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Abstract. — Consider the following property of a topological group G: every con-
tinuous affine G-action on a Hilbert space with a bounded orbit has a fixed point.
We prove that this property characterizes amenability for locally compact o-compact
groups (e.g. countable groups).

Along the way, we introduce a “moderate” variant of the classical induction of
representations and we generalize the Gaboriau-Lyons theorem to prove that any
non-amenable locally compact group admits a probabilistic variant of discrete free
subgroups. This leads to the “measure-theoretic solution” to the von Neumann prob-
lem for locally compact groups.

We illustrate the latter result by giving a partial answer to the Dixmier problem
for locally compact groups.

Résumé (Points fixes en présence d’orbites bornées dans les espaces hilber-
tiens)

Nous considérons la propriété suivante pour un groupe topologique G : toute
action affine continue de G sur un espace hilbertien ayant une orbite bornée a un
point fixe. Nous montrons qu’elle caractérise la moyennabilité des groupes localement
compacts dénombrables & I'infini (en particulier des groupes discrets dénombrables).

Pour ce faire, nous introduisons une variante « modérée » de linduction des
représentations et nous généralisons le théoréme de Gaboriau-Lyons pour montrer que
tout groupe localement compact non moyennable admet, dans un sens probabiliste,
des sous-groupes libres discrets. Ceci fournit une « solution au sens de la mesure »
au probléme de von Neumann pour les groupes localement compacts.

Nous illustrons ce dernier résultat en fournissant une réponse partielle au probléme
de Dixmier pour les groupes localement compacts.
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1. Introduction

A topological group G is amenable if every convex compact G-space K # & has a
fixed point. The precise meaning of this definition is that K is a non-empty convex
compact subset of a locally convex topological vector space V' and that G has a contin-
uous affine action on K. It is equivalent to consider only the case where this is given
by a continuous affine (or linear) G-representation on V' preserving K. Moreover, we
can assume V and K separable if G is, for instance, locally compact o-compact.

It is well-known that any such K is isomorphic (i.e. affinely homeomorphic) to
a convex compact subspace of a Hilbert space [Kleb5, p. 31]. Does it follow that
amenability is characterized as a fixed point property for affine actions on Hilbert
spaces? after all, preserving a weakly compact set in Hilbert space is equivalent to
having a bounded orbit. (The distinction between weak and strong compactness will
be further discussed in Section 9.)

The answer is a resounding no. First of all, an action on K need not extend to
the ambient Hilbert space (see Section 9). Moreover, G-actions on V preserving K
sometimes have fixed points outside K only, compare e.g. [BGM12].

In any case, even the statement is wrong! Indeed, there are non-amenable groups
with the fixed point property for any continuous affine action on any reflexive Banach
space. This holds for instance for the group of all permutations of an infinite countable
set, which is non-amenable (as a discrete group). Indeed, Bergman established the
strong uncountable cofinality property for this group [Ber06] and the latter implies
this fixed point property (see Prop. 1.30 of [Ros13], whose proof does not use the
Polish assumption).

In contrast, we prove that such a characterization does hold for countable groups
and more generally locally compact o-compact groups:
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Theorem A. — Let G be a locally compact o-compact group.
Suppose that every continuous affine G-action on a separable Hilbert space with a
bounded orbit has a fized point. Then G is amenable.

(In view of the fixed point definition of amenability, this yields a necessary and suf-
ficient condition and it follows furthermore that a fixed point can be found in the
closed convex hull of any bounded orbit.)

In this setting, we recall that the fixed point property without assuming bounded
orbits characterises compact groups by a result of Rosendal [Ros13, Thm. 1.4].

Our proof takes a curious path: we first construct a very specific example of a
group without the fixed point property, and then we pull ourselves by our bootstraps
until we reach all non-amenable groups. This process is described below; we would
be curious to know if there is a direct proof.

In the absence of a direct proof, the scenic route taken to the conclusion leads us to
introduce moderate induction and to establish the existence of tychomorphisms from
free groups to non-amenable locally compact groups, after proving a generalization
of the theorem of Gaboriau and Lyons to the locally compact setting. This solves
the “measurable von Neumann problem” for locally compact groups, see Theorem B
below.

Remark. — Our task is thus to construct fixed point free actions on Hilbert spaces
that have a bounded orbit. We point out that such actions always have some un-
bounded orbit too. Otherwise, an application of the Banach—Steinhaus principle would
show that the linear part of the action is uniformly bounded in operator norm; this
would however produce a fixed point, for instance by taking a circumcenter under an
invariant uniformly convex norm [BFGMO7, Prop. 2.3|, or using Ryll-Nardzewski.

Discrete outline of the proof. — We shall first explain our proof in the special
case of countable groups without any topology. Our first step is to obtain some
example, any example at all, of a group G with a fixed point free action on a Hilbert
space with a bounded orbit.

Let thus p be a probability measure on G; this amounts to a non-negative function
of sum one. Our Hilbert space is V = ¢2(G, u)/R, the quotient of £2(G,u) by the
subspace of constant functions. We endow V' with the linear representation induced
by the left translation action of G on ¢2(G, ;1), which indeed preserves the subspace of
constants. For this action to be well-defined and to be continuous we need to impose
a condition on how u behaves under translations. It turns out that such a p exists
for every countable group; it will be constructed as a negative exponential of suitable
length functions on G.

To turn this linear representation into an affine action, we need a 1-cocycle G — V.
The action is fixed point free and with a bounded orbit if this cocycle is non-trivial
in cohomology and bounded. The extension of G-representations

0—R— (G, pu) —V-—0



4 M. GHEYSENS AND N. MONOD

can be analysed by standard cohomological arguments and it suffices to show that
there is an R-valued 2-cocycle on G which is non-trivial in cohomology and bounded.
Such cocycles are known to exists for various groups G, for instance (compact hyper-
bolic) surface groups. Thus we have a first example.

In order to produce more examples, we want to show that our G-action on V' can
be “induced” to an H-action on another Hilbert space W whenever H is a group
containing G. Classically, W would be a space of maps H/G — V. We shall imitate
the first step of our construction by considering ¢?>-maps with respect to a suitable
probability measure on H/G; once again, such a measure will exist as soon as H is
countable.

At this point, we have constructed a fixed point free action on a separable Hilbert
space with a bounded orbit for any countable group containing a surface group. The
same statement holds with surface groups replaced by free groups since fixed point
properties trivially pass to quotients. We now reach a fundamental obstacle popular-
ized by the von Neumann problem: the class of groups containing a free subgroup is
still far from the class of non-amenable countable groups.

However, it was proved by Gaboriau-Lyons [GLO09] that in an ergodic-theoretical
sense, any non-amenable discrete group admits free orbits of free groups (and surface
groups) as subrelations. As explained in [Mon06, § 5], such measure-theoretical
analogues of subgroup embeddings, viewed as “randembeddings”, are suitable for the
induction of representations and of cocycles. Therefore, we can complete the proof
of Theorem A for discrete groups by generalising the above induction method from
subgroups to randembeddings.

About the non-discrete case. — A number of interesting new difficulties appear
for locally compact groups. It will be helpful that we can consider separately the
Lie case and the totally disconnected case, thanks to a product decomposition result
based on structure theory [BM02, Thm. 3.3.3].

