞ with the corresponding quotient norm:

the essential sup-norm.

(b) Von Neumann proved that there is no lifting for general unbounded

functions, see footnote p. 109 in [vN:1931]. When p <∞, the spaces Lp do

not even admit linear liftings [ITIT:1962, Thm. 7].

(c) When X is a differentiable manifold, we shall always endow it with

the Lebesgue measure associated to some Riemannian structure; the spaces

L∞(X) and L∞(X) do not depend on the choice of the Riemannian struc-

ture, since the corresponding measures differ by a continuous density only.

(d) In general, function classes in L∞(X) are defined by identifying func-

tions that agree locally almost everywhere; as soon as the Radon measure

is σ-finite, e.g. when X is σ-compact, this is the usual a.e. identification as

in the case of R.
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(e) Some authors, including Bourbaki’s posse, let L∞ contain essentially

bounded functions and hence endow it with the quotient semi -norm [Bou:2004,

IV§6]. Thus our liftings provide a fortiori liftings into these larger spaces.

Von Neumann proved that there is a lifting L∞(R) → L∞(R). An

essential ingredient of his proof is Lebesgue’s differentiation theorem (§34–35

in [Leb:1910]), which has to be combined with a suitable form of the axiom of

choice. Since Lebesgue differentiation is unaffected by translations, it follows

that von Neumann’s lifting can be chosen to commute with all translations of

the line; this is particularly clear in Dieudonné’s account [Die:1951]. This use

of differentiation makes it plain that more generally any Lie group will admit

a lifting that commutes with left translations, and it is unsurprising that

this can be extended to all locally compact groups [ITIT:1967], thanks to

the solution of Hilbert’s fifth problem [MZ:1955] and to non-σ-finite versions

of von Neumann’s lifting [Mah:1958], [ITIT:1969].

The general question that we shall address in this paper is whether a lift-

ing on a space X can be equivariant under a transformation group Gy X.

Typically, we have in mind much larger groups of symmetries than just G

acting on G itself. For instance, on the real line R, one can consider the

group of all affine transformations or even the group SL2(R) acting projec-

tively, in which case we add ∞ to the line.

It has been shown that multiplicative liftings cannot be equivariant in

that setting [vW:1977, p. 95], and therefore we are asking for equivariant

linear liftings. Known results include the case of compact transformation

groups [Joh:1979] and more generally distal systems [Joh:1980a]. Equivari-

ant linear liftings also exists for countable amenable groups [IT:1965]. Un-

fortunately, that argument does not apply to uncountable amenable groups

such as the affine group of R, nor to any non-discrete group. There is an

intrinsic difficulty when the acting group is non-discrete, originating in the

well-known fact that Fubini’s theorem has no converse (this is one [Sie:1920]

of Sierpiński’s contributions to the first volume of Fundamenta — in which

he authored more than half the papers).

Specifically, one cannot first take a linear lifting on X and then apply

some averaging procedure over G. Indeed, the map (g, x) 7→ (λgϕ)(x) need

not be measurable [Tal:1982].

1.B. Amenable actions. It turns out that a general condition allowing

us to construct equivariant linear liftings is the topological amenability of

the action, a much weaker property than the amenability of the group. For
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instance, SL2(R) acts amenably on the projective line R∪{∞}. More gen-

erally, any semi-simple Lie group acts amenably on its Furstenberg bound-

ary. We shall recall below the definition of amenable actions as found e.g.

in [AD:2002, ADR:2000]. For now, we just point out that the condition is

automatically satisfied for amenable groups but holds much more generally,

for instance for G y G/H where G is an arbitrary locally compact group

and H < G a closed amenable subgroup.

Theorem A. Let G be a locally compact group with a C1-continuous amenable

action on a differentiable manifold X.

Then there exists a G-equivariant strong linear lifting L∞(X)→ L∞(X).

By definition, we say that a continuous action of a topological group

G on a differentiable manifold X is C1-continuous if each g ∈ G has a

derivative at each x ∈ X and the derivative depends continuously on (g, x)

in G×X.

