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Abstract. We determine the bounded cohomology of the group of homeomor-
phisms of certain low-dimensional manifolds. In particular, for the group of

orientation-preserving homeomorphisms of the circle and of the closed 2-disc,

it is isomorphic to the polynomial ring generated by the bounded Euler class.
These seem to be the first examples of groups for which the entire bounded

cohomology can be described without being trivial.

We further prove that the Cr-diffeomorphisms groups of the circle and of
the closed 2-disc have the same bounded cohomology as their

homeomorphism groups, so that both differ from the ordinary cohomology of

Cr-diffeomorphisms when r > 1.
Finally, we determine the low-dimensional bounded cohomology of homeo-

and diffeomorphism of the spheres Sn and of certain 3-manifolds. In par-

ticular, we answer a question of Ghys by showing that the Euler class in
H4(Homeo○(S3)) is unbounded.

1. Introduction

Bounded cohomology H●
b has many motivations and applications; a few examples

in geometry, topology and dynamics are [Gro82], [Ghy87], [Dup79], [EP03], [Buc07],
[MS06]. If a classical invariant is bounded, then determining a representative in
bounded cohomology can refine the invariant considerably, see e.g. [Ghy01], [MS04].
Contrariwise, showing that a class in not bounded is a restriction by itself, see
e.g. [Lan94, Q. F.1], [Cal04].

Unfortunately, bounded cohomology remains largely elusive: as stated in
[Mon06, §1], there was no group for which all of H●

b was known, unless it is trivial.
Recent advances brought more examples where bounded cohomology is trivial and
new examples where it is pathologically huge [Löh17], [FFLM21b].

Missing were examples where we can actually describe non-trivially, and under-
stand, the entire bounded cohomology, especially for groups of relevance in geom-
etry, topology or dynamics. This article is a first step in that direction.

Since our results concern groups of homeomorphisms and diffeomorphisms of
manifolds, they can be compared to the very rich supply of results on the ordinary
cohomology of these groups and how the latter relates to the underlying manifold.
Interestingly, some of our results exhibit a close similarity to the classical case,
while others stand in strong contrast. It turns out that this behaviour depends on
the category: topological or smooth.

1.A. The circle S1. Our first results regard the circle and are much simpler to
prove than for the disc; they constitute therefore an excellent warm-up for the
techniques introduced in this paper.

The ordinary cohomology of the group Homeo○(S1) of orientation-preserving
homeomorphisms of the circle is known to be a polynomial ring generated by the
Euler class E ∈H2 for flat S1-bundles:

(1) H●(Homeo○(S1)) ≅ R[E ]
1



2 NICOLAS MONOD AND SAM NARIMAN

(we take cohomology with coefficients in R). This can be deduced from a remarkable
theorem that Thurston ([Thu74, Cor. (b) of Thm. 5]) established for any closed
manifold M . It states that that the natural map BHomeo(M) → BHomeoτ(M)
induces a cohomology isomorphism, wherein Homeoτ denotes the topological group
endowed with the C0-topology. (A group without superscript τ will always refer to
the “abstract”, i.e. discrete, group; see Section 2.) Thurston’s theorem applies to
the neutral component Homeo○ as well. In fact, we always work with Homeo○, since
this subgroup also determines the cohomology of Homeo by analysing the action of
the group of components. In the case of the circle, we have BHomeoτ○(S1) ≃ CP∞

and hence (1) follows.

Our first theorem is the analogue of (1) for bounded cohomology. This is prob-
ably the first case where the entire bounded cohomology of a group can be deter-
mined without being either trivial or too pathologically large to describe. For the
statement, recall that E is a bounded class by the Milnor–Wood inequality ([Mil58],
[Woo71]) and that it admits a unique bounded representative [MM85, Cor. 2.11]
in H2

b , the bounded Euler class Eb ∈ H2
b , because Homeo○(S1) is uniformly perfect

(see [MM85, Cor. 2.11] and [EHN81, Thm. 2.3]).

Theorem 1.1. We have H●
b (Homeo○(S1)) ≅ R[Eb], the polynomial ring generated

by the bounded Euler class.

Thus the comparison map H●
b (Homeo○(S1)) → H●(Homeo○(S1)) is an isomor-

phism in every degree. Such a statement completely fails already for a surface
Σg of genus g > 0. Indeed, a recent result of Bowden–Hensel–Webb ([BHW21])
shows that H2

b (Homeo○(Σg)) is infinite-dimensional; by contrast, the the results of
Hamstrom [Ham74] and Thurston [Thu74] imply that H2(Homeo○(Σg)) vanishes.
Quasimorphisms and low dimensional bounded cohomology of volume preserving
diffeomorphisms and symplectomorphisms have also been extensively studied (see
[GG04, Pol06, BM21] and references therein). Another example to which we shall
return is a theorem due to Mann [Man20] stating that the map H2

b (Homeo(M))→
H2(Homeo(M)) has a nontrivial cokernel for certain Seifert fibered 3-manifolds M .

For diffeomorphism groups, the usual group cohomology is related to deep open
questions in foliation theory, in particular to the homotopy type of the Haefliger

space (see [Tsu89a] and references therein). Let BDiffr(M) be the homotopy fiber
of the map

η∶BDiffr(M)→ BDiffr,τ(M)
that is induced by the identity homomorphism. For C1-diffeomorphisms, remark-
ably Tsuboi proved (see [Tsu89b]) that η is a homology isomorphism. In all regular-
ities, Mather–Thurston’s theorem ([Thu74, Thm. 5], [Mat11]) says that the space

BDiffr(M) is homology isomorphic to the space of sections of a certain bundle over
M . For Cr-diffeomorphisms when r > 1, as a consequence of Mather–Thurston’s
theorem and a conjecture about the connectivity of the Haefliger space ([Thu74,
Conjecture], [Hae10, Section 6]), it is expected that η induces a homology isomor-
phism for degrees less than or equal to dim(M). For regularities r > 1 and a
compact manifold M , it is known that there are non-trivial Godbillon–Vey classes
in Hdim(M)+1(Diffr(M);R) (see [Bot78, Miz17]) and in particular for the case of
the circle, Thurston ([Thu72]) proved that there is a surjective map

H2(Diffr○(S1);Z)↠R⊕Z,

where the map to Z summand is induced by the Euler class and the map to R is
induced by the Godbillon–Vey class. It is conjectured ([Mor17]) that this map is
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in fact injective. Morita ([Mor84, Mor85, Nar16]) generalised Thurston’s theorem
and showed that there exists a surjective map

H2n(Diffr○(S1);Z)↠R⊕Z,

for all n where the map to Z summand is induced by the power of the Euler
class. Although determining the group cohomology of Diffr○(S1) for r > 1 seems
to be a very difficult open problem, the smooth group cohomology of the infinite
dimensional Lie group Diffr○(S1) satisfies the van Est isomorphism ([Hae79, Page
44]) and is completely determined as

H●
sm(Diffr○(S1)) ≅ R[E ,G V ]/(E ⋅ G V = 0).

Similarly, the group cohomology of the piecewise linear homomeomorphisms
PL○(S1) is much richer than the group cohomology of homeomorphisms of the
circle. In fact, there is a discrete analogue of Godbillon–Vey classes ([GS87]) that
is non-trivial in H2(PL○(S1)). Combining Mather–Thurston’s theorem for PL
foliations and the work of Peter Greenberg ([Gre87, Cor. 1.12]), one can see that
H●(PL○(S1)) is much bigger than the ring that is generated by the Euler class.

In contrast to this classical picture, we prove that bounded cohomology does not
distinguish between homeomorphisms, PL homeomorphisms and diffeomorphisms
of S1.

Theorem 1.2. For every r ∈ N ∪ {∞}, the inclusion Diffr → Homeo induces an
isomorphism in bounded cohomology:

H●
b (Diffr○(S1)) ≅ H●

b (Homeo○(S1)) ≅ R[Eb].

The same statement holds for the piecewise-linear category:

H●
b (PL○(S1)) ≅ H●

b (Homeo○(S1)) ≅ R[Eb].

As we shall see, the proof itself is rather robust with respect to changes of
categories of circle transformations. For instance, it also holds for the countable
subgroup of PL○(S1) known as Thompson’s group T . Therefore, the bounded
cohomology of T is also R[Eb]; this contrasts with the ordinary cohomology deter-
mined by Ghys–Sergiescu [GS87] and provides a concrete example of a countable
group whose bounded cohomology is entirely known. We note that the bounded
cohomology of T can also be determined by combining [Mon22] with [FFLM21a,
§6].

1.B. The closed disc D2. Some methods introduced for the proof of Theorem 1.1
find their full use in higher dimensions. A rather more involved implementation
of our strategy allows us to determine completely the bounded cohomology of
Homeo○(D2).

Theorem 1.3. The restriction map Homeo○(D2) → Homeo○(S1) induces an iso-
morphism in bounded cohomology.
In particular, the algebra H●

b (Homeo○(D2)) is isomorphic to R[Eb].

This recalls McDuff’s theorem ([McD80, Cor. 2.13]) stating that the restriction
homomorphism Homeo○(Dn)→ Homeo○(Sn−1) induces an isomorphism in ordinary
cohomology for all n.

It turns out that our proof is again robust when changing to the smooth category:

Theorem 1.4. The statement of Theorem 1.3 also holds for Cr diffeomorphisms,
r ∈ N ∪ {∞}.
In particular, the algebra H●

b (Diffr○(D2)) is also isomorphic to R[Eb].
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Bowden showed ([Bow11, Prop. 5.1]) that in ordinary group cohomology not
only the Euler class but also the Godbillon–Vey class pulls back nontrivially to the
second group cohomology H2(Diffr○(D2);R) for r > 1. Hence, the comparison map
H2
b (Diffr○(D2))→H2(Diffr○(D2)) is not an isomorphism for r > 1. Shigeyuki Morita

mentioned to the authors the interesting fact that the Bott vanishing theorem
([Bot70]), however, implies that E 4 in H8(Diffr○(D2)) vanishes for r > 1.