We shall need to prove a generalization of the Gaboriau—Lyons theorem for locally
compact groups. However, merely producing orbit subrelations of free groups is useless
here; after all, many amenable locally compact groups contain free subgroups. Thus,
a discreteness condition will enter the generalized statement.

The appropriate variant of the notion of randembedding used in the discrete case
will be called a tychomorphism; it is a one-sided version of measure equivalence cou-
plings for locally compact groups. Building on our generalization of the Gaboriau-
Lyons theorem, we shall prove:

Theorem B. — Let G be a locally compact second countable group.
If G is non-amenable, then there is a tychomorphism from the free group F, to G
for all 0 < r < Ng.

(This yields a necessary and sufficient criterion: in the converse direction, there are
several straightforward ways to verify that a group admitting a tychomorphism from
F, for some 2 < r < Ny is non-amenable; see for instance [Mon06, §5], where
discreteness is not essential.)
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Once tychomorphisms have been established, we will use them again to perform
a non-standard induction of affine actions by means of a moderate measure on the
locally compact group. In this setting, the existence of moderate measure is more
delicate to establish.

An application to the Dixmier problem. — Prompted by the classical unitarisa-
tion theorem of Sz6kefalvi-Nagy [SIN47], the following problem arose in 1950 [Day50,
Dix50, N'T51]: are amenable groups the only wunitarisable groups, i.e. groups for
which every uniformly bounded representation on a Hilbert space can be unitarised?
We refer to Pisier [Pis05, Pis01] for a thorough exposition and many results.

Since groups containing free subgroups are known not to be unitarisable, it is
tempting to appeal to the Gaboriau-Lyons theorem (see Problem N in [Mon06]).
This lead to partial answers [EM09, MO10].

There is no reason to restrict the Dixmier problem to discrete groups, and in-
deed the first examples of non-unitarisable representations were for the Lie group
SL2(R) [EM55, KS60]. Using Theorem B, we establish that every non-amenable
locally compact group is indeed non-unitarisable after replacing it by an extension
by an amenable kernel, a statement faithfully parallel to the main result of [MO10]
for discrete groups. More precisely, the extension consists in taking a wreath product
with a commutative (discrete) group:

Theorem C. — Let G be any locally compact group. For any infinite abelian (dis-
crete) group A, the following assertions are equivalent.

(i) The group G is amenable.
(ii) The locally compact group Alg/o G is unitarisable, where O < G is a suitable
open subgroup.

There are however several important differences with the discrete case. The first
problem is that we do not know if unitarisability passes to (closed) subgroups in the
non-discrete case. We do not even know if containing a discrete free subgroup is of
any help, which should curb our enthusiasm for tychomorphisms! We can nonetheless
prove the above result by combining ergodic methods with structure theory.

A smaller issue is that the category of locally compact groups does not admit
full wreath products. This explains the permutational wreath product appearing in
Theorem C. More precisely, A1g/0 G denotes the topological semi-direct product of
G with the discrete group P, o A which is endowed with a continuous G-action since
O is open. Thus indeed Alg/o G is locally compact, and moreover it is o-compact
(respectively second countable) when G is so, provided A is countable.

2. An initial construction

The goal of this section is to prove that there are some groups G with a fixed
point free action on a Hilbert space (by continuous affine operators) with a bounded
orbit. The construction below applies for instance to the fundamental group of any
closed hyperbolic surface. Since the property of having such an action can trivially



6 M. GHEYSENS AND N. MONOD

be pulled back from a quotient group, it follows immediately that it also holds for
free groups on at least four generators (the minimal number of generators for such a
surface group).

Consider a group G (without topology) admitting a non-zero class w in degree two
cohomology with real coefficients. Assume moreover that w can be represented by a
bounded cocycle; in other words, w lies in the image of the comparison map

H?(G,R) — H*(G,R)

from bounded to ordinary cohomology. This situation arises for instance when G is the
fundamental group of a closed hyperbolic surface and w is given by the fundamental
class of that surface, see e.g. [Thu78, §6].

Furthermore, assume that G admits a probability measure p such that the left
translation linear G-representation on ¢2(G, i) is well-defined and consists of bounded
operators. As we shall see in Section 3, such a measure exists on every countable group
G and more generally on every locally compact o-compact group. For the present
purposes, it is much easier to justify its existence by assuming that G is a finitely
generated (discrete) group, which is the case in the example of surface groups. Indeed,
in that case we can choose a word length ¢ on G, a constant D > 1 large enough so
that the map g — D~%9) is summable on G and a normalization constant k > 0 given
by the inverse of that sum. Then one checks that u(g) = kD49 gives a measure
with the desired properties; we refer to Section 3 for a detailed construction in a more
general topological case.

Let now V (resp. E) be the quotient space of £2(G, i) (resp. £*°(G)) by the subspace
of constant functions. Since p is a probability measure, we obtain a commutative
diagram

0—R—(*(G)——=FE——>0

-

0——=R—— 3G, pu)——=V—=0

where the rows are exact and the vertical arrows are G-equivariant, linear, injective
and of norm < 1.

The idea is to apply the long exact sequence of bounded cohomology [MonO01,
8.2.1(i)] to the first row and the long exact sequence of ordinary cohomology to the
second row. (The second row does not behave well for bounded cohomology because
it carries representations that are not uniformly bounded.) More precisely, recall
that HP (G, £*(G)) vanishes for all n > 1, see [MonO1, 4.4.1 and 7.4.1]; therefore,
by naturality of the comparison map and of the long exact sequences, we have a
commutative diagram

0——H}(G,E) —=H}(G,R) —=0

l l

- ——HY(G,V) —H%(G,R) —— - --
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with exact rows. Now, our assumption that w # 0 lies in the image of H(G,R)
implies that there is a bounded 1-cocycle b: G — E whose image in H'(G, V) is non-
trivial. In other words, the corresponding affine G-action on V has no fixed point,
although the orbit of 0 € V under this action is bounded since b remains bounded as
amap G - E - V.

Remark 1. — A reader wishing to avoid the cohomological language can check the
argument by hand as follows. Represent w by a bounded map c: G? — R satisfying
the cocycle relation c(y, z) — c(zy, 2) + ¢(z,yz) — ¢(x,y) = 0 for all z,y,z € G. Then
b(g) is defined as the class modulo R. of the function x — c(z7!, g) and all properties
can be painstakingly verified.

3. Moderate lengths and measures

It is well-known (and obvious) that the size of a ball in a finitely generated group
endowed with a word length grows at most exponentially with the radius. For general
countable groups, one can choose another length function to keep this growth control
(compare Remark 6 below). This remains possible more generally in a topological
setting, but requires a more delicate analysis.

Definition 2. — A length on a group G is a function £: G — R, such that
(i) 4(g) = £(g~") for all g € G,
(ii) L(gh) <{(g) + £(h) for all g,h € G.
When G is a locally compact group, a length ¢ is moderate if moreover
(iii) the ball B(r) = ¢=1([0,r]) is compact for all r > 0,
(iv) for any Haar measure m¢ there is C > 1 such that mg(B(r)) < C” for all
r>=1

Observe that a moderate length is in particular lower semi-continuous thanks
to (iii).

Remark 8. — We have not specified in (iv) whether the Haar measure is left or
right, but this is irrelevant in view of the symmetry (i). Moreover, it suffices to
check (iv) for one Haar measure since the condition survives scaling upon changing
C'. Likewise, it suffices to check (iv) for integer r.