Amenability is still not the optimal assumption, see Section 5(a). Whether

smoothness is required is unclear, see Section 5(b).

Remark 1. All assumptions of Theorem A are preserved if we replace

X by a power Xp with p ∈ N; therefore, there is a family of liftings on

L∞(Xp). We shall show in Section 4 that this family can be chosen in

such a way that it moreover intertwines the homogeneous coboundary maps

L∞(Xp)→ L∞(Xp+1) and L∞(Xp)→ L∞(Xp+1) and is compatible with

permuting coordinates. This implies that bounded cohomology classes can

be represented by L∞-cocycles, see Corollary 6 below.

Remark 2. If we drop the amenability assumption from Theorem A, then

we do not expect the existence of an equivariant linear lifting in general. In

the very explicit example of GL+
m(R) acting on the projective space (which

is non-amenable iff m ≥ 3), a family of liftings as in Remark 1 cannot exist

when m is even with m ≥ 4. The argument given in Section 4 is very similar

to an observation in [BM:2012].

1.C. The case of semi-simple Lie groups. Theorem A is “soft” in the

sense that it is general but its simple proof gives limited insight. In concrete

situations, such as the Möbius action of SL2(R) on R ∪ {∞}, much more

structure is available. We shall study more carefully the setting of Lie groups

because one of our motivations for this paper is the lifting of cocycles repre-

senting characteristic classes. In general this amounts to lifting L∞-cocycles
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on a Furstenberg boundary; the necessity of such liftings is illustrated e.g.

in [BI:2002], [BM:2012], [HO:2013] and [BBI:2013].

Let G be a connected (or almost connected) semi-simple Lie group. We

refer to [Hel:2001] and [Kna:2002] for basic facts and the notation below.

Choose an Iwasawa decomposition G = KAN and let M be the centraliser

of A in K. The Furstenberg boundary of G can be defined as the ho-

mogeneous space B = G/MAN ∼= K/M . We assume that G has finite

centre; this does not restrict the generality since the centre acts trivially on

B anyway. We assume that G is non-compact since otherwise B is trivial.

Let X = G/K be the symmetric space and recall that any point ξ ∈ B
can be considered as a Weyl chamber at infinity, thus providing a family of

directions towards infinity in X.

We shall now construct an explicit family of truncated non-tangential

domains V ξ
t ⊆ X with t ≥ 0. Each V ξ

t should be thought of as a compact

prism based at the origin o = eK ∈ X and pointing towards ξ, extending

further and further towards ξ as t→∞.

To this end, we choose once and for all a compact set D ⊆ N with

non-empty interior. We can, and do, choose D to be M -invariant since M is

compact and normalises N . Let log : A→ a be the inverse of the exponential

map, where a is the Lie algebra of A. We denote by A+ ⊆ A (resp. a+ ⊆ a)

the positive Weyl chamber and by A+ its closure in A. Let % : a → R be

the Weyl vector, i.e. the half-sum of positive restricted roots. We define

V ξ
t = k AtD o, where At =

{
a ∈ A+ : %(log a) ≤ t

}
and where kM = ξ in B ∼= K/M ; notice that V ξ

t does not depend on the

choice of k ∈ K modulo M .

We denote by
ffl
dx normalised integrals on X with respect to the measure

induced by a Haar measure on G. Equivalently, this is the Lebesgue measure

on X for the Riemannian structure induced by the Killing form of g if we

choose the right normalisation of the Haar measure. Given an integrable

function class ϕ on B, we denote by Pϕ its Poisson transform (p. 100

in [Hel:2008] or p. 279 in [Hel:2000]), which is a harmonic function on X.

Finally, we choose a non-principal ultrafiltre U on N and denote by Limn,U

the corresponding ultralimits over n ∈ N.

Theorem B. The expression

(i) (λϕ)(ξ) = Lim
n,U

 
V ξn

(Pϕ)(x) dx
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defines a G-equivariant strong linear lifting λ : L∞(B)→ L∞(B).