Remark 1.5. Let Diffr,vol(D2) be the volume preserving Cr-diffeomorphisms of
D2 for the standard volume form. It is known ([Tsu00, Cor. 3.2]) that for the

restriction map Diffr,vol(D2) → Diffr○(S1), the Euler class pulls back trivially to

H2(Diffr,vol(D2)).

Our general strategy is to construct a semi-simplicial set X●, depending on the
regularity r, on which G = Diffr○(D2) acts in such a way that we decompose D2

into pieces, and each piece will have a stabiliser in G that is easier to handle coho-
mologically. We then resolve H●

b (G) in terms of H●
b (X●), of H●

b (X●/G) and of the
stabilisers. In the case of D2, the set X● consists of configurations of neighbourhood
germs of chords in the disc. The complexity of these configurations, specifically the
infinite possibilities for mutual intersections of chords, has limited us to n = 2.

For this strategy to actually simplify the problem, we need to show that the
stabilisers are boundedly acyclic, meaning that their bounded cohomology vanishes
in all positive degrees. We shall establish several such general bounded acyclicity
results, both as tools for the above and for the case of Sn below. The first non-
trivial bounded acyclicity statement is the theorem of Matsumoto–Morita [MM85]
which states that the group Homeoc(Rn) of compactly supported homeomorphisms
is boundedly acyclic. That result was a refinement of Mather’s acyclicity in ordinary
cohomology [Mat71]. A tool for our study of homeomorphisms and diffeomorphisms
of Sn is the following generalisation of the Matsumoto–Morita theorem to the case
of certain manifolds that can be “displaced”, and also to higher regularities.

Theorem 1.6. Let M be any closed Cr-manifold and n ≥ 1 and let Z be Cr-
diffeomorphic to M × Rn. Then the groups Homeoc(Z), Homeoc,○(Z), Diffrc(Z)
and Diffrc,○(Z) are boundedly acyclic for all r ∈ N ∪ {∞}.

We note that earlier instances of the “displacement” technique, in degree two,
include Kotschick [Kot08] and Burago–Ivanov–Polterovich [BIP08] (notably their
notion of portable manifold).

1.C. Flat Sn-bundles and Ghys’s question. Recall that the Milnor–Wood in-

equality ([Mil58], [Woo71]) for a C0-flat S1-bundle E
pÐ→ Σg over a closed oriented

surface Σg of genus g > 0 states

∣⟨E (p), [Σg]⟩∣ ≤ 2g − 2.

Milnor proved this inequality when the flat circle bundle is linear meaning that the
monodromy group of the bundle lies in PSL2(R) and Wood proved the case where
the monodromy group lies in Homeo○(S1). In the bounded cohomology language,
it says that the Euler class is a bounded class and has a Gromov norm equal to
1
2
. Ghys [Lan94, § F.1] asked the following question about a generalisation of the

Milnor–Wood inequality to flat S3-bundles:

Question 1.7. Let M4 be a compact orientable 4-manifold and

π1(M) ρÐ→ Homeo○(S3) be a representation. Is it true that the Euler number of the
associated S3-bundle over M is bounded by a number depending only on M? Is
E ∈H4(Homeo○(S3)) a bounded class?
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One can define the Euler class for oriented S3-bundles using classifying spaces
as follows. Note that any oriented (not necessarily flat) S3-bundle over the 4-
manifold M up to isomorphism corresponds to a map M → BHomeo○(S3)τ which
is well-defined up to homotopy. By Smale’s conjecture in the topological category
([Hat83]), we know that Homeo○(S3)τ ≃ SO(4). Hence, there is a universal Euler
class E inH4(BSO(4)) ≅H4(BHomeo○(S3)τ) and in factH4(BSO(4)) ≅ R2 which
is generated by the universal first Pontryagin class P1 and E (see also [Nar16,
Remark 3.3]). Now as a consequence of Thurston’s theorem ([Thu74, Cor. (b) of
Thm. 5]), we know the natural map

H4(BHomeo○(S3)τ)→H4(Homeo○(S3)),

is an isomorphism. Therefore, the pull back of the universal P1 and E on the
universal C0-flat S3-bundle are nontrivial. By the abuse of notation, we denote the
pull back of these classes to flat bundles by the same notation. So H4(Homeo○(S3))
is also generated by P1 and E .

Back to Ghys’s question above, proving the boundedness of E is the approach
suggested by the Gromov–Hirzebruch proportionality principle. This boundedness
would generalize the Milnor–Wood inequality and be compatible with the Hirsch–
Thurston theorem [HT75] stating that the Euler class vanishes when π1(M) is
amenable. Moreover, for linear sphere bundles, the boundedness does indeed hold,
as proved by Sullivan [Sul76] and Smillie [Smi] (see also [IT82] for this boundedness,
and [BM12] for the exact bound).

In Section 6, we use the higher dimensional version of the semi-simplicial set we
used for the circle case to answer Ghys’s question in the negative:

Theorem 1.8. We have H4
b (Homeo○(S3)) = 0 and H4

b (Diffr○(S3)) = 0 for all r ≠ 4.
In particular, the Euler class and the first Pontryagin class P1 in H4(Homeo○(S3))
are unbounded.

Remark 1.9. Our proof of the unboundedness of the Euler class for oriented C0 flat
S3-bundles is not constructive. In particular, it would be very interesting to con-
struct explicit families of flat S3-bundles over a given 4-manifold with unbounded
Euler number.

As we shall see, it is not hard to use the same semi-simplicial set to prove:

Theorem 1.10. We have H2
b (Homeo○(Sn)) = 0 and H3

b (Homeo○(Sn)) = 0 for
all n > 1.

The same holds for Diffr○(Sn) with r ∈ N ∪ {∞}.

But to get the calculation up to H4
b , we will use the homotopy type of the group

of diffeomorphisms of 3-dimensional pair of pants and also uniform perfectness of
such groups in dimension 3. To approach the same calculation for S2, the main
obstacle is that uniform perfectness is likely to fail in that context, in view of the
work of Bowden–Hensel–Webb [BHW21]. For higher dimensional spheres, the main
obstacle is the homotopy type of group of diffeomorphisms of higher dimensional
pair of pants.

In a first draft of this paper we established Theorem 1.10 for n = 2,3 only, due
to a restriction on stabilisers appearing for the semi-simplicial sets. Thanks to a
result of Fournier-Facio and Lodha [FFL21], this restriction is lifted. Likewise, we
did not cover the case of diffeomorphisms. That generalisation was made possible
by the recent note [Mon22] (which also lifts the restriction on n).
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2. Notation and background results

We write Dn ⊆ Rn for the closed n-dimensional disc (ball), Bn = int(Dn) for the
open one, and Sn−1 = ∂Dn for the (n − 1)-sphere.

Notations such as Homeo, Diffr and their variants shall refer to the correspond-
ing groups, without any additional topological structure. If we drop the order of
regularity r for diffeomorphisms, we mean smooth diffeomorphisms. If we endow
them with a topology, in this case the C0 or Cr-topology, then we shall write
Homeoτ , Diffr,τ etc. for the resulting topological groups. We warn the reader that
several authors adopt the opposite convention, where the groups are topologized
by default and a superscript δ is added to indicate that e.g. Homeoδ is stripped of
its topology, or endowed with the discrete topology.

(The present convention, arguably more pedantically precise, is convenient here
since the objects of study are “abstract” groups of homeomorphism; it leads occa-
sionally to an unusual notation such as SO(3)τ for the compact group of rotations.)

Given a subset Y ⊆X of a topological space X, we denote by Homeo(X;Y ) the
subgroup of Homeo(X) consisting of those homeomorphisms that fix Y pointwise.
We denote by Homeo(X; near Y ) the subgroup of Homeo(X;Y ) of all elements
that fix pointwise a neighbourhood of Y ; this neighbourhood depends a priori on
the element.

If no coefficients are explicitly indicated, then cohomology, bounded cohomology
and any function spaces are always understood with coefficients in R viewed as a
trivial module.

Given a semi-simplicial set X●, the bounded cohomology H●
b (X●) of X● refers

to the cohomology of the associated complex of spaces of bounded functions

0Ð→ `∞(X0)Ð→ `∞(X1)Ð→ `∞(X2)Ð→ ⋯

Although Hn
b is still poorly understood for general n, we note that X● is connected if

and only if H0
b (X●) has dimension one. The semi-simplicial set is called boundedly

acyclic if Hn
b (X●) vanishes for all n > 0.

The bounded cohomology H●
b (G) of a group G and the corresponding notion of

bounded acyclicity are obtained by taking X● to be the Milnor join of G. Equiv-
alently, the homogeneous resolution leads to an identification of H●

b (G) with the
cohomology of the complex of invariants

0Ð→ `∞(G)G Ð→ `∞(G2)G Ð→ `∞(G3)G Ð→ ⋯

where G acts diagonally on G●+1 and where the differentials are given by the sim-
plicial Alexander–Kolmogorov–Spanier face maps (alternating sums omitting vari-
ables).
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The following fundamental result of Matsumoto–Morita will be used extensively.

Theorem 2.1 (Matsumoto–Morita, Thm. 3.1 in [MM85]). The group Homeoc(Rn)
of compactly supported homeomorphisms of Rn (equivalently of Bn) is boundedly
acyclic. �

That result has recently been extended by various authors to other and wider
settings. First, to all mitotic groups [Löh17]. Then, at the same time as we wrote
the first version of the present article, to binate groups [FFLM21a]. After this, a
criterion was established in [Mon22] which covers the following situation including
numerous homeomorphism or diffeomorphism groups:

Theorem 2.2 (Cor. 6 in [Mon22]). Let G be a group acting faithfully on a set Z.
Suppose that Z contains a subset Z0 and that G contains an element g ∈ G with the
following properties:

(i) every finite subset of G can be conjugated so that all its elements are supported
in Z0;

(ii) gp(Z0) is disjoint from Z0 for every integer p ≥ 1.

Then G is boundedly acyclic. �

In general we have no reason to believe that an infinite product of boundedly
acyclic groups is necessarily boundedly acyclic. However, the above sufficient con-
dition is stable under products; indeed, it suffices to consider the action of the
product on the corresponding disjoint union Z of sets, and to define Z0 as the
disjoint union of the corresponding subsets. Hence, we record the following.