Example 4. — If G is generated by a compact symmetric neighbourhood U of the
identity, then the associated word length ¢(g) = min{n € N : g € U"} is easily
seen to be moderate. (A more refined statement can be found e.g. in Theorem I.1
of [Gui73].)

We shall need to go beyond the compactly generated case; notice however that
o-compactness is a necessary condition in view of (iii).

Proposition 5. — Let G be a totally disconnected locally compact o-compact group.
Then there exists a continuous moderate length {: G — N.
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Christian Rosendal pointed out to us that a stronger statement was estab-
lished as one of the main results of the manuscript [HP06] (Theorem 5.3 therein,
see also [Prz05, 1.26]). Namely, every second countable locally compact groups
admits a compatible left-invariant distance such that the associated real-valued
length is moderate. (The second countability is not a significant restriction from
o-compactness [KK44]; having values in R is also not an issue here.) We still provide
the proof below since it is shorter and sufficient for our purposes.

Before proceeding to the proof, we record the construction of general Cayley—Abels
graphs originating in [Abe74, Beispiel 5.2], see also [BMO02, §3.4]. The basic data
is a locally compact group G, a compact-open subgroup K < G and a subset S € G
satisfying

S =81 and S=KSK.

The associated Cayley—Abels graph g(G, K, S) is the graph on the vertex set G/K with
edge set {(gK,g9sK) : g € G,s € S}. Thus G acts by automorphisms on g(G, K, S).
This graph is connected if and only if S generates G and it is locally finite if and only
if S is compact.

For later use in Section 5, we shall extend this construction as follows under the
assumptions that S generates G, is compact and contains the identity: For every
integer n = 1, let g"(G, K, S) be the (multi-)graph on the vertex set G/K with as
many edges between two given vertices as there are paths of length n in g(G, K, S)
connecting them. Then each g™ (G, K, S) remains locally finite, connected and with a
vertex-transitive G-action.

Proof of Proposition 5. — Let K be a compact open subgroup of G and S be any
symmetric generating set; upon replacing it by K SK, we can moreover assume S =
KSK. (One can even take S = G.) Consider the graph g(G, K,S). We will give
weights to its edges and then consider the induced path length on the vertex set.
There is a natural S/K-labeling on the edges; however, it is not invariant under the
action of G. Indeed, an sK-labeled edge and a tK-labeled edge are in the same G-
orbit if and only if KsK = KtK, i.e. if sK and tK are in the same orbit for the
natural action of K on S/K. The latter orbit is of size |K : K n sKs™!| and hence
finite since K is compact and open. We enumerate these K-orbits, recalling that S/K
is countable, as GG is o-compact. The weight is given inductively to each element of
the i-th orbit as the smallest power of 2 that is at least as large as the size of the i-th
orbit and strictly larger than all the weights previously given.

Having attributed a left K-invariant weight to each element of S/K, we obtain a
G-invariant weight on the edges of g(G, K, .S). Consider now the vertex set G/K with
the metric given by the shortest (weighted) path distance. The G-action on G/K is
isometric for this distance; in particular, the size of a ball of radius n does not depend
on its center and we denote by §(n) this number, which is finite. Write also ¢(k) for
the number of elements of weight k in S/K. Observing that a path of length < n has
to start with an edge of weight < n, we get a coarse bound:

B(n) < p(1)B(n—1) +¢(2)B(n —2) + -+ ¢(n—1)B(1) + ¢(n).



FIXED POINTS FOR BOUNDED ORBITS IN HILBERT SPACES 9

Most of the terms in the latter sum vanish because, by our choice of weights, ¢(k) is
zero whenever k is not a power of 2. Moreover, since 3 is a non-decreasing function,

e have B(r) 4 Blr 1)+ -+ Blr + m)
r T+ r+m
B(T)< m+ 1

for all r, m. Putting these two observations together for 7 = n—27 and m = 297! —1,
we get:

g 1 27 i1 n—1
B(n) < p(1)B(n—1) Z Z Bn—p)<2 ) B,
j=1 p=27 p=0

where the last inequality comes from ¢(27) < 27, which holds by our choice of weights.
This estimate implies that 8 grows at most exponentially, indeed that 8(n) < 2 -
3l < 3" forall n > 1.

Getting back to the group G, define ¢y(g) as the distance from K to gK in G/K for
the above weighted distance. So far, ¢; is a continuous function satisfying (ii) and (iii)
for the £o-balls By, (r). Moreover, for any left Haar measure, we have mq (B, (1)) =
B(r)yma(K), hence the balls grow at most exponentially. We normalize m¢g so that
mg(K) is an integer. Finally, set £(g) = £o(g) + £o(g~"). One checks that ¢ has all
the desired properties. O

Remark 6. — For a discrete countable group G, the above argument can be con-
siderably shortened: choose any generating set S such that S n S~! contains only
involutions and enumerate S = {si, s2,...}. Then the weighted word length where s;
and s; ! are given weight i will satisfy properties (i)-(iv).

Alternatively, one can simply restrict to G the word length of a finitely gener-
ated group containing G, which exists by [HININ49]. This overkill, however, cannot
be generalized to non-discrete groups because they need not embed into compactly
generated groups [CC14]; thus the need for Proposition 5 remains.

Definition 7. — A moderate measure on a locally compact group G is a probability
measure g in the same measure class as the Haar measures and such that
(i) for all g € G, the Radon—Nikodym derivative dgu/du is essentially bounded on
G,
(ii) the map g — |dgp/dul, is locally bounded on G.

The point of this definition is that it readily implies the following:

If p is a moderate measure on G, then the left translation representation of G on
L?(G, ) is a well-defined continuous linear representation which is locally bounded
(in operator norm).

To be completely explicit, the (non-unitary) representation above is defined by
(9f)(z) = f(g7'x) for g,x € G and f € L?(G, ). In particular, the constant functions
constitute a G-invariant subspace. The statement above is a particular case of the
moderate induction that will be investigated in detail in Section 6, to which we refer
for a proof.

We shall obtain moderate measures thanks to moderate lengths:
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Proposition 8. — If { is a moderate length on a locally compact group G and mg
a left Haar measure, then the measure u defined by

dp(z) = kD' @ dmg(x)

is moderate when D > 1 is large enough and k > 0 is a suitable normalization
constant.

Proof. — Choose any D > C, where C > 1 is as in Definition 2(iv). Since the
function ¢ is Borel thanks to Definition 2(iii), it follows that the formula du(x) =
kD@ dmg(z) makes sense and defines a measure in the same class as mg for
any k > 0. In particular, the Radon—Nikodym derivative of Definition 7 exists.
This measure is finite because of D > C and hence it can be normalized by the
appropriate choice of k. It now suffices to show that for every compact set U < G
the function dgpu/du(z) is bounded uniformly over g € U,x € G. Since mg is left
invariant, we have dgu/du(z) = DY®)=%9"'2) which is bounded above by D) in
view of Definition 2(ii). Therefore, it only remains to see that the ¢-balls B(r) contain
U when r is sufficiently large. Since U is compact and B(r) closed, this is a direct
application of Baire’s theorem using the relation B(r)B(s) € B(r + s) which follows
from Definition 2(ii). O

Corollary 9. — FEvery locally compact o-compact group admits a moderate measure.