The interest of this explicit formula is that it can allow exact compu-

tations even at points that are not Lebesgue points. Indeed, if φ has some

symmetries, it can happen that the integrals in (i) converge as n→∞. This

is especially true if ϕ is a simple configuration invariant, as is precisely the

case when one considers L∞-cocycles on Furstenberg boundaries.

Here is the most elementary example. Consider G = SL2(R) acting on

B = R∪{∞} by Möbius transformations. We consider the function class ϕ

given by the sign of ξ ∈ R, undefined at 0 and∞. The latter are two points

where a general lifting could take unpredictable values.

In the present case, the above machinery boils down to the following

classical situation: X is the upper half plane in C and the Poisson transform

is easily computed to be Pϕ(x) = 1− 2 arg(x)/π. Take A+ to consist of the

diagonal matrices
(
a 0
0 1/a

)
with a > 1; then N is the group of matrices ( 1 u

0 1 ).

We define D by |u| ≤ 1. Then V 0
t and V ∞t are both horizontal slices of the

cone |Re(x)| ≤ Im(x). Therefore, by sagittal symmetry we find (λϕ)(ξ) = 0

for both ξ = 0,∞. Such symmetries are particularly useful for cocycles,

compare Remark 7 below.

Observe that the choice of D affects the outcome; for instance, defining

D by 0 ≤ u ≤ 1 yields the value π/4− log
√

2 instead of 0.

1.D. Notes on (ir)regularity. Any individual measurable function class

admits a Borel representative, as follows e.g. from Lusin’s theorem. It is

therefore tempting to require that a lifting yield such Borel representatives.

In the few cases where explicit representatives are known for L∞-cocycles

representing characteristic classes on flag manifolds, these representatives

are indeed Borel. In fact they loiter on the lower rungs of the hierarchies of

Hausdorff–Young ([Hau:1914, IX],[You:1913]) or Baire [Bai:1905].

In the setting considered by von Neumann, it is possible to obtain a Borel

lifting under the continuum hypothesis, see p. 371–372 in [vNS:1935]. Such

a Borel lifting cannot, however, be equivariant under translations. This fact

was discovered in [Joh:1980b], extended to abelian groups in [Tal:1982], to

general locally compact groups in [KP:1983] and even beyond [Bur:2007].

How about the (non-equivariant) von Neumann–Stone lifting without

the continuum hypothesis? Even assuming a strong negation of CH such

as 2ℵ0 = ℵ2, both the non-existence and the existence of Borel liftings are

consistent with ZFC (provided ZFC is consistent). See [She:1983] for non-

existence and [CFZ:1994] for existence.
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Finally, a few comments on the condition that a lifting be strong. This

condition is notably of importance for the disintegration of measures [ITIT:1964].

It can be satisfied e.g. when the topology ofX has a countable base [ITIT:1969].

A slightly weaker conclusion holds for a base of cardinality ℵ1 [Bic:1973],

but there exists a space with a base of cardinality ℵ2 that does not admit a

strong lifting [Los:1979].

2. Proof of Theorem A

This new integral of Lebesgue is proving itself a wonderful
tool. I might compare it to a modern Krupp gun, so easily
does it penetrate barriers which before were impregnable.

[VV:1916], page 7

Choose a left Haar measure on G and write
´
dg for the corresponding

integrals. The amenability of the G-action on X means that there is a net

(indexed by some directed set I) of non-negative continuous functions µi on

G×X such that

(a)
´
G
µi(g, x) dg = 1 for all i ∈ X and all x ∈ X,

(b) limi∈I
´
G
|µi(sg, sx)−µn(g, x)| dg = 0 uniformly for (s, x) in compact

subsets of G×X,

see Proposition 2.2 [AD:2002].

We choose a Riemannian metric on X and denote by B(z, r) the cor-

responding closed ball of radius r > 0 around any z ∈ X. We denote by´
dy and

ffl
dy the integrals, respectively normalised integrals with respect

to the associated Lebesgue measure on X. Furthermore, we choose an ultra-

filtre I on I dominating the order filtre, a non-principal ultrafiltre U on

N and denote by Limi,I ,Limn,U the corresponding ultralimits. We contend

that the desired lifting for a function class ϕ = [f ] will be provided by the

expression

(ii) (λϕ)(x) = Lim
i,I

(λiϕ)(x),

wherein

(iii) (λiϕ)(x) = Lim
n,U

ˆ

G

 

B(g−1x,1/n)

f(gy)µi(g, x) dy dg.