Lemma 2.3. Any product of groups satisfying the conditions of Theorem 2.2 will
satisfy them too, and hence be boundedly acyclic. �

Next, we state a fundamental stability result for the vanishing of bounded co-
homology (without any claim of originality); it implies in particular that bounded
acyclicity is preserved under finite direct products.

Proposition 2.4. Let G be a group, K ⊲ G a normal subgroup and N ∈ N ∪ {∞}.
If Hn

b (K) vanishes for all 0 < n < N , then there is an isomorphism Hn
b (G) ≅

Hn
b (G/K) for all 0 ≤ n < N .

Proof. This follows from a bounded version of the Lyndon–Hochschild–Serre spec-
tral sequence, see e.g. [Mon01, §12]. For the reader’s convenience, we expand on
the necessary details:

Define Q = G/K and consider the double complex

`∞(Gp+1 ×Qq+1)G ≅ `∞(Gp+1, `∞(Qq+1))
G

≅ `∞(Qq+1, `∞(Gp+1))
G

indexed by p, q ≥ 0, with the two differentials being given by the usual homogeneous
differential on the variables in G and in Q respectively. We are now in a very special
case of the setting considered in [Mon01, §12], the differences being as follows.
(1) The reference allows for non-trivial coefficients F , while here F = R. (2) The
reference considers locally compact groups acting on measure spaces S,T , while
here all groups are discrete and simply act on themselves, so S = G and T = Q.
(3) The reference assumes that the locally compact groups are second countable in
order to avoid difficulties with measurability; this assumption is not needed here
since we have no measurability questions.

We can therefore quote from [Mon01, §12] as follows. The double complex
gives rise to two spectral sequences, the first of which collapses already in the
first page and abuts to the bounded cohomology H●

b (G) of G, see Prop. 12.2.1
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in [Mon01]. The second spectral sequence yields the same limit up to isomorphism
and Prop. 12.2.2(ii) in [Mon01] states that the second page of this sequence is

Ep,q2 ≅Hp
b (Q,H

q
b (K))

as soon as Hq
b (K) is Hausdorff. Since H0

b (K) ≅ R is always Hausdorff, Ep,02 is
isomorphic to Hp

b (Q) and our vanishing assumption on Hn
b (K) allows us to deduce

that Ep,q2 vanishes for 0 < q < N and all p. These facts together imply the stated
isomorphisms Hn

b (G) ≅Hn
b (G/K) for all 0 ≤ n < N . �

In more elaborate vanishing arguments, it will be crucial to have a more refined,
quantitative, control of the vanishing. To that end, we introduce the notion of
vanishing moduli as follows.

Definition 2.5. Let X● be a semi-simplicial set satisfying Hn
b (X●) = 0 for some n.

Then we define the nth vanishing modulus of X● as

sup
c∈C1

inf {∥b∥∞ ∶ b ∈ `∞(Xn−1) with db = c},

where

C1 = {c ∈ `∞(Xn) with dc = 0 and ∥c∥∞ ≤ 1}.

In other words, the vanishing modulus controls the smallest norm of a cochain
b that witnesses that a given cocycle c is a coboundary. This modulus is finite
by the open mapping theorem applied to the coboundary map d. This quantity
is dual to the “uniform boundary condition” constant considered by Matsumoto–
Morita [MM85], although they consider it more generally for the trivial cycles within
possibly non-acyclic normed complexes.

In particular, if G is a group with vanishing Hn
b (G), we can speak of the nth

vanishing modulus of G. It can be computed either on the Milnor join of G or on
the homogeneous resolution since they give isometric cochain complexes.

A first occurrence of this notion is as follows. The direct factors of a boundedly
acyclic product of groups are boundedly acyclic, but we will need the following
uniformity statement which is a priori stronger for infinite products.

Proposition 2.6. Fix a positive integer q and let (Gi)i∈I be any family of groups.
If the product ∏i∈I Gi is boundedly acyclic, then the qth vanishing modulus of all

subproducts ∏j∈J Gj is bounded independently of J ⊆ I.
In particular, the qth vanishing modulus of all Gi is bounded independently of i.

The proof uses the following elementary technical observation, which we isolate
for later reference.

Lemma 2.7. Let G be a group and G1 < G a subgroup such that Hq
b (G1) = 0 for

some q > 0. Then the qth vanishing modulus of G1 coincides with the qth vanishing
modulus of the semi-simplicial orbit set given by (Gp+1)/G1 in each dimension p.

Proof of Lemma 2.7. It is known that the bounded cohomology H●
b (G1) can be

realised isometrically on the homogeneous resolution

⋯Ð→ `∞(Gq)G1 Ð→ `∞(Gq+1)G1 Ð→ `∞(Gq+2)G1 Ð→ ⋯
see e.g. [Mon01, 7.4.10] for a more general statement. The proof given in this ref-
erence proceeds by exhibiting maps between this resolution and the homogeneous
resolution for G1 which are non-expanding already at the cocycle level, which im-
plies the statement of the lemma.

We point out that in the case considered here, the technical tools used in [Mon01,

7.4.10] simply boil down to extending functions from Gq+11 to Gq+1 by using coset
representatives. �
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Proof of Proposition 2.6. We claim that for a boundedly acyclic product G = G1 ×
G2 of two groups, the factor G1 is boundedly acyclic with its qth vanishing modulus
bounded by that of G. This claim implies the statement of the proposition by
regrouping the factors in the (possibly infinite) product.

Recall that inflation refers to the morphism H●
b (G1) → H●

b (G) induced by the
projection G → G1 while restriction is the morphism H●

b (G) → H●
b (G1) induced

by the inclusion G1 → G; thus their composition gives the identity on H●
b (G1).

Moreover, the inclusion of G1-invariants into G-invariants realizes the inflation map.
Therefore, we can compute the norms of the relevant cocycles and coboundaries
while realising the inflation-restriction morphisms by the following two inclusions
of (differential complexes of) Banach spaces:

`∞((G1)q+1)G1 = `∞((G/G2)q+1)G ⊆ `∞(Gq+1)G ⊆ `∞(Gq+1)G1 .

The fact that we obtain the correct norms also in the right hand side follows from
Lemma 2.7 and hence the claim is established. �

3. Bounded cohomology of semi-simplicial sets

The following is a versatile method for constructing boundedly acyclic semi-
simplicial sets.

Definition 3.1. Let X be a set and let ⊥ be any binary relation on X. We say
that the relation ⊥ is generic if, given any finite set F ⊆X, there exists x ∈X with
x ⊥ y for all y ∈ F .

Furthermore, we define a semi-simplicial set X⊥● as follows: X⊥n consists of all
(n + 1)-tuples (x0, . . . , xn) in Xn+1 such that xi ⊥ xj holds for all i < j. Note that
X⊥n is non-empty when ⊥ is generic (and X ≠ ∅). The face maps are defined to be
the usual simplex face maps.

In general ⊥ will be thought to represent a suitable transversality condition. A
basic example is the relation ≠, which is generic as soon as X is infinite. A non-
symmetric example is the relation < on X = R. We shall later see more interesting
examples with tuples of germs of arcs.

We emphasize that even though X⊥● consists of pairwise-⊥ tuples, the definition
of genericity must be verified for all finite sets F , without assuming any relation
between their elements.

Proposition 3.2. If ⊥ is generic, then X⊥● is boundedly acyclic (and connected).

Proof. Given F ⊆ X finite, let VF = {x ∈ X ∶ x ⊥ y∀ y ∈ F}. Note that VF ∩ VF ′ ⊇
VF∪F ′ . Thus our assumption implies that the collection of all such VF is a proper
filter base on X. Choose an ultrafilter U on X containing the filter generated by
this base. For any bounded function f on X, we can therefore consider the ultralimit
limx→U f(x).

We define a map

hn∶ `∞(X⊥n)Ð→ `∞(X⊥n−1)
by

(hnf)(x1, . . . , xn) = lim
x→U

f(x,x1, . . . , xn).

We note that hn is linear and bounded (of norm one); the crucial point is that it is
well-defined, since the collection of x for which f(x,x1, . . . , xn) is defined belongs
to U . It is now routine to verify that h● provides a contracting homotopy, because
for any given x1, . . . , xn and x as above, the points x,x1, . . . , xn determine a full
simplex in X⊥● . Explicitly, recall that the differential `∞(X⊥n−1) → `∞(X⊥n) is the
alternating sum of the maps dn,i over 0 ≤ i ≤ n, where dn,i omits the ith element of
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a (n + 1)-tuple. Then the relations dn,ihn = hn+1dn+1,i+1 and hn+1dn+1,0 = Id hold,
which shows that h● is a contracting homotopy. �

Let G be a group acting on a semi-simplicial set X●. This gives rise to hyperco-
homology spectral sequences relating the bounded cohomology of G to that of X●

and of its quotient X●/G, stated in Theorem 3.3 below. Some care is needed since a
number of standard cohomological techniques do not hold for bounded cohomology.
Definition 2.5 affords us a quantitative control.

Theorem 3.3. Let G be a group acting on a boundedly acyclic connected semi-
simplicial set X● and let N ∈ N ∪ {∞}. We make the following assumptions for
each 0 ≤ p < N :

(i) The stabiliser of any point in Xp has vanishing Hq
b for all q > 0 with p+q < N .

(ii) Given q > 0 with p + q < N , the qth vanishing moduli of all those stabilisers
are uniformly bounded.

Then there is an isomorphism Hp
b (G) ≅Hp

b (X●/G) for every 0 ≤ p < N .

Remark 3.4. In order to demystify the condition (ii), we note that it is obviously
satisfied when for instance there are finitely many group isomorphism classes among
the stabilisers in G of points in Xp. In the even more special case where there are
only finitely many conjugacy classes in G of such stabilisers, the above theorem
admits a simpler proof which does not explicitly involve vanishing moduli. In any
case, we shall also need to apply it to situations with infinitely many isomorphism
classes of stabilisers.

The technical assumption (ii) is made to ensure the uniform boundedness enter-
ing the following.

Lemma 3.5. Under the assumptions of Theorem 3.3, consider the G-representation
on `∞(Xp). Then Hq

b (G, `∞(Xp)) vanishes for all q > 0 with p + q < N .