Remark 10. — The proof given below relies on the manuscript [HPO06], or on the
thesis [Prz05], for providing a moderate length. There is an alternative route, based
on the more elementary length construction of Proposition 5, that leads to a moderate
measure on the quotient by the maximal normal amenable subgroup. This suffices
for our application (namely towards proving Theorem A), and therefore we briefly
describe this other passage.

The quotient by the maximal normal amenable subgroup has an open finite index
subgroup splitting as a product of a connected group and a totally disconnected o-
compact group, see [BMO02] as recalled in Theorem 23 below. Applying respectively
Example 4 and Proposition 5, both factors admit a moderate length and hence so does
this open finite index subgroup by taking the sum. Therefore, it carries a moderate
measure by Proposition 8. This property is inherited from open finite index subgroups
by transporting the measure on the cosets.

Proof of Corollary 9. — Let G be a locally compact o-compact group. By Satz 5
in [KK44] there is a compact normal subgroup K < G such that G/K is second
countable. There exists a continuous moderate length G/K — R, by [HP06, 5.3]
or [Prz05, 1.26]. The composed map G — R is still a moderate length; point (iv)
of the definition is checked using Weil’s integration formula [Bou63, VII §2 N°7]. We
conclude by Proposition 8. O
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4. Tychomorphisms

Simplicibus itaque verbis gaudet Mathematica Veritas, cum etiam per
se simplex sit Veritatis oratio

Tycho Brahe, Epistole astronomice, Uraniborg 1596

(General preface, p. 23 1. 32 in Dreyer’s edition;

absent from the 1601 edition of Levinus Hulsius)

The goal of this section is to discuss basic facts about tychomorphisms, a probabilistic
variant of closed (e.g. discrete) subgroup embeddings in locally compact groups. The
closedness condition, which is essential in the context of amenability, is an aspect
absent from the analogous concepts of “orbit subrelation” and “randembedding” of
discrete groups. Nevertheless, it will not appear in topological terms, but rather as
an ergodic-theoretical smoothness condition following from the definitions below; this
reformulation is a special case of the Glimm—Effros dichotomy.

Let G be a locally compact group. The Haar measures of G define a canonical mea-
sure class on GG, which is standard if G is second countable. A measured G-space is a
measured space (X, m) together with a G-action such that the action map Gx ¥ — %
is non-singular. We shall always consider standard measured spaces, so that all basic
tools such as the Fubini-Lebesgue theorem are available. Unless otherwise stated,
groups shall act on themselves by left multiplication. We will note by mg a choice
of a (non-zero) left Haar measure on G and by mg the corresponding right Haar
measure defined as the image of mg by the inverse map. The modular homomor-
phism Ag: G — RY is defined by dmg(zg) = Ag(g)dmea(x); recall moreover that
Agdmg = dmg.

Definition 11. — Let (X, m) and (X', m’) be two measured G-spaces. We say that
Y is an amplification of ¥/ if there is a measure preserving G-equivariant isomorphism
between (3,m) and the product of (X', m’) with a measured space (X,d) endowed
with the trivial G-action. The amplification is said to be finite if ¢ is finite. Remark
that if G preserves one of the measures m or m/, then it also preserves the other one.

Example 12. — Let H be a closed subgroup of a locally compact second countable
group G and let my, mg be left Haar measures. Then the left H-action on (G, mg)
is an amplification of (H, my) (see e.g. [Rip76]). The latter is finite if H has finite
invariant covolume in G.

Ezample 13. — If G is countable (hence discrete), then (3, m) is an amplification
of G if and only if G admits a measurable fundamental domain in 3.

Definition 14. — Let G and H be locally compact second countable groups. A
tychomorphism from H to G is a measured G x H-space (X, m) which as a G-space
is a finite amplification of (G, m¢) and as an H-space is an amplification of (H,m).

Note that H preserves the measure m on 3, whereas G does so if and only if it is
unimodular. For unimodular groups, the symmetric situation (i.e. when X is also finite
as an amplification of H) is the usual measure equivalence studied e.g. in [Fur11].
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Remark 15. — Let (X, m) be a tychomorphism from H to G and consider isomor-
phisms (X, m) = (G,m¢) x (X,9) and (X, m) = (H,mpg) x (Z,n) as in the definition.
If we transport the H-action through the first isomorphism, we obtain a non-singular
H-action on X and a measurable cocycle a: H x X — G such that

h(g, S) = (ga(h, S)_17 hs)

because the H-action must commute with the G-action on G x X. In particular, this
H-action on X preserves the finite measure 9. On the other hand, if we transport the
G-action through the second isomorphism, we obtain also a non-singular G-action on
Z and a measurable cocycle 8: G x Z — H such that

g(h,s) = (hB(g,5)" ", gs)

but now the G-action on Z might not preserve the measure 7. Indeed, one checks
that the Radon-Nikodym derivative dgn/dn is equal to y — Ax(B(g~ L, v))Ac(g).

Example 16. — If H is a closed subgroup of a locally compact second countable
group G, then (G, m¢) is a natural tychomorphism from H to G. Indeed, it is an
amplification of (H,mpg) by Example 12; the right G-action on (G, m¢) commutes
with H and is intertwined by the inverse map to (G, ), hence is a finite (trivial)
amplification of (G, mq).

The next lemma shows how to compose tychomorphisms.

Lemma 17. — Let Gy, G2 and H be locally compact second countable groups. If
there is a tychomorphism from Gy to H and another from H to Go, then there is one
from Gy to Gs.

Proof. — Let (Gy1,mg,) x X1 = 31 = (H,mpy) x Z; and (Ga,Mg,) X Xg = 3g =
(H,m) X Zs be the tychomorphisms, with Z; and X5 having finite measure. Consider
the corresponding cocycles a;: G; x Z; — H and the non-singular actions of G; on Z;
as in Remark 15. We endow the space X := Z; x Zs x (H,mpy) with a non-singular
action of G; x Gy by defining

(91, 92)(21, 22, h) = (9121, G222, @1 (g1, 21) hava(ga, 22) ).

The measure-preserving equivariant isomorphisms given by the tychomorphisms show
that ¥ is Ge-equivariantly isomorphic to (Ga,mg,) X Z1 x Xa, hence it is a finite
amplification of (G, M,). Likewise, 3 is G-equivariantly isomorphic to (G1,mg, ) X
Z5x X1, hence it is an amplification of G, except that this time we need to precompose
the isomorphisms by the map ¥ — Z; x Zy x (H,mp): (21,22, h) — (21,22, h7 ). O

By the universal property, an embedding of a free group into a quotient group can
be lifted; moreover the lift is discrete if the original embedding was so. It turns out
that the corresponding fact holds for tychomorphisms.

Proposition 18. — Let G bea locally compact second countable group, N a closed
normal subgroup and G the quotient group G/N. Let 0 < r < RNg. If there is a
tychomorphism from the free group F,. to G, then there is one from F, to G.
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Proof. — Let S be a basis of a free group F, and ¥ =~ G x X be a tychomorphism
from F, to G with associated cocycle a: F, x X — G. By Example 13, there is a
fundamental domain .# < X for the F,-action.

Choose a Borel section 7: G — G of the projection map 7: G — G. The following
lemma can be checked e.g. by applying the cocycle relation to the unique representa-
tion of elements of F;. as reduced S-words.