Regarding well-posedness, we notice first that the function

(g, x) 7−→
 

B(g−1x,1/n)

f(gy) dy

depends on the class ϕ of f rather than on f , is bounded by the sup-norm

‖ϕ‖∞ and is continuous on G × X. Indeed, the map X → L1(X) sending
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z ∈ X to the characteristic function of B(z, 1/n) is norm-continuous. In

particular, the integral over G and the ultralimit over n both make sense

in (iii). Next, observe that λi is linear in ϕ, positive, and sends [1X ] to 1X .

We claim that λi(ϕ) represents ϕ; this implies notably the measurability of

λi(ϕ). In fact we claim more: let x be any Lebesgue point of f ; we shall show

(λiϕ)(x) = f(x) for all i ∈ I. The definition (ii) then implies (λϕ)(x) = f(x)

and hence λ is a lifting.

To prove the claim, fix first g ∈ G. Let Rn > 0 (respectively rn > 0)

smallest (resp. largest) radius such that

(iv) B(x, rn) ⊆ gB(g−1x, 1/n) ⊆ B(x,Rn).

Since g is C1 at x, the sequence Rn/rn is bounded (depending on g, x). In

other words, the sets in (iv) have bounded excentricity with respect to balls

around x. Thus Lebesgue differentiation holds at x for any g ∈ G in the

sense that

lim
n→∞

 

gB(g−1x,1/n)

f(y) dy = f(x),

see e.g. Theorem 7.10 in [Rud:1987] (or [dP:1936]). In order to deduce the

claim, it remains only to show that the difference

(v)

 

gB(g−1x,1/n)

f(y) dy −
 

B(g−1x,1/n)

f(gy) dy

converges to zero uniformly over g in compact subsets of G. Indeed, the uni-

formity will ensure that the convergence survives after integrating against

the probability density µi(g, x)dg. Denoting by Vol(·) the normalising factor

in
ffl

, the change of variables formula turns (v) into 

B(g−1x,1/n)

f(gy)

(
Vol(B(g−1x,1/n))

Vol(gB(g−1x,1/n))
|Jacg(y)| − 1

)
dy.

Since f is bounded, this converges to zero as n → ∞ because of the char-

acterisation of the Jacobian in terms of the volume of images of small

balls. The convergence is uniform for g in compact sets because of the C1-

continuity. The claim stands proved.

We now verify that λ is G-equivariant. Fix any x ∈ X and s ∈ G. Given

i ∈ I, the change of variables g → s−1g yields for (sλiϕ)(x) = (λiϕ)(s−1x)

the formula

(sλiϕ)(x) = Lim
n,U

ˆ

G

 

B(g−1x,1/n)

f(s−1gy)µi(s
−1g, s−1x) dy dg.
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On the other hand,

(λisϕ)(x) = Lim
n,U

ˆ

G

 

B(g−1x,1/n)

f(s−1gy)µi(g, x) dy dg.

Thus we have∣∣∣(sλiϕ)(x)− (λisϕ)(x)
∣∣∣ ≤ ‖ϕ‖∞ ˆ

G

∣∣µi(s−1g, s−1x)− µi(g, x)
∣∣ dg.

This converges to zero by condition (b). Therefore λ is equivariant, finishing

the proof of Theorem A.

3. Proof of Theorem B

We keep the notation introduced for Theorem B. Furthermore, we use dg,

dn, da and dk to denote (integration against) a choice of left Haar measures

on G, N , A and K. When it causes no confusion, we simply denote by

| · | the corresponding measure of measurable subsets. We normalise our

choices in such a way that |K| = 1 and that dx is the projection of dg

to X = G/K. If we write the Iwasawa decomposition in the order ANK,

then we can moreover assume dg = da dn dk, see [Hel:2000, I.5.3]. This now

fixes all normalisations since we chose dx to coincide with the Riemannian

Lebesgue measure associated to the Killing form of g. Finally, we denote by

r = dim a the R-rank of G.