Proof of Lemma 3.5. Fix p and q as in the statement. Let J ⊆ Xp be a set of
representatives of the G-orbits and let Gj < G be the stabiliser of j ∈ J . Thus Xp

can be identified with ⊔j∈J G/Gj .
Consider now a cocycle c representing an element Hq

b (G, `∞(Xp)); that is, c is

a G-equivariant bounded cocycle c∶Gq+1 → `∞(Xp). The above decomposition of
Xp decomposes c as into G-equivariant bounded cocycles cj ∶Gq+1 → `∞(G/Gj) and
moreover ∥c∥∞ = supj∈J ∥cj∥∞. In order to prove the statement, it suffices to show
that each cj is a coboundary of some bounded G-equivariant bj ∶Gq → `∞(G/Gj) in
such a way that ∥bj∥∞ is bounded independently of j; indeed in that case the map
b∶Gq → `∞(Xp) defined by these bj will itself be bounded and witness c = db. We
thus fix some j ∈ J and proceed to show that fact:

Claim. Given cj as above, consider the corresponding Gj-invariant map
cj ∶Gq+1 → R defined by cj(g0, . . . , gq) = cj(g0, . . . , gq)(e). Then cj ↦ cj is an
isometric isomorphism on the cochain level from the standard resolution for
Hq
b (G, `∞(G/Gj)) to the resolution for Hq

b (Gj) given by bounded Gj-invariant

cochains on Gq+1 (as in Lemma 2.7).
This claim is a very explicit form of the Eckmann–Shapiro isomorphism for

bounded cohomology, on the cochain level, and it is proved e.g. in [Mon01, 10.1].
With this claim in hand, the assumptions of Theorem 3.3 can now be applied to
obtain bj ∶Gq → `∞(G/Gj) with ∥bj∥∞ bounded independently of j, as desired. �

Proof of Theorem 3.3. We consider the double complex

Lp,q ∶= `∞(Gp+1 ×Xq)G ≅ `∞ (Gp+1, `∞(Xq))
G
.
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The spectral sequence associated to the horizontal filtration of L●,● has E1-page
defined by the cohomology of

`∞ (Gp+1, `∞(Xq−1))
G Ð→ `∞ (Gp+1, `∞(Xq))

G Ð→ `∞ (Gp+1, `∞(Xq+1))
G

Since X● is boundedly acyclic, this cohomology vanishes for all p ≥ 0 and all q > 0
because for fixed p the functor `∞(Gp+1,−)G is exact for dual morphisms (see
e.g. [Mon01, 8.2.5], wherein the second countability assumption is irrelevant in our
setting since we consider G without topology). For q = 0, we obtain `∞(Gp+1)G by
connectedness of X●. It follows that the spectral sequence converges to H●

b (G).
Turning to the spectral sequence associated to the vertical filtration, the E1-page

is
Ep,q1 =Hq

b (G, `∞(Xp)) .
Applying Lemma 3.5 to X = Xp, the assumption (i) and (ii) imply Ep,q1 = 0 for all
q > 0 with p + q < N .

As for Ep,01 , we have

Ep,01 = `∞(Xp)G ≅ `∞(Xp/G)
which implies

Ep,02 ≅Hp
b (X●/G).

Putting everything together, we have as claimed Hp
b (G) ≅ Hp

b (X●/G) for 0 ≤ p <
N . �

4. Homeomorphisms and diffeomorphisms of the circle

The case of the circle introduces already some of the ideas that will be used
repeatedly in this article, but it evades technical considerations such as moduli of
vanishing or difficult stabilisers. In fact, even the generic relation below is not
strictly needed in this case, although it does simplify the set of stabilisers and the
quotient.

We begin with a general definition: a fat point in an oriented n-manifold M
refers to a germ at 0 of an orientation-preserving embedding Bn → M , where
Bn ⊆ Rn is the open unit disc. The image of 0 in M is the core of the fat point.

We shall prove Theorem 1.1 using a semi-simplicial set of fat points. Let thus
X be the set of fat points in S1. Given x, y ∈ X, we write x ⊥ y if x and y have
distinct cores. This is a generic relation; therefore, Proposition 3.2 implies that X⊥●
is a boundedly acyclic connected semi-simplicial set.

Proof of Theorem 1.1. Since the action of G = Homeo○(S1) on X preserves the
relation ⊥, it induces an action on the semi-simplicial set X⊥● . We claim that the
conditions of Theorem 3.3 are satisfied for N =∞.

Regarding condition (i), observe that the stabiliser in G of a fat point is isomor-
phic to the group Homeoc(R) of compactly supported homeomorphisms, which is
boundedly acyclic by Matsumoto–Morita’s Theorem 2.1.

More generally, let L be the stabiliser of an element of X⊥p . The cores to the
fat points determine p + 1 components of the circle and these components cannot
be permuted by L since every element of L is trivial in some neighbourhood of the
cut-points. Thus L is isomorphic to the direct product of p+1 copies of Homeoc(R).
Therefore, in view of Proposition 2.4, this subgroup is also boundedly acyclic.

As to condition (ii), the above discussion of stabilisers already establishes that
there are finitely many isomorphism types for each given p. We observe, with
Remark 3.4 in mind, that we have the stronger fact that there are only finitely many
G-orbits in every given X⊥p . Indeed, the orbit of a tuple (x0, . . . xp) is determined
by the cyclic ordering of the cores ẋi of the xi. To see this, consider another
tuple (y0, . . . yp) such that the ẏi have the same cyclic order as the ẋi. Choose
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orientation-preserving embeddings ξi∶B1 → S1 representing xi in such a way that
all images ξi(B1) are pairwise disjoint, which is possible since the ẋi are distinct.
Define similarly ηi for yi. We have partial homeomorphisms ηi ○ ξ−1i , which can be
completed to a homeomorphism h ∈ G since we have disjoint images in the same
cyclic order. By construction, h(xi) = yi holds for all i.

In conclusion, Theorem 3.3 implies that H●
b (G) is isomorphic to the bounded

cohomology of the semi-simplicial set X⊥● /G, which coincides with the usual coho-
mology H●(X⊥● /G) since all orbits sets X⊥p /G are finite. In fact we showed more,
namely that X⊥● /G is the complex of cyclic orderings of finite sets, which is well-
known and easily verified to have R[E ] as its cohomology ring, see e.g. [Jek12, §5].
Alternatively, this can be seen by reversing the above argument, but in usual co-
homology (see [Nar20, §3.1.3]). That is to say, H●(X⊥● /G) is isomorphic to H●(G)
because one checks that X⊥● is a contractible semisimplicial set, and because the
stabilisers are acyclic (in the usual sense). The latter fact follows very much like in
the bounded case above: it is reduced to the acyclicity of Homeoc(R) established
by Mather [Mat71] by using the Künneth formula.

Finally, the fact that H●(G) is isomorphic to R[E ] follows from Thurston’s
theorem ([Thu74, Cor. (b) of Thm. 5]) as recalled in the introduction. All the
above arguments being completely natural and given by a morphism of spectral
sequences (the one for bounded cohomology is mapped to the ordinary one by the
forgetful functor), the isomorphism preserves also the ring structure of [bounded]
cohomology. �

Proof of Theorem 1.2. We now turn to the Cr-diffeomorphism group
Gr = Diffr○(S1), where r ∈ N ∪ {∞}. In analogy with the topological case, we
define Cr-fat points as germs of Cr-embeddings. This yields a corresponding
semi-simplicial Gr-set CrX⊥● which is still boundedly acyclic by Proposition 3.2.
The quotient CrX⊥● /Gr is isomorphic to the quotient X⊥● /G of the proof of
Theorem 1.1 because the same transitivity property holds, namely: the orbit of a
tuple is determined by the cyclic order of the cores of the fat points constituting
the tuple. A priori, the only substantial difference between the two settings
resides with the stabilisers, which are products of copies of Diffrc(R). Indeed,
recall that Diffrc(R) is not an acyclic group for r > 1 since there is the
Godbillon–Vey class G V ∈ H2(Diffrc(R)) which is nontrivial. However, this group
is still boundedly acyclic by Theorem 4.2 below. Therefore we conclude as above
that H●

b (G) is isomorphic to R[Eb].
In order to complete the proof of Theorem 1.2 in the Cr case, is only remains

to justify that the isomorphism is induced by the restriction map associated to
the inclusion ι of Diffr○(S1) into Homeo○. This is the case because the comparison
between the two proofs goes through the ι-equivariant semi-simplicial inclusion
morphism CrX⊥● , which induces the identification between CrX⊥● /Gr and X⊥● /G.

Finally, in the PL case, we consider likewise PL fat points and only need to
justify that PLc(R) is boundedly acyclic, which we do in Lemma 4.4 below. This
completes the proof of Theorem 1.2.

(In fact the PL case is even simpler because it is equally easy to show the
bounded acyclicity of PL(R), so that fat points can be replaced by usual points in
that instance.) �

This proof can further be adapted to other circle transformation groups as long
as the main ingredients are preserved. Specifically, suppose that a group G <
Homeo○(S1) acts transitively on all cyclically oriented tuples of points in some G-
orbit, or on some fat version thereof. If the stabiliser of any such tuple (respectively
fat tuple) is boundedly acyclic, then H●

b (G) is isomorphic to R[Eb]. We record
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the special case of Thompson’s group T (see [CFP96] for a definition), where the
bounded acyclicity of stabilisers is proved in [Mon22].

Corollary 4.1. The bounded cohomology ring H●
b (T ) of Thompson’s group T is

isomorphic to R[Eb]. �

Other examples of groups for which this argument holds (again using [Mon22])
are piecewise-projective circle groups discussed in [Mon13].

We now justify the bounded acyclicity that was used in the proof of Theorem 1.2
for various compactly supported transformation groups of R. We establish this in
the following more general setting, as announced in Theorem 1.6.

Theorem 4.2. Let n ∈ N and consider Z = Rn, or more generally Z =M ×Rn for
any closed manifold M when n > 0.

Then the groups G = Homeoc(Z), Homeoc,○(Z), Diffrc(Z) and Diffrc,○(Z) are
boundedly acyclic for all r ∈ N ∪ {∞}.