Lemma 19. — There is a measurable cocycle &: F. x X — G such that o = wo &.
Moreover, there is an essentially unique such & satisfying &(s,z) = 7(a(s,x)) for
almost all v € X and all s € S. O

(Note that & is not in general equal to 7o «.)

Consider now the finite amplification of G given by % = (G, mg) x X. We endow
3 with a measure-preserving F.-action that commutes with the G-action by setting
w(g,r) = (ga(w,z)~ !, wx), observing that the given F,-action on X preserves the
measure by Remark 15.

We now need to prove that ¥ is an amplification of F)., i.e. that there is a funda-
mental domain in 3 for the countable group F,.. For this, consider the measurable
space isomorphism N x G x X ~ G x X given by (n,g,z) — (7(g)n, z); when each
group is endowed with a right Haar measure, this isomorphism preserves the mea-
sure, up to a scaling factor, thanks to Weil’s integration formula (see Proposition 10
in [Bou63, VII §2 N°7]). By transferring the F,.-action via this isomorphism, the
action on the former space is given by

w(n,g,z) = (0, ga(w,z) " ,wr) forweF,,neN,geG,zeX,

where the specific expression n’ = 7(ga(w,z)™ )17 (g)na(w,z)~!

our purpose. Indeed, we only need to observe that the above F.-action on ¥ is a
twisted product with N of the given action on ¥, namely w(g, ) = (ga(w, )™}, wx).
It therefore admits N x .% as a fundamental domain. O

is irrelevant for

5. A generalization of the Gaboriau—Lyons theorem

In this section, we establish a generalization of the main result of [GLO09] to certain
totally disconnected groups. We then deduce the existence of tychomorphisms from
free groups to these groups, Theorem 20 below. The full generality of Theorem B will
be established in Section 7.

Recall that the core of a subgroup K < G is the normal subgroup Coreg(K) =
ﬂgeG K9 of Gj; thus it is the kernel of the G-action on G/K.

Theorem 20. — Let G be a non-amenable unimodular compactly generated locally
compact second countable group and K < G a compact open subgroup.
Then there exists a tychomorphism from Fs to G/Coreg(K).

When G is discrete, the assumptions are simply that G is finitely generated and
non-amenable (one takes K trivial). In that case, the Gaboriau-Lyons theorem states
that a suitable Bernoulli shift of G contains the orbits of a free Fy-action. This implies
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that there is a “randembedding” from F5 to G (see [Mon06, § 5] or [MO10]). We
shall follow the strategy of Gaboriau—Lyons closely until changes are imposed by the
non-discreteness.

One difficulty mentioned in the introduction is that we need a stronger conclusion
since simply having Fy-orbits within the orbits of a locally compact group G does
not correspond to any form of non-amenability unless some discreteness condition is
imposed.

Remark. — Two proofs are proposed in [GLO09], each needing different adjustments
to be generalized; therefore, we shall give all the details of the approach taken below.
Another exposition of [GL09] is given in [Houl2]; there, the need of ergodicity for
Hjorth’s theorem in [Hjo06] relies on indistinguishable clusters for the free minimal
spanning forest (Conjecture 6.11 in [LPS06]), which is bypassed using a result [CI10]
not established in the non-discrete setting. After circulating a first version of this
article, we were informed by Itai Benjamini that indistinguishability has just been
established in two preprints [HN15, Tim15]. In conclusion, a second approach
becomes possible just as in [GL09] and [Houl2].

Proof of Theorem 20. — All the assumptions are preserved if we replace G and K
by their images in G/Coreg(K); therefore we can simply assume that K has trivial
core in G. We can chose a compact generating set S € G with S = S~!, e € S and
S = KSK. Let n be a positive integer to be chosen shortly and consider the graph
g :=g"(G, K, S) defined in Section 3. Then G is a vertex-transitive closed subgroup
of the automorphism group of g and in particular g is, by definition, a unimodular
graph. By construction, the spectral radius of g is o™ for some 0 < ¢ < 1 which is the
spectral radius of g(G, K,.S). We recall here that ¢ < 1 because G is non-amenable,
see [SW90, Thm. 1(c)]. Therefore, we can and do choose n large enough so that the
spectral radius of g is 0" < 1/9. We denote by E the set of edges of g and consider
the compact metrizable G-space [0,1]¥. We define X < [0,1]¥ to be the G-invariant
Ggs-subset of injective maps E — [0,1] and observe that G acts freely on X since
it acts faithfully on E by triviality of the core. Let 2 be the corresponding orbit
equivalence relation on X defined by z 22’ iff 2’ € Gx.

Since K is compact, its action on X has a Borel fundamental domain ¥ < X
(see e.g. [Sri98, 5.4.3]). Thus, the action map defines a Borel isomorphism K x YV =~
KY = X. We denote by Z the equivalence relation on Y defined by restricting 2, i.e.
yZy iff y' € Gy. Then 2 decomposes along K x Y =~ X as the product 2 = T x Z
of the fully transitive relation 9k on K with % on Y. In particular & is a Borel
equivalence relation with countable classes. We obtain a graphing of Z (in the sense
of |Gab00, Lev95]|) by transporting to the Z-orbit [y]4 of y € Y the graph g. More
explicitly, we have a bijection G/K — [y]% mapping a vertex gK of g to the unique
element of the set Kg~'y nY. Notice that this graph structure on [y]s depends
indeed only on the Z-class of y. By construction, each %-class is then isomorphic as
a graph to the connected graph g.

For a given parameter 0 < p < 1, consider the map from X to the space of
subgraphs of g given as follows: an edge a € E is kept at z € X iff z(a) < p.
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This provides us with the cluster equivalence subrelation 2% € 2 on X defined as
in [Gab05] by declaring .22’ iff 2’ = g~ 'x and the subgraph z < p connects gK
to eK. Let Z°! € Z be the restriction of 2°! to Y'; one checks again that 2 is the
product i x Z°.

We now endow X with the (restriction of the) product ¥ of Lebesgue measures
on [0,1]¥. Then ¥ is preserved and ergodic under G; ergodicity is very classical and
can be proved e.g. by the same argument as in [KTO08, 2.1]. We consider the maps
described above by = < p as a random variable on (X, d) with values in the space of
subgraphs of g; this is a G-invariant p-Bernoulli bond percolation on g with scenery
in the sense of [LS99, 3.4]. Therefore, we can apply the results of [LS99] stating that
this percolation process has indistinguishable infinite clusters in the sense of [LS99,
3.1].

At this point we record the fact that there exist choices of the parameter p such
that the corresponding random subgraphs of g have ¥-almost surely infinitely many
infinite clusters, each of which having uncountably many ends. Indeed, in view of
Theorems 1.2 and 6.1 in [HP99], it suffices to show that the critical probability p.
for g is strictly below the critical uniqueness probability p, (see also [LS99, 3.10] for
a proof of [HP99, 6.1]). The latter condition follows if the free, respectively wired
minimal forests are distinct processes on g, see [LPS06, 3.6]. That property holds for
our choice of g; indeed, the free minimal forest has expected degree > 2 by [Tho13,
Thm. 1] and the fact that the spectral radius of g is < 1/9; on the other hand the
wired minimal forest has degree 2 by [LPS06, 3.12]. Alternatively, one can apply the
earlier [PSNOO]| instead of [Thol3].