We shall first investigate the sets Ut ⊆ X defined by Ut = AtD o. We

have |Ut| = |At| · |D| for the corresponding measures.

Lemma 3. We have

lim
t→∞

∣∣aUt ∩ Ut∣∣
|Ut|

= 1

uniformly for a over compact subsets of A.

Proof. It suffices to prove the statement with At in place of Ut. By con-

struction, there is a constant c1 > 0 such that |At| = c1t
r. Therefore, it

suffices to prove the following claim: there are c2, c3 ≥ 0 such that for every

a ∈ A there is b ∈ A with ‖ log b‖ ≤ c2‖ log a‖ such that aAt ∩ At contains

bAt−c3‖ log a‖ for all t. (By convention, At is empty for t < 0.) This claim,

however, is an elementary property of simplicial cones in Rr (one can take

b to be the exponential of a suitable multiple of the barycentric vector in

a+ dual to %). �

Proposition 4. We have

lim
t→∞

∣∣uUt ∩ Ut∣∣
|Ut|

= 1
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uniformly for u over compact subsets of N .

Proof. Fix an arbitrary compact subset C ⊆ N . By definition of the terms

of the Iwasawa decomposition, A+ contracts N to the identity uniformly in

the following precise sense. Given an identity neighbourhood J in N there

exists b ∈ A+ such that for all a ∈ bA+ and all u ∈ C we have a−1ua ∈ J .

Let now ε > 0. Since D is compact, there is an identity neighbourhood

J ⊆ N such that |JD| ≤ (1 + ε)|D|. Choose b as above; by Lemma 3, we

have

(vi)
∣∣Ut ∩ bA+D o

∣∣ ≥ (1− ε)|Ut|

for all t large enough. But whenever x is in Ut ∩ bA+D o and u ∈ C, we

have ux ∈ At JD o. Indeed, writing x = ado for a ∈ At ∩ bA+ and d ∈ D
yields ux = a(a−1ua)do. Thus we deduce

uUt \ Ut ⊆
(
At JD o \ Ut

)
∪ u
(
Ut \ bA+D o

)
,

and hence ∣∣uUt \ Ut∣∣ ≤ ∣∣At JD o \ Ut
∣∣+
∣∣Ut \ bA+D o

∣∣.
The first term is less than ε|Ut| by the choice of J . For t large enough

independently of u ∈ C, the second terms is also less than ε|Ut|, by (vi).

Hence, |uUt ∩ Ut| ≥ (1− 2ε)|Ut| and the proposition follows. �

We can now show that the sets V ξ
t of Theorem B provide an explicit

witness for the (well-known) amenability of the G-action on B, as follows.

Proposition 5. We have

lim
t→∞

sup
ξ∈B

∣∣gV ξ
t ∩ V

gξ
t

∣∣
|V ξ
t |

= 1

uniformly for g over compact subsets of G.

Proof. We choose a map B → K, ξ 7→ kξ such that kξM represents ξ in

K/M . We then define p : G×B → G by p(g, ξ) = k−1gξ gkξ and observe that it

ranges in a compact set whenever g is restricted to a compact set. Moreover,

p(g, ξ) fixes the point of B representing the trivial coset; in other words, p

ranges in NAM . In view of V ξ
t = kξUt, we have∣∣gV ξ

t ∩ V
gξ
t

∣∣ =
∣∣p(g, ξ)Ut ∩ Ut∣∣.

Now the conclusion follows from Lemma 3 and Proposition 4, recalling that

Ut is M -invariant. �
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In order to conclude the proof of Theorem B, it now suffices to show that

the expression

(λϕ)(ξ) = Lim
n,U

 
V ξn

(Pϕ)(x) dx

defines a linear lifting λ : L∞(B) → L∞(B). Indeed, the G-equivariance

follows from Proposition 5 exactly as in the proof of Theorem A thanks to

the G-equivariance of the Poisson transform P . We are going to use the

Fatou theorem of Knapp–Williamson, Theorem 4.1 in [KW:1971].