Proof. In order to apply Theorem 2.2, we need to check the two conditions of that
theorem. Let Z0 =M ×Dn, where Dn is the closed unit ball in Rn.

To verify the first condition, it suffices to show that every compact set C ⊆M×Rn

can be mapped into Z0 by some element h ∈ G○. We can take h = IdM ×h′, where h′

is a homothety on some large ball to ensure h′(C) ⊆Dn, and then radially smoothen
it to the identity away from a larger ball.

The second condition postulates the existence of g in G or G○ such that gp(Z0)
is disjoint from Z0 for every integer p ≥ 1. For n = 1 and M trivial, take first g0
to be any “bump shift”, that is, a transformation which is strictly increasing on
some bounded open interval I containing the interval D1. Then any sufficiently
high power g of g0 will have the required property since g0 is order-preserving. For
n > 1, we can use the one-dimensional case in one coordinate and suitably smoothen
it out to the identity along the other coordinates. In the case of M ×Rn, we extend
g by the identity on the M coordinate. �

Since this proof reduces the statement to Theorem 2.2, we can combine it with
Lemma 2.3; we record this as follows:

Corollary 4.3. The powers Homeoc(Rn)N, Diffrc(Rn)N and Diffrc,○(Rn)N are
boundedly acyclic. The same holds more generally for M ×Rn instead of Rn, where
M is any closed manifold and n > 0. �

If in the proof of Theorem 4.2 we replace the smooth bump shift by a PL bump
shift and the (local) homothety by an analogous PL shrinking map, we obtain:

Lemma 4.4. The group PLc(Rn) is boundedly acyclic for all n ∈ N. �

5. Homeomorphisms and diffeomorphisms of the disc

In this section, we further leverage the method of generic semi-simplicial sets
to prove a bounded version in dimension n = 2 of McDuff’s theorem ([McD80,
Cor. 2.13]) stating that the restriction homomorphism

Homeo○(Dn)→ Homeo○(Sn−1)
induces a cohomology isomorphism:

Theorem 5.1. The restriction map Homeo○(D2) → Homeo○(S1) induces an iso-
morphism in bounded cohomology.

Thus we can apply Theorem 1.1 and deduce:

Corollary 5.2. H●
b (Homeo○(D2)) ≅ R[Eb]. �
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Remark 5.3. As a consequence of McDuff’s result([McD80, Cor. 2.12]) at least in
dimensions n ≤ 3 we know that the inclusion Homeo○(Dn)↪ Homeo○(Bn) induces
an isomorphism on group cohomology. Calegari ([Cal04, §4.1]) however proved
that the Euler class in H2(Homeo○(B2)) is not a bounded class. Therefore, the
inclusion Homeo○(D2)↪ Homeo○(B2) does not induce an isomorphism on bounded
cohomology. It would be interesting to see if Homeo○(D3) has a non-trivial bounded
cohomology.

To find a suitable resolution, we shall define semi-simplicial sets of fat chords:

Definition 5.4. A chord is an embedding of the closed arc D1 into D2 such that
the endpoints ∂D1, but no other points of D1, are mapped to the circle ∂D2.

We fatten this definition by considering an orientation-preserving embedding
ϕ ∶ D1 × R ↪ D2 such that ϕ restricts to an embedding of (∂D1) × R into ∂D2

and such that ϕ(B1 × R) lies in B2. Then let [ϕ] denote the germ of ϕ around
D1×{0}, i.e. we say that ϕ and ψ have the same germ if the restrictions of ϕ and ψ
to D1 × (−ε, ε) are equal for some unspecified positive ε. We call the germ [ϕ] a fat
chord and denote the set of fat chords by FCh. The chord obtained by restricting
ϕ to D1 × {0} depends on [ϕ] only and is called the core of [ϕ]. See Figure 1.

Figure 1. Two fat chords in D2 with their cores.

Definition 5.5. We call two fat chords strictly transverse if

● their cores do intersect, and
● their cores are topologically transverse, and
● the endpoints of their cores are all distinct.

Consider a finite set of fat chords that are pairwise strictly transverse. Then
the complement in B2 of their cores is a finite union of open discs. The boundary
of each such disc is partitioned into pieces of chords and pieces of the the original
boundary S1 = ∂D2. The point of the first condition in Definition 5.5 is that there
is at most one component from S1 for each of these open discs in this partition.
This restriction will later allow us to show that the stabilisers described in the next
lemma are boundedly acyclic.

We write Homeo(D2; near D) for the subgroup of Homeo(D2) consisting of
homeomorphisms that are trivial in some neighbourhood in D2 of a boundary
interval D ⊆ ∂D2, that is, and embedded interval D1 ≅ D ⊆ ∂D2. More precisely,
this definition understands that an arbitrary such D has been chosen, but that each
element of Homeo(D2; near D) can be trivial on a different neighbourhood of D in
D2. The above definitions thus imply the following description.

Lemma 5.6. The stabiliser in Homeo○(D2) of any (n + 1)-tuple of pairwise
strictly transverse fat chords is a finite product of groups, each isomorphic either
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to Homeo(D2; near S1) or to Homeo(D2; near D). Moreover, there are at most
2n + 2 factors of the latter type. �

On the other hand, given that chords may intersect a large number of times, there
is no bound on the number of the factors of the Homeo(D2; near S1) type.

Remark 5.7. The description recorded in Lemma 5.6 simplifies for the action of the
subgroup Homeo(D2; near S1). In that case, the stabiliser of any tuple of pairwise
strictly transverse fat chords is a finite power of Homeo(D2; near S1).

Next, we show that as the name suggests, strict transversality satisfies the con-
dition of Definition 3.1.

Lemma 5.8. The relation of strict transversality is generic on FCh.

Proof. Given finitely many fat chords a1, . . . , ak, the claim is that there is a0 ∈ FCh
strictly transverse to ai for all i > 0. We first outline the strategy of the proof,
writing ȧi for the core of ai.

There is no difficulty whatsoever in satisfying the first and last conditions of
Definition 3.1. The substance of the lemma lies in ensuring the second condition,
namely that the core ȧ0 of the desired a0 intersects transversely all given ȧi. Ad-
justing a0 to be transverse to one ai at a time can immediately be obtained by
Schoenflies’s theorem applied to ȧi, but the difficulty is that the various ȧi might
intersect each other non-transversally, for instance in Cantor sets: we remind the
reader that for i, j > 0, no transversality assumption is made for ai relatively to aj .

The strategy is to construct a0 inductively, starting from a suitable fat chord a00
satisfying the first and last conditions of Definition 3.1. We then use that the second
condition is in fact “generic” in a topological sense. This allows us to perform a
small perturbation (in the C0 sense) of our first choice a00, to choose inductively
ai0 so that it is transverse to all {aj}ij=1. We then define a0 = ak0 . This topological
genericity of transversality for arcs is a standard fact, nicely explained in [Zac14];
we shall recall the details below.

The base a00 of the induction must be chosen so that small C0 perturbations do
not make the intersections of cores empty. To that end, we choose a00 in such a way
that for each i > 0 some sub-arc of the core ȧ00 intersects ȧi transversally. This can
be done in steps as follows. Start from a boundary point distinct from all endpoints.
By Schoenflies’s theorem, ȧ1 divides the disc into two discs and thus we can choose
an initial (fat) arc from the boundary point to a point in the other disc component,
crossing ȧ1 once transversally and stopping at an interior point not lying on any ȧi.
We then apply Schoenflies’s theorem to the next core ȧ2 and cross it transversally
in the same fashion, repeating this argument until ȧk is crossed and ending on a
new boundary point distinct from all endpoints. We need to avoid self-intersections
of ȧ00, but this is possible since at every intermediate step the partially constructed
arc ȧ00 is retractable to the boundary.

Now we prepare the inductive argument. Given i, j > 0, consider the pairwise
intersection ȧi ∩ ȧj of the cores and denote by Kij the topological boundary Kij =
∂ȧi(ȧi ∩ ȧj) in ȧi of this intersection. Notice that Kij = Kji holds because interior
points of the intersection with respect to either ȧi or ȧj coincide. Consider the
union Ki = ⋃jKij . Since the boundary of a closed set is always nowhere dense, Ki

is a nowhere dense subset of the arc ȧi.
The inductive claim at step i (with 1 ≤ i ≤ k) is that ai−10 admits an arbitrarily

small perturbation ai0 such that for all 1 ≤ j ≤ i, the core ȧi0 is transverse to ȧj and
avoids the set Kj .
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The proof of this claim for i = 1 is a simpler version of the proof for i > 1, so we
establish the latter while assuming that it already holds for all 1 ≤ j < i. Consider

N = (ȧi−10 ∩ ȧi) ∖ ⋃
1≤j<i

(ȧj ∩ ȧi).

Since ȧi−10 avoids Kji =Kij , we have in fact

N = (ȧi−10 ∩ ȧi) ∖ ⋃
1≤j<i

Intai(ȧj ∩ ȧi)

so that N is a closed set and hence it has a neighbourhood V separating it from
aj for all 1 ≤ j < i. Now each sub-arc of ȧi−10 in V can be perturbed within V to
become transverse to ȧi using Schoenflies’s theorem, and we can as well do it with
the corresponding portion of the fat arc ai−10 . We can additionally ensure that the
core of this new perturbation ai0 avoids Ki since Ki is nowhere dense in the sub-arc
of ȧi that we are crossing.

The reason that this completes the induction step is that outside N , the previous
iteration ȧi−10 was already transverse to ȧi because any intersection with ȧi in N
would already occur in the interior of ȧi∩ ȧj for some j < i. Now that the induction

is complete, the final iteration ak0 is the desired a0. �

We consider now the semi-simplicial set FCh⊥● of tuples of pairwise strictly trans-
verse fat chords. Then Lemma 5.8 allows us to apply Proposition 3.2 and deduce:

Corollary 5.9. The semi-simplicial set FCh⊥● is boundedly acyclic. �

We shall also need to consider a somewhat technical subset of FCh and hence of
FCh⊥● , as follows.