Let X, € X be the set of points whose 2¢-class is infinite; this is non-null by
the above discussion. The proof of Proposition 5 in [GLO9] applies in this setting
and shows that, by the indistinguishability established above, the restriction of 2
to X4 is ergodic. If we set Yo, = Y n X, we have Xy = KY,,. Furthermore, by
measure disintegration, there is a unique Borel probability measure 7 on Y such that
¥ is the product of n by the normalized Haar measure of K; moreover, #Z preserves 7.
It follows that Y., is non-null for 5 and that the restriction of Z' to Y, is n-ergodic in
view of the decomposition 2°' =~ F5 x #°!. This further shows that #°! has n-almost
surely infinitely many infinite clusters, each of which with uncountably many ends.

At this point we can argue exactly as in Propositions 12, 13 and 14 of [GL09]
and apply Hjorth’s result [HjoO06] to deduce that # contains a subrelation which is
produced by a measure-preserving a.s. free (ergodic) action of the free group Fy on
two generators upon the space (Y, 7).

As usual in this setting, we endow &% with the measure given by integrating over
(Y,n) the counting measure of each equivalence class. We thus obtain a o-finite
measure on % which is preserved by the Fy-action on the second coordinate of Z <
Y x Y (the action on the first coordinate would work just as well). Moreover, there
exists a positive measure fundamental domain Z € % for this Fy-action, obtained by
choosing for each y € Y in a Borel way representatives for the Fy-classes within the
Z-class of y. (This procedure is described in detail e.g. in [Eps08, 2.2.2] in the case
where % comes from a group action, which is not a restriction [FM77].)
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We extend the Fh-action on Y to a (non-ergodic) Fh-action on X =~ K x Y by
letting Fy act trivially on K. The resulting relation is contained in 2 and therefore
we have a Fs-action on the second coordinate of 2. This action admits

TIx x Z ={(ky,k'y) : k,k' € K and (y,y/) e Z} = 2

as a fundamental domain. We endow 2 with a G-invariant measure m by pushing
forward the measure mg x 9 under the identification

GxX— 2 (9,2) — (gz,z),

with m¢ being a Haar measure on G. Then (2, m) is a finite amplification of the G-
space (G, mq). Moreover, the Fy-action preserves m because G is unimodular; thus,
since we have found a non-m-null fundamental domain % x Z for Fs, the Fy-space
(2,m) is an amplification of F». Therefore, (2, m) endowed with the commuting G-
and Fy-actions is indeed a tychomorphism from F5 to G. O

6. Moderate induction

Using moderate measures, we propose a new variant of the classical induction of
representations and of cocycles from closed subgroups. In fact, we shall consider the
more general case of tychomorphisms instead of subgroups only.

We first need to clarify the meaning of continuity for representations. Consider thus
a linear representation ¢o: G — GL(V) of a topological group G on a Banach space
V', where GL denotes the group of invertible continuous linear maps. It is well-known
that several possible definitions of continuity coincide for unitary or even uniformly
bounded representations (see for instance Lemma 2.4 in [ BFGMO07]). But for general
representations ¢ as above, even the definitions are already trickier because neither
the weak nor strong operator topologies are compatible with the group structure of
GL(V) (compare e.g. [Dix96, 1§3.1]).

The following lemma (which slightly refines [Ros13, §1.3]) shows that we can
nonetheless unambiguously talk about a continuous representation when G is Baire
(e.g. locally compact) or first-countable. We call o locally bounded if the operator
norm of p is a locally bounded function on G.

Lemma 21. — Let G be a topological group and o: G — GL(V') be a representation
on a Banach space V. Consider the following assertions:

(i) The action map G x V. — V is jointly continuous.
(ii) The orbit map G — V: g — o(g)x is continuous for every x € V and o is locally
bounded.
(iii) The orbit map G — V: g — o(g)x is continuous for every x € V.

Then (i) and (ii) are equivalent. Moreover, they are also equivalent to (iii) if G is
Baire or admits countable neighbourhood bases.

It turns out that local boundedness is not automatic for completely general G,
even if V' is a separable Hilbert space; see Section 9. In particular, orbital and joint
continuity do not agree in full generality.



FIXED POINTS FOR BOUNDED ORBITS IN HILBERT SPACES 17

Proof of Lemma 21. — The implications (i)=-(ii)=>(iii) hold trivially. Notice more-
over that g is locally bounded if and only if for every net g, — ¢ in G, the net || 0(g4)||
is eventually bounded.

For (ii)=(i), let (ga, o) be a net converging to (g,x) in G x V and consider

o(ga)Ta — 0(9)zll < lle(ga)ll |za — x|l + [[o(ga)x — ||

The first term goes to zero as g is locally bounded and the second one also converges
to zero by orbital continuity.

We thus have to prove that orbital continuity implies local boundedness when G
is either Baire or first countable.

In the first case, we write G as the increasing union of the subsets G,, = {g € G :
lle(9)|l < n}. Since G, can be written as the intersection over all z € V of all ¢
satisfying ||o(g)z|| < n|lz|, it is a closed set by orbital continuity. The Baire condition
then implies that G,, has some interior point g when n is large enough. Now any
h € G admits G,,g~'h as a neighbourhood on which | g| is bounded by n|o(g~th)].

If on the other hand G is first countable, then local boundedness can be checked on
sequences instead of nets; moreover, for sequences, eventual and actual boundedness
coincide. We thus show that for every sequence g, — ¢ in G, the sequence ||o(gy,)||
is bounded. By orbital continuity, o(g,)x converges and hence is bounded for all
x € V. The conclusion now follows from the Banach—Steinhaus uniform boundedness
principle [DS58, I1.3.21]. O

Theorem 22. — Let G and H be locally compact second countable groups with a
tychomorphism from H to G.

If H admits a continuous affine fixed point free action on a separable Hilbert space
with a bounded orbit, then so does G.

Proof. — Let V be a separable Hilbert space with a continuous affine action « of H
having a bounded orbit. Upon conjugating by a translation, we can assume that the
orbit of the origin is bounded, i.e. that the cocycle b: H — V of a is bounded. Let
(X, m) be a tychomorphism from H to G realized as a finite amplification (G, mqg) %
(X,9) and denote by y an H-equivariant retraction ¥ — H (i.e. x is the projection
onto H, when ¥ is seen as an amplification of H).

First, we twist the measure m by a moderate measure p on G, which exists by
Corollary 9. That is, we define a new measure i by pushing the product measure on
(G, p) x (X,9) to X through the isomorphism given by the tychomorphism. Thus [
is a probability measure on ¥ in the same class as m.

We define an action of G x H on functions f: ¥ — V by

(9f)(s) = flg™ "), (hf)(s) = f(h™1s).
As G x H preserves the class of the measures m and 1 on ¥, this action is also well
defined on the equivalence classes of measurable functions.