Lemma 3 implies that if τ : R+ → R+ is a function tending sufficiently

slowly to infinity, then

(vii) lim
t→∞

∣∣ exp(τ(t)α)Ut ∩ Ut
∣∣

|Ut|
= 1

holds uniformly for α over compact subsets of a. (In fact the proof of the

lemma shows that it suffices to have τ(t)/t → 0.) Choose once and for all

an element α0 ∈ a+ and a function τ as above. Define the modified domains

Ṽ ξ
t = kξ

(
exp(τ(t)α0)Ut ∩ Ut

)
.

Then (vii) implies

lim
t→∞

∣∣Ṽ ξ
t ∩ V

ξ
t

∣∣
|V ξ
t |

= 1

and hence the following modified identity for λ

(viii) (λϕ)(ξ) = Lim
n,U

 
Ṽ ξn

(Pϕ)(x) dx

holds. Since α0 is in the positive Weyl chamber, any sequence xn ∈ Ṽ ξ
n

converges admissibly unrestrictedly to ξ in the sense of Korányi (Section 4

in [Kor:1969]). More precisely, the fact that α0 is regular implies that for

any T ∈ a, our modified domain Ṽ ξ
n lies within Korányi’s domain A T

Do(ξ) in

the notation of [Kor:1969] page 403 when τ(n) is large enough relative to

T . Indeed,

τ(n)α0 − T ∈ a+ =⇒ kξ(exp(τ(n)α0)A
+Do ⊆ A T

Do(ξ)

according to the definition of Korányi’s A T
Do(ξ). Therefore, choosing f ∈ ϕ,

the Knapp–Williamson Fatou theorem implies that for almost every ξ ∈ B,

the Poisson transform (Pϕ)(x) converges to f(ξ) uniformly for x in Ṽ ξ
n as n

goes to infinity. In view of (viii), this concludes the proof that λϕ represents

ϕ.

The fact that the lifting λ is strong can be justified as follows. The proof

of Theorem 4.1 in [KW:1971] relies notably on Lebesgue-type strong differ-

entiation much in the same was as the Fatou theorems of Fatou [Fat:1906],
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Marcinkiewicz–Zygmund [MZ:1939], etc. do, but differentiation has to be

performed on the nilpotent group ϑ(N) instead of Euclidean differentiation

(ϑ is the Cartan involution). Nonetheless, this provides convergence at least

at every continuity point; compare §4 in [Kor:1969] and §4 in [KW:1971].

4. Proof of the remarks

Having in mind the proof of Theorem A, we can address Remark 1. Keep

the notation of the theorem and let p ∈ N. We define µp,i on Gp×Xp as the

product of µi and observe that it satisfies Properties (a) and (b) of Section 2

for the Gp-action on Xp. Given a point x = (x1, . . . , xp) in Xp and r > 0,

we denote by C(x, r) the product of the balls B(xi, r). We claim that

(ix) (λpϕ)(x) = Lim
i,I

Lim
n,U

ˆ

Gp

 

C(g−1x,1/n)

f(gy)µp,i(g, x) dy dg

defines a Gp-equivariant strong linear lifting for ϕ ∈ L∞(Xp). Indeed, the

sets C(x, r) have bounded eccentricity with respect to the balls in Xp for

the product metric. Thus the proof of Theorem A applies unchanged to λp.

By construction λp intertwines the permutation of coordinates. In order

to check that the family λp intertwines coboundaries, we recall that the

homogeneous coboundary operator d is the alternating sum
∑p

j=0(−1)jdj,

where dj omits the jth coordinate. Thus it suffices to verify the follow-

ing claim: let f ∈ L∞(Xp) and define d0f ∈ L∞(xp+1) by (d0f)(x) =

f(x1, . . . , xp), where x = (x0, x1, . . . , xp). Then λp+1[d0f ] = d0λp[f ]. This is

indeed apparent in the formula (ix).

Remark 1 has an immediate application to cohomology. We recall that

when considering cocycles given as function classes, a representative sat-

isfying the cocycle equation everywhere is often called a strict cocycle to

emphasize that the cocycle equation is not only assumed to hold amost-

everywhere.