Definition 5.10. A fat chord [ϕ] is called radial (near the boundary) if we can
choose ϕ ∶ D1 × R ↪ D2 which is radial in a neighbourhood of {±1} × R in the
following sense: there exists ε > 0 such that

ϕ(±r, t) = rϕ(±1, t) ∀1 − ε < r ≤ 1,∀ t.
We write RFCh ⊆ FCh for the set of radial fat chords and RFCh⊥● for the corre-
sponding sub-semi-simplicial set of FCh⊥● .

This specific definition is somewhat arbitrary since we are working in the topo-
logical category; the point is only to choose some normalisation of the germ near
the boundary. We note that that the arguments given for FCh can be repeated
virtually unchanged to yield the following variation of Corollary 5.9.

Corollary 5.11. The semi-simplicial set RFCh⊥● is boundedly acyclic. �

Remark 5.12. It is plausible to use more high powered transversality results in
the topological settings ([KS77]) to prove an analogue of Corollary 5.9 and Corol-
lary 5.11 in higher dimensions. We will, however, only be able to work in dimension
two because the fact that the complementary regions in D2 of simplices of FCh⊥●
is again a union of discs is, as we shall see, an important feature in the proof
Theorem 5.1.

The relevance of the radial semi-simplicial subset hinges on the following obser-
vation:

Lemma 5.13. The inclusion map RFCh→ FCh descends to a bijection

RFCh /Homeo(D2; near S1) ≅ÐÐ→ FCh /Homeo(D2;S1).
More generally, for all p it induces a bijection

RFCh⊥p /Homeo(D2; near S1) ≅ÐÐ→ FCh⊥p /Homeo(D2;S1).
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Proof. By the isotopy extension theorem for homeomorphisms in dimension 2 (see
[Ham74, Thm. 1.7.10]) and the fact that Homeoτ(D2;S1) as a topological group is
contractible ([Ham74, Thm. 1.5.2]), we know that space of embeddings of chords
with fixed ends in D2 is contractible. In particular, if two fat chords have the
same ends, they are isotopic relative to their ends. Hence, by an isotopy fixing the
boundary pointwise, we can make the fat chords radial near the boundary and in
fact we can make the support of this isotopy in any given neighbourhood of the
boundary. Hence the above maps are surjective. For injectivity, note that if two
radial fat chords have the same ends, they overlap near the boundary so they will
be isotopic by an isotopy that is identity near the boundary. �

In order to prove Theorem 5.1, we still need to deal with an auxiliary subgroup.
We recall the notation Homeo(D2; near D) introduced before Lemma 5.6 for some
boundary interval D ⊆ S1.

Lemma 5.14. The group Homeo(D2; near D) satisfies the assumptions of Theo-
rem 2.2 and hence is boundedly acyclic.

Z0

Z

Figure 2. Z, Z0 and the first displaced copy gZ0.

Proof of Lemma 5.14. It suffices to justify that we are in the situation of Theo-
rem 2.2. To do so, we consider the following equivalent set-up (see Figure 5). Let
Z be a square and let D be the union of three edges of this square. We call the
remaining edge the free edge since elements of Homeo(D2; near D) can restrict
to non-trivial homeomorphisms of that edge. An important point is that each such
edge homeomorphism will be supported in a compact subset of the interior of that
edge.

Let now Z0 be a smaller square inside Z whose free edge lies in the interior the
free edge of Z. Then indeed we can find a “displacement” g and both conditions of
Theorem 2.2 are satisfied. �

Remark 5.15. In the first version of this article, we observed that Lemma 5.14 can
be proved using the original Matsumoto–Morita method.

At this point, we can conclude from the description given in Lemma 5.6 that the
stabiliser of any (n+1)-tuple of pairwise strictly transverse fat chords is a boundedly
acyclic group since bounded acyclicity passes to products (Proposition 2.4). How-
ever, we shall need to know that the vanishing moduli of this bounded acyclicity
does not depend on the combinatorics of chord intersections even though this combi-
natorics leads to unboundedly many factors in the product described in Lemma 5.6
even if we fix n. The desired uniformity is a consequence of Proposition 2.6, as
follows.

Corollary 5.16. For every q > 0 there is a constant bounding the qth vanishing
modulus of the stabiliser in Homeo○(D2) or in Homeo(D2; near S1) of any (n+1)-
tuple of pairwise strictly transverse fat chords.
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Proof. Let G be the product of countably many copies of Homeo(D2; near S1) ≅
Homeoc(R2) and of Homeo(D2; near D). Both types of factors satisfy the assump-
tions of Theorem 2.2 and hence Lemma 2.3 implies that G is boundedly acyclic.
According to Lemma 5.6 and Remark 5.7, all the stabilisers considered in the state-
ment of Corollary 5.16 are subproducts of G. Therefore, the statement follows
indeed from Proposition 2.6. �

Proof of Theorem 5.1. For shorter notation, we write

G = Homeo○(D2) and G′ = Homeo(D2;S1)

so that the restriction to S1 yields an identification G/G′ = Homeo○(S1).
We claim that the semi-simplicial set FCh⊥● /G′ is boundedly acyclic. In view of

Lemma 5.13, it suffices to establish this for RFCh⊥● /Homeo(D2; near S1)
instead. We shall deduce this from Theorem 3.3. To that end, recall that
Homeo(D2; near S1) ≅ Homeoc(R2) is boundedly acyclic by Matsumoto–Morita’s
theorem, while RFCh⊥● is boundedly acyclic by Corollary 5.11. It thus remains to
check the conditions on the stabilisers, which are granted by the Corollary 5.16.
This confirms the claim.

The claim puts us in the position to apply Theorem 3.3 a second time, but to the
action of G/G′ on FCh⊥● /G′. The stabiliser of a (p + 1)-tuple for this action corre-
sponds to the stabiliser of 2(p + 1) generic fat points in S1 under the identification
of G/G′ with Homeo○(S1). Thus, as in the Proof of Theorem 1.1, these stabilisers
are boundedly acyclic (and there is only one isomorphism type when p is fixed).
Therefore, Theorem 3.3 provides an isomorphism between the bounded cohomology
of Homeo○(S1) and the bounded cohomology of the quotient of FCh⊥● /G′ by G/G′,
which is none other than FCh⊥● /G.

We invoke a third time Theorem 3.3, now for the G-action on FCh⊥● . That semi-
simplicial set is boundedly acyclic by Corollary 5.9. To justify the assumptions
on the stabilisers, we recall the description of Lemma 5.6 and invoke again Corol-
lary 5.16. We thus obtain an isomorphism between the bounded cohomology of G
and of FCh⊥● /G, which we previously identified with the bounded cohomology of
Homeo○(S1).

It only remains to justify that this isomorphism is indeed induced by the restric-
tion map G → Homeo○(S1), or equivalently by the quotient map G → G/G′. The
two isomorphisms produced by the second and third applications of Theorem 3.3
arise from parallel spectral sequences, connected by the morphism of spectral se-
quences induced by the quotient maps FCh⊥● → FCh⊥● /G′ and G → G/G′. Thus
indeed the isomorphism is induced by restriction (which in particular preserves
the ring structure of bounded cohomology); this completes the proof of Theo-
rem 5.1. �

Proof of Theorem 1.4. Our proof of Theorem 5.1 is set up in such a way that it can
be followed equally well in the Cr case. We only need to replace our semi-simplicial
sets FCh⊥● and RFCh⊥● by the corresponding sets of Cr germs. The main difference,
viewed from the perspective of ordinary cohomology, is that the bounded acyclicity
of stabilisers still holds but cannot be traced back to Matsumoto–Morita methods.
Instead, we argue that Lemma 5.14 holds unchanged for (the connected component
of) diffeomorphism groups because it relies on Theorem 2.2 and the latter does not
discriminate according to regularity. The same holds for the bounded acyclicity of
Diffr○(D2; near S1). �
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6. Homeomorphisms and diffeomorphisms of the sphere Sn

Our goal in this section is to prove Theorem 1.8 which in particular solves Ghys’s
question (see Section 1.C) about invariants of flat S3-bundles. We first describe a
strategy to determine the low degree bounded cohomology of Diffr○(Sn) for r ≠ n+1
and later we restrict to S3.

Before proceeding, we recall that a quasimorphism on a group G is a map
f ∶G → R such that the quantity ∣f(x) + f(x) − f(xy)∣ is bounded uniformly over
x, y ∈ G. Every quasimorphism f lies at bounded distance from a unique homo-
geneous quasimorphism f̄ , that is, a quasimorphism satisfying f̄(xn) = nf̄(x) for
all x ∈ G and n ∈ Z, see e.g. [Bav91, §3.3]. A quasimorphism is called trivial if it is
at bounded distance of a true homomorphism, or equivalently if f̄ is a true homo-
morphism. Noting that the quantity f(x) + f(x) − f(xy) is a coboundary (in the
inhomogeneous model) and hence a bounded cocycle, one verifies readily that the
space of quasimorphisms modulo trivial quasimorphisms is isomorphic to the kernel
of the comparison map H2

b (G)→H2(G) from bounded to ordinary cohomology in
degree two (compare again [Bav91, §3.3]).

In addition, Matsumoto–Morita have shown [MM85, Cor. 2.11] that this com-
parison map is injective if G is uniformly perfect, that is, if there is a bound N
such that every element of G can be expressed as a product of at most N commu-
tators. We shall call this the “Matsumoto–Morita lemma” to distinguish it from
their bounded acyclicity theorem. This lemma can also be checked directly on the
above description in terms of quasimorphisms.

Back to Sn, Tsuboi [Tsu13, Tsu08] proved that Homeo○(Sn) and Diffr○(Sn) for
r ≠ n+ 1 are uniformly perfect and hence Matsumoto–Morita’s lemma implies that
the map

H2
b (Homeo○(Sn))Ð→H2(Homeo○(Sn))

is injective and the same holds for Diffr○(Sn) when r ≠ n+1. By Thurston’s theorem
([Thu74, Cor. (b) of Thm. 5]), we know that

H2(Homeo○(Sn)) ≅ H2(BHomeoτ○(Sn)).
Given what is known of the right hand side, this already implies H2

b (Homeo○(Sn)) =
0 when n = 2,3.

As announced in Theorem 1.10, we can establish this vanishing also for H3
b , for

all n, and perhaps surprisingly for diffeomorphisms as well.