Consider now the Hilbert space # = L?(X,[i; V). The fact that pu is moderate
implies that G preserves J#. Let us check that this action is continuous, i.e. that
the orbit maps G — ¢ are continuous (cf. Lemma 21, since local boundedness is
readily implied by the definition of a moderate measure). Let thus g, — g be a
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convergent sequence in G. Thanks to the local boundedness, it suffices to check the
continuity of the orbit maps only for points in some dense subset E of 5. By the
o-finiteness of m, we can take for E the subspace spanned by indicator functions of
measurable sets A — ¥ with finite m-measure. But for these functions, the L?(i)-
convergence of g,14 to gl is equivalent to the L?(m)-convergence, because m and
[I are two equivalent o-finite measures. Since the modular homomorphism Ag is
continuous, this is nothing but a special case of the continuity of A, the (isometric)
left regular representation of G on L2(X, m; V) given by (A(g)f)(s) = Ag(9)2 f(g™'s).
By Proposition 1.1.3 in [Mon01], in order to get the latter, it is enough to check that
orbit maps are norm-measurable, for which we borrow the argument from appendix D,
Theorem 1.2.1 in [Biih11]. For any &,n € L?(X, m; V), consider the map

g M@ = Ac(o)? L<§(g_18)77](8)>v dm(s).

By definition of a tychomorphism, (g,s) — (£(g71s),n(s))v is a measurable function
on G x %, which is moreover bounded if £ and n are essentially bounded. Hence an
application of [Kec95, 17.25] shows that g — {(A(g)&, n) is measurable when ¢ and 7
are bounded, hence for any £ and 1 by density. In particular, the orbit maps g — A(g)&
are weakly measurable. By [Mon01, Lemma 3.3.3], they are also norm-measurable,
as desired.

Consider next the subset W < 52 of functions f that are H-equivariant in the
sense that hf = a(h™1) o f holds for every h € H. Then W is a G-invariant closed
subset that is stable under affine combinations. Moreover, for any g € G, the function
Bg: X — Vs by(g's) lies in W, has norm bounded by that of b and satisfies
Bg = gBe. Hence the restriction of the G-action to W is a continuous affine action of
G with a bounded orbit.

Lastly, suppose for the sake of a contradiction that there is a G-fixed point in W.
This would then descend to a measurable function X — V which is H-equivariant.
Moreover, the latter is ¥-integrable thanks to the L?-condition since 9 is finite. There-
fore, averaging over X, we would get a fixed point in V since the H-action on X
preserves 9 by Remark 15. O

7. Proofs of Theorems A and B

Let G be any locally compact group. Recall that G admits a maximal normal
amenable closed subgroup, the amenable radical Ramen(G). The following general
splitting result from [BMO2] relies notably on the solution to Hilbert’s fifth problem.

Theorem 23 (Thm. 3.3.3 in [BMO02]). — Let G be any locally compact group.
The quotient group G/Ramen(G) has a finite index open characteristic subgroup
which splits as a direct product S x D where S is a connected semi-simple Lie group
with trivial center and no compact factors and D is totally disconnected.
Moreover, D is second countable if G is o-compact. O
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The statement on second countability is not made explicitly in loc. cit., but it
follows from Satz 5 in [KK44| that when G is o-compact, it has a second count-
able quotient by a compact normal subgroup — which is necessarily contained in
Ramen(G).

We first prove Theorem B. Let thus G be a non-amenable locally compact second
countable group. Since there are inclusions F,. < Fj for all 0 < r < Ny we only
consider r = 2, using Lemma 17.

We shall distinguish two cases; as a first case, suppose that the connected com-
ponent G° of the identity is already non-amenable. Then G contains a discrete non-
abelian free subgroup:

Lemma 24. — A connected locally compact group is amenable if and only if is does
not contain any discrete non-abelian free subgroup.

Proof. — Let H be a non-amenable connected locally compact group and let L =
H/Ramen(H) be the quotient by its amenable radical. In the present case, there
is no splitting and Theorem 23 is a direct consequence of the solution to Hilbert’s
fiftth problem; it implies that L is a semi-simple Lie group of positive R-rank. In
particular, it contains a closed subgroup L; < L of rank one. The classical ping-pong
lemma applied to suitable hyperbolic elements of L; acting on the boundary of the
symmetric space of L; provides a free subgroup Fy of L; (modulo its center) and
shows moreover that this F5 is discrete. Being free, it can be lifted to H and any such
lift remains discrete.

The converse is elementary since closed subgroups of amenable locally compact
groups remain amenable (see [Ric67, Theorem 3.9]). O

Therefore we have a tychomorphism from our discrete non-abelian free subgroup
to GG as indicated in Example 12 and thus also one from F; to G by Lemma 17.

The second case is when G° is amenable. By Proposition 18, it suffices to produce
a tychomorphism from F» to G/G°. Let G; < G/G° be the kernel of the modular
homomorphism of G/G°. This closed normal subgroup is unimodular; in fact, it is
the maximal unimodular closed normal subgroup, see Proposition 10 in [Bou63, VII
§2 N°7]. Observe that G also remains totally disconnected and non-amenable. By
considering the directed family of subgroups of G; generated by a compact neighbour-
hood of the identity, we can choose a compactly generated subgroup Go < Gy which
is non-amenable, and still unimodular since it is open. Being totally disconnected, it
contains some compact-open subgroup K. By Theorem 20, there is a tychomorphism
from F5 to the quotient of G5 by the core of K, hence there exists one from Fs to Gy
by Proposition 18. We can compose it with the inclusions Gy < G; < G/G° thanks
to Lemma 17 in order to get a tychomorphism from F5 to G/G°, as desired.

This finishes the proof of Theorem B.

For the Lie oriented reader, we point out the following reformulation of Theorem B
(and its easy converse).



20 M. GHEYSENS AND N. MONOD

Corollary 25. — Let G be a locally compact second countable group. Then G is
amenable if and only if it does not admit a tychomorphism from SLs(R).

Indeed the corollary follows by composition of tychomorphisms since any locally
compact group is measure equivalent to its lattices, which in the case of SLo(R)
include non-abelian free groups.

We now turn to Theorem A and consider a non-amenable locally compact o-
compact group G. Our goal is to provide a continuous fixed point free affine G-action
on a Hilbert space with a bounded orbit. It suffices of course to provide such an action
for some quotient of G and hence we can assume G second countable by appealing as
above to [KK44]; notice that we could even have replaced G by G/Ramen(G).

The starting point is provided by Section 2, which shows that for instance the free
group Fy has a fixed point free affine action on a Hilbert space with a bounded orbit.
We can then apply Theorem B and Theorem 22 to conclude the proof of Theorem A,
relying on the existence of moderate measures for all groups, see Corollary 9. Alter-
natively, the latter can be bypassed by providing the requested action for the quotient
group G/Ramen(G), see Remark 10.

8. Proof of Theorem C
We begin by recording an elementary common knowledge fact.

Lemma 26. — Let H be an open subgroup of a topological group G. If H admits
a non-unitarisable uniformly bounded continuous representation on a Hilbert space,
then so does G.

Proof. — Given the H-representation on V, we can form the wusual induced G-
representation on W = (2(G/H, V'), where G/H is endowed with the counting measure
and G acts on f € W by (9f)(z) = v(¢7 ', 2) 1 f(g ), where v: G x G/H — H
is the (continuous) cocycle determined by a choice of representatives for the cosets.
One verifies that this is indeed a well-defined uniformly bounded continuous repre-
sentation. Since H is open, the H-representation V' is contained in the restriction
of W from G to H as the space of maps supported on the trivial coset, whence the
conclusion. O

We can and shall assume that G is o-compact and A countable (then Ayg /oG is also
o-compact). For let Ay < A be an infinite countable subgroup and Gy < G an open
o-compact subgroup (e.g. the subgroup generated by a compact neighbourhood of the
identity). If O < Gy is an open subgroup such that Agz,/0 Go is non-unitarisable,
then indeed A/ G is also non-unitarisable by Lemma 26 since it contains Aolg,/0Go
as an open subgroup (noting that O remains open in G).