Corollary 6. Let G be a locally compact group with a C1-continuous amenable

action on a differentiable manifold X.

Then every continuous bounded cohomology class of G (with real coeffi-

cients) can be represented isometrically by a G-invariant strict cocycle in

L∞(Xp+1), where p is the degree of the class.

We refer to [BM:2002, Mon:2001] for the context of this result and for

continuous bounded cohomology. The particular case where G is a semi-

simple Lie group is of special importance because explicit bounded co-

cycles for characteristic classes lead to numerical invariants in topology.
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The prime example of this phenomenon is given by Milnor–Wood inequali-

ties [Mil:1958, Woo:1971, Gro:1982]. We recall that all characteristic classes

are conjectured to be bounded [Dup:1979, Mon:2006]; this is known to be

the case for primary classes [Gro:1982, Buc:2004].

Proof of Corollary 6. The G-action on X is amenable also in the measure-

theoretical sense of Zimmer, see [ADR:2000, 3.3.8]. Therefore, every coho-

mology class can be represented isometrically by an L∞-cocycle (function

class) on Xp+1, see [BM:2002, Thm. 2] or [Mon:2001, 7.5.3]. Now the result

follows from Theorem A and Remark 1. �

Remark 7. The lifting of Theorem B for a semi-simple Lie group G also

leads to a family of liftings for Gp acting on Bp that satisfy the additional

properties of Remark 1. Indeed it suffices to make consistent choices for the

Weyl chamber etc. for Gp, taking (A+)p ⊆ Ap and the compact set Dp in Np.

The resulting lifting is in fact equivariant for the almost connected semi-

simple group Sym(p) nGp, and thus well-suited to implement Corollary 6.

Turning to Remark 2, let m ≥ 4 be an even integer and consider the

group G = GL+
m(R) of matrices with positive determinant acting on the

projective space PRm. In order to justify the remark, it suffices to show that

there is a non-null bounded measurable G-invariant alternating function

f : (PRm)m+1 → R such that the coboundary df is a null-function, but

such that for every G-invariant alternating function f ′ in the class of f , the

function df ′ does not vanish everywhere on (PRm)m+2.

The argument is very similar to [BM:2012, §3], except that in this refer-

ence matrices with negative determinant were used to obtains cancellations;

we will have to avoid this trick since we have no sign-equivariance here. In

any case, the existence of the non-null f with negligible coboundary df is

established therein. Let thus f ′ be G-invariant, alternating and in the class

of f ; we shall verify that df ′ is not zero. Denote by e1, . . . , em ∈ PRm the

images of the usual basis vectors. Then there are exactly two G-orbits of

(m + 1)-tuples (x, e1, . . . , em) such that x has no zero entries, and |f | is

constant on the union of these two orbits, which is co-null (see [BM:2012,

§3]). Thus f ′ cannot vanish at (e0, e1, . . . , em), where e0 is the class of the

sum of all basis vectors. We shall prove the remark by showing that df ′ does

not vanish on the (m + 2)-tuple (e0, e1, . . . , em, e1,2), where e1,2 is the class

of the sum of the first two basis vectors. To that end, it suffices to show that

djf
′ vanishes there for all 0 ≤ j ≤ m, since dm+1f

′ gives f ′(e0, e1, . . . , em)

which is non-zero.
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For j = 0, consider the block-diagonal matrix g = ( 0 1
1 0 ) ⊕ −1 ⊕ Idm−3

which is in G. It permutes e1 with e2 but fixes e1,2 and ei for all i ≥ 3;

therefore f ′ vanishes on (e1, . . . , em, e1,2).

For j = 1, we consider g =

(
1 0 0 0
0 1 0 0
0 0 0 1
2 0 −1 0

)
⊕ Idm−4. It permutes e3 with

e4 but fixes all other coordinates of (e0, e2, . . . , em, e1,2), so that f ′ vanishes

there. A similar matrix works for j = 2.