Proof of Theorem 1.10. We apply Theorem 3.3 to the action of the group G =
Homeo○(Sn) or Diffr○(Sn) on the semi-simplicial set X⊥● of tuples of fat points in
Sn with disjoint cores, exactly as for Theorem 1.1. We work with Cr fat point in
the case of Diffr○(Sn). The bounded acyclicity of X⊥● is granted by Proposition 3.2.
The difference with the case n = 1 is that we do not know the higher bounded
cohomology of stabilisers and therefore we take N = 4 in Theorem 3.3. Thus, we
need to establish the vanishing of Hq

b (G1) for all q > 0 with p + q < 4, where G1

denotes the stabiliser of a point in X⊥p and p ≥ 0. We note that condition (ii) of
Theorem 3.3 then follows since there is only one type of stabiliser in X⊥p for each p.

The case p = 0 for homeomorphisms follows from the Matsumoto–Morita theorem
since in that case G1 ≅ Homeoc(Rn). In the Cr case we quote Theorem 1.6 instead.

Since H1
b vanishes for every group, the only remaining case is the vanishing of

H2
b (G1) when p = 1. Now G1 ≅ Homeoc(Sn−1 ×R) or Diffrc(Sn−1 ×R) and we can

apply Theorem 4.2.
Now Theorem 3.3 shows that the bounded cohomology of G coincides with that

of the quotient semi-simplicial set X⊥● /G. This quotient, however, is boundedly
acyclic as soon as n > 1 because G acts transitively on tuples of fat points with
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distinct cores by a germ pasting argument as in the proof of Theorem 1.1. That is,
given two (p + 1)-tuples of pairwise disjoint orientation-preserving embeddings of
open balls into Sn, there is an orientation-preserving transformation of Sn in the
corresponding regularity which sends each ball embedding among the first tuple to
the corresponding embedding among the second tuple. The only difference with S1

for this transitivity is that in dimension one the cyclic order of the points must be
preserved. �

Now we restrict to the case of S3 and proceed to answer Ghys’s question.

Proof of Theorem 1.8. The proof follows exactly the strategy of Theorem 1.10, but
with N = 5 instead of N = 4, which requires the vanishing of H2

b of the stabiliser
of a simplex in X2. But this stabiliser group is isomorphic to Diffrc(P ) where P
is obtained by removing 3 disjoint closed balls from S3. The mapping class group
π0(Diffrc(P )τ) is generated by the Dehn twists around sphere boundary components
so it is a finite 2-torsion group (see [HM90, Lemma 3.2]). Hence, it is enough to
show that H2

b (Diffrc,○(P )) = 0. To do so, we first observe that the comparison map

(2) H2
b (Diffrc,○(P ))Ð→H2(Diffrc,○(P )),

is injective, and then we show that its image is trivial. By [FRY19, Thm. 4.1]
we know that Diffrc,○(P ) is uniformly perfect for r ≠ 4,0. Therefore, in these reg-
ularities, Matsumoto–Morita’s lemma implies that the map (2) is injective. In
particular, there is no nontrivial quasimorphism on Diffrc,○(P ).

It is likely that Homeoc,○(P ) is also uniformly perfect but we learned from Bow-
den that one can use automatic continuity of homogeneous quasimorphisms on
diffeomorphism groups ([BHW21, Thm. A.5]) and the fact that homeomorphisms
of 3-manifolds can be C0-approximated by diffeomorphisms ([Mun60, Thm. 6.3])
to deduce that if there were a nontrivial quasimorphisms on Homeoc,○(P ), it would
restrict to a nontrivial quasimorphisms on Diffc,○(P ) which we know they do not
exists by the uniform perfectness of Diffc,○(P ). Hence, we also have the injectivity
for the map

(3) H2
b (Homeoc,○(P ))Ð→H2(Homeoc,○(P )).

Now we need the following input about the cohomology of Diffrc,○(P )τ .

Claim. H2(BDiffrc,○(P )τ) = 0.

Proof of the claim: Since Diffrc,○(P )τ is a connected group, the classifying space
BDiffrc,○(P )τ is simply connected. Hence, it is enough to show that

H2(BDiffrc,○(P )τ ;R) = 0. The action of Diffrc,○(S2 × R)τ on the space of

embeddings Emb○(D3, S2 ×R) gives rise to the fibration (see [Pal60])

Diffrc,○(P )τ → Diffrc,○(S2 ×R)τ resÐ→ Emb○(D3, S2 ×R),

where res is the restriction of a diffeomorphism to a fixed embedding of D3 into
S2 ×R. It is standard (e.g. [Kup19, Thm. 9.1.2]) to see that Emb○(D3, S2 ×R) ≃
Fr+(S2 × [0,1]) where Fr+(−) means the oriented orthonormal frame bundle. Since
the tangent bundle of S2 × [0,1] is trivial (which is in fact true for all orientable
3-manifolds), we have Fr+(S2 × [0,1]) ≅ S2 × [0,1]×SO(3). Hence, if we deloop the
above fibration, we obtain a fibration

(4) S2 × [0,1] × SO(3)τ → BDiffrc,○(P )τ → BDiffrc,○(S2 ×R)τ .

Now, by Hatcher’s theorem ([Hat83, Appendix]), we know that BDiffc(S2 ×R)τ ≃
SO(3)τ . Since BDiffc,○(S2 × R)τ is the universal cover for BDiffc(S2 × R)τ , we
conclude BDiffc,○(S2 ×R)τ ≃ SU(2). Hence, to calculate H2(BDiffrc,○(P )τ ;R), we
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look at the second page of the Serre spectral sequence for the fibration (4), where
we have a differential

d2∶E2
3,0 =H3(BDiffc,○(S2 ×R)τ ;R)→ E2

0,2 =H2(S2 × [0,1] × SO(3)τ ;R),

whose cokernel is H2(BDiffrc,○(P )τ ;R).
To determine this differential, note that BDiffc,○(S2 ×R)τ is 2-connected, so we

have H3(BDiffc,○(S2 ×R)τ ;R) =H2(Diffc,○(S2 ×R)τ ;R). Therefore, the differen-
tial d2 is the map induced by the map

res∶Diffrc,○(S2 ×R)τ → S2 × [0,1] × SO(3)τ

on the second homology.
To show that res induces a surjection on H2, first note that H2(S2 × [0,1] ×

SO(3)τ ;R) is generated by the S2 factor. On the other hand, by Hatcher’s theorem
([Hat83, Appendix]), we know that Diffrc,○(S2×R)τ ≃ Ω(SU(2)τ) where Ω(SU(2)τ)
is the loop space on SU(2)τ . Hence, the map d2 is induced by the natural map

α∶Ω(SU(2)τ)→ S2 × [0,1],

which is given by the Hopf map to the slice S2 × {t} at time t of the loop. It can
be easily seen that α induces an isomorphism on H2. So d2 is also an isomorphism.
Therefore, we have H2(BDiffrc,○(P )τ ;R) = 0. ∎

We use this topological fact as an input to show that the image of the comparison
map for Diffrc,○(P ) is trivial. This is easier for Homeoc,○(P ) since by the classical
theorem of Cerf ([Cer59]), the proof of Smale’s conjecture ([Hat83, Appendix])
implies that Homeoc,○(P )τ ≃ Diffrc,○(P )τ . Hence, by Thurston’s theorem ([Thu74,
Cor. (b) of Thm. 5]), we have

H2(Homeoc,○(P )) =H2(BHomeoc,○(P )τ) = 0.

Therefore, the injectivity of the comparison map (3) already implies that
H2
b (Homeoc,○(P )) = 0. For the case of Diffrc,○(P ), we do not know whether

H2(Diffc,○(P )) vanishes so we need to work a little harder.

Claim. Let Mn be a n-manifold such that H2(BDiffrc,○(M)τ) = 0 and suppose that
we know that the comparison map (2) is injective for Diffrc,○(M). Then for r ≠ n+1

we have H2
b (Diffrc,○(M)) = 0.

Proof of the claim: Recall that BDiffrc,○(M) is homotopy fiber in the fibration

BDiffrc,○(M)→ BDiffrc,○(M)→ BDiffrc,○(M)τ .

Given that BDiffrc,○(M)τ is simply connected, and we know that for

r ≠ dim(M) + 1, we have H1(BDiffrc,○(M)) = 0 by [Mat84, Appendix] and also we

have H2(BDiffrc,○(M)τ) = 0 by the hypothesis, the spectral sequence for the above
fibration implies that the map

H2(Diffrc,○(M))→H2(BDiffrc,○(M)),

is injective. On the other hand, from Mather–Thurston’s theorem for r ≠ dim(M)+
1, it follows that H2(BDiffrc,○(M)) only depends on dim(M) (see [Thu74, Second
corollary at page 306] and the proof of the lemma in [Mat84, Appendix]). Therefore,
the inclusion Diffrc,○(Rn)→ Diffrc,○(M) induces an isomorphism

H2(BDiffrc,○(M)) ≅Ð→H2(BDiffrc,○(Rn)).
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It follows from the commutative diagram

H2(Diffrc,○(M)) H2(BDiffrc,○(M))

H2(Diffrc,○(Rn)) H2(BDiffrc,○(Rn)),

≅

that the left vertical map is also injective. Now the commutative diagram of com-
parison maps

H2
b (Diffrc,○(M)) H2(Diffrc,○(M))

H2
b (Diffrc,○(Rn)) H2(Diffrc,○(Rn)),

implies that the left vertical map is also injective.
But we know that H2

b (Diffrc,○(Rn)) is trivial by Theorem 4.2. Therefore,

H2
b (Diffrc,○(M)) also vanishes. ∎
Hence, by the claim, for r ≠ 4, we obtain H2

b (Diffc,○(P )) = 0 which finishes the
proof. �

7. Further comments and questions

7.A. Homeomorphisms of certain geometric 3-manifolds. Burago–Ivanov–
Polterovich ([BIP08, Section 3.3]) proved that Diff○(M) is uniformly perfect for any
closed 3-manifold M . Therefore, as we have seen already by Matsumoto–Morita’s
lemma, the comparison map

H2
b (Diff○(M))→H2(Diff○(M))

is injective. Again by automatic continuity of homogeneous quasimorphisms on
diffeomorphism groups ([BHW21, Thm. A.5]) and the fact that homeomorphisms
of 3-manifolds can be C0-approximated by diffeomorphisms ([Mun60, Thm. 6.3]),
we can also conclude that

H2
b (Homeo○(M))→H2(Homeo○(M))

is injective. By Thurston’s theorem ([Thu74, Cor. (b) of Thm. 5]), we know that

H2(Homeo○(M)) =H2(BHomeoτ○(M)).
Thanks to the generalised Smale conjecture which has been extensively studied for
many cases ([Hat83, Hat76, Iva76, Gab01, HKMR12, MS13]) and recently has been
proved in the remaining cases by Bamler and Kleiner ([BK19, BK21]), we know the
homotopy type of Homeoτ○(M) for a 3-manifold admitting a Thurston geometry.
Combining a number of known facts about Homeo○(M), we prove:

Theorem 7.1. Let M be a closed hyperbolic 3-manifold or a closed Seifert fibered
space whose fundamental group has Z as its center.