For j = 3, take g = ( 0 1
1 0 ) ⊕ ( 1 0

2 −1 ) ⊕ Idm−4. It permutes e1 with e2 but

fixes all other coordinates of (e0, e, 1, e2, e4, . . . , em, e1,2), so that f ′ vanishes

there. A similar matrix works for 4 ≤ j ≤ m, finishing the proof.

5. Remarks on the proofs

(a) Whilst the amenability of the action seems essential for the proof of

Theorem A, it is not a necessary condition. First of all, one could add a

non-amenable factor to G acting trivially on X. Another trivial case arises

when X is discrete. There are however more essential counter-examples,

even going back to our basic guiding example of the projective action of

SL2(R) on R∪{∞}. We recall that the group G(R) of piecewise projective

homeomorphisms of R∪{∞} and its subgroup H(R) of piecewise projective

homeomorphisms of R are both non-amenable [Mon:2013]. They contain

many non-amenable finitely generated subgroups which, due to their self-

similar nature, act non-amenably on R ∪ {∞}, respectively on R; in fact

their point stabilisers are non-amenable (compare [Mon:2013]). But by its

local construction, the lifting of Theorem B remains unaffected (compare

also (d) below).

Proposition 8. The linear lifting of Theorem B is G(R)-equivariant.

Question 9. Is there a notion of local amenability of an action which could

be necessary and sufficient for the existence of equivariant linear liftings?

A concrete test-case is the following.

Problem 10. Prove that there is no SL3(R)-equivariant lifting on the pro-

jective space PR3.

(b) The proof of Theorem A uses an averaging device before completing

Lebesgue differentiation. We have observed in the introduction that one can-

not, it seems, reverse the order and average a given (non-equivariant) lifting

in this way. Nevertheless, it is plausible that our proof can be combined with

more general constructions of liftings. This would lead to a positive answer

to the following.
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Question 11. Let G be a locally compact group with a continuous amenable

action on a locally compact space X. Is there a G-equivariant linear lifting

on X?

(c) We refer to [Mon:2001, 4.1] for the notion of relatively injective Banach

modules.

Question 12. Let G y X be an amenable action as in Theorem A or

Question 11. Is the Banach G-module L∞(X) relatively injective?

Several related function spaces on X have been shown to be relatively in-

jective [Mon:2011, p. 3875], but this always relied on duality; the proof given

therein would for L∞(X) run into the measurability issues mentionned in

the introduction. As for the quotient L∞(X), its relative injectivity actually

characterizes the measure-theoretical amenability in the sense of Zimmer,

see [BM:2002, Thm. 2] or [Mon:2001, 7.5.3]. This Zimmer-amenability fol-

lows from topological amenability [ADR:2000, 3.3.8].

(d) By construction, the linear lifting of Theorem B is given by convolution

against a rather explicit approximate identity : the average over V ξ
n of the

Poisson kernel. For instance, for SL2(R) and D as in §1.C, we have

(x) λϕ(ξ) = Lim
n,U

ˆ +∞

−∞
ϕ(x)Mn(x− ξ) dx (ϕ ∈ L∞(R), ξ ∈ R)

where dx is the Lebesgue measure and the kernel Mt is given for t > 0 by

Mt(x) =
1

2πt

ˆ 1

e−t

ˆ 1

−1

du dv

v2 + (uv − x)2
,

which can be re-written with A(x) = x arctan(x)− 1
2

log(1 + x2) as

Mt(x) =
1

2πtx

(
A(1 + etx)− A(1− etx) + A(1− x)− A(1 + x)

)
.

That (x) defines a SL2(R)-equivariant linear lifting is due to the fact that

Mt − Jacg ·Mt ◦ g tends to zero in L1-norm as t → ∞ for all g ∈ SL2(R).

This, however, implies the corresponding statement for all g in the piecewise

SL2(R) group. Therefore, λ is equivariant for this larger group.

Since Mt appears as a convolutor in (x), its Fourier transform oper-

ates more directly. In can be written as exponential integral M̂t(ω) =
1
t

´ |ω|
e−t|ω|

e−s sin s
s2

ds (in non-unitary angular frequency ω).
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