Then H2
b (Homeo○(M)) = 0.

Proof. In the hyperbolic case, the generalised Smale conjecture was proved by Gabai
([Gab01]) which implies that Homeoτ○(M) ≃ ∗ as a topological group. Therefore, by
the above argument we obtain H2

b (Homeo○(M)) = 0. However for Seifert fibered

manifold M , the generalised Smale conjecture implies that Homeoτ○(M) ≃ (S1)k
where k is the rank of the center of π1(M) except the case of the solid torus
for which Homeoτ○(M) ≃ S1 × S1 and the case of D3 for which Homeoτ○(D3) ≃
SO(3)τ (see the introduction of [MS13]). Hence, in our case of interest when
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H2(BHomeo○(M)) is nontrivial it is isomorphic R which is generated by the Eu-
ler class induced by the circle action on the Seifert fibered space by rotating the
circle fibers. K. Mann [Man20] showed that this Euler class is not a bounded
class. Therefore, injectivity of H2

b (Homeo○(M)) → H2(Homeo○(M)) implies that
H2
b (Homeo○(M)) is also zero in this case. �

7.B. Diffeomorphisms and homeomorphisms of Rn. The algebraic proper-
ties of the automorphism groups of non-compact manifolds are more subtle to
study. It would be interesting to apply the same techniques we used for spheres
and the 2-disc to extract information about the bounded cohomology of diffeo-
morphisms and homeomorphisms of Rn. The main motivation is to study which
invariants of Cr-flat Rn-bundles for r ≥ 0 are bounded. For the C0-case, recall that
BHomeo○(Rn)τ classifies oriented Rn-microbundle and it has a nontrivial homo-
topy type (see [KRW20] for nontrivial characteristic classes of Rn-microbundles).
In particular, the Euler class E ∈ Hn(BHomeo○(Rn)τ) when n is even and all
the Pontryagin classes Pi for i ≤ n/4 are nontrivial. Hence, they also pull back
nontrivially to H●(Homeo○(Rn)) since by McDuff’s theorem ([McD80]) we know
that

H●(BHomeo○(Rn)τ) ≅H●(Homeo○(Rn)).
In fact, these classes are also nontrivial for Cr-flat Rn-bundles for all regularities
r > 0 by the following observation. Using a deep result of Segal ([Seg78, Prop. 1.3
and 3.1]), we know that there is a map

BDiffr○(Rn)→ BΓrn,○,

which is a homology isomorphism, where BΓrn,○ is the classifying space of Haefliger
structures for codimension n foliations that are transversely oriented, see Section 1
in [Seg78] for more details. On the other hand, there is map

ν∶BΓrn,○ → BGLn(R)τ○ ,
which classifies oriented normal bundles to the codimension n foliations. For all
regularities, it is known that the map ν is at least (n+1)-connected, see Remark 1,
Section II.6 in [Hae71]. Hence, in particular the induced map

H●(BGLn(R)τ○)→H●(Diffr○(Rn)),
is an isomorphism for ● ≤ n. Therefore, the classes Pi for i ≤ n/4 are nontrivial
and so is E when n is even in H●(Diffr○(Rn)) for all r. However, for n = 2, Calegari
([Cal04, Thm. C]) showed that E ∈ H2(Diffr○(R2)) is not a bounded class. We in
fact show that there is no bounded invariant for flat Rn-bundles over surfaces.

Theorem 7.2. We have H2
b (Diffr○(Rn)) = 0 for all n and all r ≠ n + 1.

Proof. As a consequence of Rybicki’s theorem ([Ryb11, Thm. 1.2]) we know that
Diffr○(Rn) is uniformly perfect for r ≠ n+1. Therefore, Matsumoto–Morita’s lemma
([MM85, Cor. 2.11]) implies that the map

H2
b (Diffr○(Rn))Ð→H2(Diffr○(Rn))

is injective for r ≠ n+1. The remaining part of the proof consists in showing that the
right hand side vanishes when n ≠ 2, while for n = 2 it turns out that the non-zero
elements of the right hand side are not in the image of the comparison map.

Recall the deep result of Segal ([Seg78, Prop. 1.3 and 3.1]) implies that there
is a map BDiffr○(Rn) → BΓrn,○ which is a homology isomorphism, where BΓrn,○ is
the classifying space of Haefliger structures for codimension n foliations that are
transversely oriented, see Section 1 in [Seg78] for more details. Since r ≠ n + 1,
a theorem of Mather [Mat74, Section 7], implies that the natural map ν∶BΓrn,○ →
BGLτn(R)○ is at least (n + 2)-connected. (Without the restriction r ≠ n + 1, we
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still know that the map ν is at least (n + 1)-connected, see Remark 1, Section II.6
in [Hae71].) Therefore, by combining Segal’s theorem and Thurston’s theorem,
we have H2(Diffr○(R1)) = 0 for r ≠ 2 as desired for n = 1. For n = 2, we have
H2(Diffr○(R2)) = R generated by the Euler class for all r. On the other hand, a the-
orem of Calegari ([Cal04, Thm. C]) shows that the Euler class inH2(Diffr○(R2)) = R
is not a bounded class. Finally, for n > 2, since H2(BGLτn(R)○;R) = 0, we have
indeed H2(Diffr○(Rn)) = 0. �

7.C. Questions. We shall end with few questions regarding the borderline of some
of the cases we considered. For the case of spheres, it would be interesting to see
if H4

b vanishes for Sn where n ≠ 1,3. In particular, the case of S2 is already
interesting. By Thurston’s theorem ([Thu74, Cor. (b) of Thm. 5]) we know

H4(Homeo○(S2)) =H4(BHomeoτ○(S2)),
and by Hamstrom’s theorem ([Ham74]) we know that Homeoτ○(S2) ≃ SO(3)τ .
Therefore, we have H4(Homeo○(S2)) = R generated by the Pontryagin class P1 in
H4(BSO(3)τ).

Question 7.3. Is the first Pontryagin class bounded or even more generally is
H4
b (Homeo○(S2)) nontrivial?

Question 7.4. For n > 1, is there any nontrivial bounded class in
H●(Homeo○(Sn))?

In proving Homeo○(D2) → Homeo○(S1) we used a huge semi-simplicial set of
transverse fat chords. There is an obvious way to generalize this semi-simplicial
set to higher dimensions which is still boundedly acyclic. But then, given that the
complement of simplices in Dn could be more complicated when n > 2, it is not clear
whether the stabilisers are boundedly acyclic. One could try to define “smaller”
semi-simplicial set whose stabilisers of its simplices are among the bounded acyclic
groups. But it becomes harder to prove that the chosen semisimplicial set is bound-
edly acyclic. Hence, we pose the generalisation of our result about Homeo○(D2) as
a question.

Question 7.5. Does the restriction map Homeo○(Dn)→ Homeo○(Sn−1) induce an
isomorphism on bounded cohomology for n > 2?

We generalised Calegari’s theorem ([Cal04, Thm. C]) about the second bounded
cohomology of Diffr○(R2) by showing the vanishing H2

b (Diffr○(Rn)) = 0 for all n and
all r ≠ n + 1. So the higher degrees of bounded cohomology of Diffr○(R2) remains
to be determined.

Question 7.6. Is Diffr○(Rn) a boundedly acyclic group? Is E ∈ H2n(Diffr○(R2n))
a bounded class?

And finally, as we mentioned in the introduction, our proof of the unboundedness
of the Euler class for oriented C0-flat S3-bundles is not constructive. It would be
geometrically enlightening to find a constructive proof.

Question 7.7. Find explicit families of oriented C0-flat S3 bundles over a given
4-manifold with unbounded Euler number.
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compactes de dimension 3. Bull. Soc. Math. France, 87:319–329, 1959.

[CFP96] James Welden Cannon, William J. Floyd, and Walter R. Parry. Introductory notes
on Richard Thompson’s groups. Enseign. Math. (2), 42(3-4):215–256, 1996.

[Dup79] Johan L. Dupont. Bounds for characteristic numbers of flat bundles. In Algebraic

topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, 1978), pages 109–119. Springer,
Berlin, 1979.

[EHN81] David Eisenbud, Ulrich Hirsch, and Walter Neumann. Transverse foliations of Seifert

bundles and self-homeomorphism of the circle. Comment. Math. Helv., 56(4):638–660,
1981.

[EP03] Michael Entov and Leonid Polterovich. Calabi quasimorphism and quantum homol-
ogy. Int. Math. Res. Not., (30):1635–1676, 2003.

[FFL21] Francesco Fournier-Facio and Yash Lodha. Second bounded cohomology of groups

acting on 1-manifolds and applications to spectrum problems. Preprint, 2021.
[FFLM21a] Francesco Fournier-Facio, Clara Löh, and Marco Moraschini. Bounded cohomology
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du cercle. Comment. Math. Helv., 62(2):185–239, 1987.
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[Lan94] Rémi Langevin. A list of questions about foliations. In Differential topology, foliations,

and group actions (Rio de Janeiro, 1992), volume 161 of Contemp. Math., pages 59–
80. Amer. Math. Soc., Providence, RI, 1994.
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