We distinguish cases as in Section 7; suppose first that the connected component
G° is amenable.

Then G; = G/Ramen(G) is totally disconnected, non-amenable and second count-
able; moreover, the core of any compact-open subgroup K < (G is trivial. We choose
such a K and define O < G to be its pre-image in G. Notice that it suffices to show
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that the group Alg,/x G1 is non-unitarisable since it is a quotient of A g0 G. By
Theorem B, there exists a tychomorphism from F5 to G;. Let

(X, m) = (G1,ma,) x (X,0) = (H,mu) x (Z,1)

be the corresponding G; x H-space and its realizations as amplifications with associ-
ated cocycles a and . At this point, we can for a while follow exactly the path taken
in [MO10]:

Recall first that the non-unitarisability of F, is implied by the following a pri-
ori stronger statement: there is a unitary representation (m, V) of F» such that the
bounded cohomology H{ (F», £ (V)) is non-trivial, where .Z(V) is the Banach space
of bounded operators of V' endowed with the isometric Fy-module structure given by
conjugation by m. We refer to Lemma 4.5 in [Pis01] for this fact, recalling that 7
can be taken to be the regular representation on V = ¢?(F}) and that a (straightfor-
ward) translation from derivations to 1-cocycles has to be made. We now consider the
(classical unitarily) induced unitary G-representation o on W = L?(Z,n; V) defined
by

(@(9)f)(5) = A, (9) 27 (B(g™ Y, 8) ™) Fg™"s).

We have again a corresponding Gj-representation on the von Neumann algebra
Z(W) given by conjugation by o. This representation preserves the subalgebra
E = LY, (Z,2(V)) of weak-* measurable bounded function classes. In fact, the
resulting G{-representation on F is none other than the “L*-induced” representation
(i.e without the Ag, factor) associated to the above Fy-representation on £ (V). In
relation to this L®-induced representation there is also a cohomological induction
map

H(Fp, Z(V)) — HL(Gy, E).

The latter is injective. Indeed, the proof given in [MS06, §4.3] for the case of ME
couplings of discrete groups holds without changes.

In addition to its Gy-structure, . (W) is a module over the von Neumann algebra
L*(Z) and this module structure is compatible with the Gi-representation on L*(Z)
in the sense that conjugating by g € G; the action of some ¢ € L*(Z) on L (W)
simply gives the action of gp = p o g~!. It follows that we will turn .Z(W) into a
(dual isometric) coefficient Alg, ,x Gi-module as soon as we define any representation
of A into the unitary group of the subalgebra L*(Z)X of L®(Z). Notice furthermore
that the L*(Z)-module structure of £ (W) preserves E so that F will also inherit
that Ag, x Gi-action.

Remark 27. — We will need repeatedly that for any compact subgroup K’ < G
the algebra L°(Z)X" is canonically identified with L*(K"\Z), where K’\Z is an
ordinary quotient of Z (in contrast to the case of non-compact groups, where one
needs to introduce a space of ergodic components which would be unsuitable for some
arguments below). This is the case because the compactness of K’ ensures that its
action on Z is smooth in the ergodic-theoretical sense, as follows from a result of
Varadarajan (Theorem 3.2 in [Var63]).
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We now choose an A-representation into the unitary group of L*(K\Z) that gen-
erates L®(K\Z) as a von Neumann algebra (this exists e.g. by the argument given
on page 257 in [MO10]). We write N = @GI/K A, sothat Alg, )k G1 = N % Gy.

Lemma 28. — Under the embedding E — £ (W), we have E = £ (W)N.

Proof. — In view of Theorem IV.5.9 in [Tak02], what we need to prove is the fol-
lowing claim. The von Neumann subalgebra of L*(Z) generated by the union of all
gL®(Z)K = L*(Z)9K9™"  where gK ranges over G1/K, is L®(Z) itself.

We first record that for any two compact subgroups K’, K” < G; the von Neumann
algebra generated by L*(Z)X and L®(Z)X" coincides with L®(Z)5' K" (this can
fail for non-compact groups). Indeed this follows immediately from the consequence
of Varadarajan’s theorem indicated in Remark 27. Consider now the net L®(Z)%'
indexed by the directed set of all finite intersections K’ < G1 of G1-conjugates of K.
The normalized integration over K’ provides a conditional expectation from L*(Z)
to L®(Z)X for each K’ which turns this net into an inverse system. Therefore,
the martingale convergence theorem implies that the algebra generated by the union
of all L*(Z)X" is weak-* dense in the von Neumann subalgebra B < L*(Z) of
functions that are measurable with respect to the common refinement of all partitions
defined by all Z — K"\Z. (Although general nets bring complications to martingale
convergence [Kri56], here we can anyway restrict to a cofinal sequence since Gy is
second countable.) Since K has trivial core in Gy, it follows (using again Varadarajan’s
theorem) that in fact the common refinement is trivial and hence B = L*(Z). This
implies the claim and thus finishes the proof. O

We can now conclude the proof exactly as in [MO10]: We know that H. (G4, E)
is non-trivial and that E =~ 2 (W)~. Moreover, the amenability of N implies that
HL(G1, Z(W)N) can be identified with H{ (N x G, £(W)), see [Mon01, 7.5.10].
Appealing again to Lemma 4.5 in [Pis01]|, we deduce that the group N x Gj is
non-unitarisable, finishing the proof of Theorem C in the case where G° is amenable.

If on the other hand G° is non-amenable, then Theorem 23 implies that after
passing to an open subgroup (which we can by Lemma 26), our group has a quotient
which is a connected non-compact simple Lie group. As recalled in the Introduction,
the particular example of SLo(R) was actually the first example of a non-unitarisable
group. Thanks to the substantial theory available for representations of simple Lie
groups, this example is known to generalize to all connected non-compact simple Lie
groups, see Remark 0.8 in [Pis05]. In conclusion, G itself is non-unitarisable in this
case, and hence so is a fortiori any extension of G. This completes the proof of
Theorem C.

9. Remarks and questions
Our proof of Theorem A is rather indirect and uses tychomorphisms.

Question 29. — Is there an elementary proof of Theorem A, not relying on Theo-
rem B?
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This question arises even for discrete groups.

Remark 30. — The classical fixed point property for amenable groups concerns
compact convex sets in general locally convex spaces. Consider the following weakened
property for a topological group G:

Whenever G acts continuously on a locally convex space V' by weakly continuous
affine transformations and preserves some weakly compact conver nonempty set K
in 'V, it has a fixed point.

This property is actually equivalent to the (formally stronger) usual one. Indeed, it
is enough to check that continuous actions by weak-* continuous affine transformations
on a dual Banach space V preserving some weak-* compact convex nonempty set are
encompassed in this situation (see [Ric67, Remarks 4.3]). But the weak topology of
V endowed with its weak-* topology is none other than its weak-* topology, whence
the claim.

Remark 31. — The action built in Section 2 has the additional property that the
orbit of 0 is not only bounded but relatively compact in norm. Indeed, the inclusion
operator {*(G) — (%(G, ) is compact because y is finite and atomic. A similar ar-
gument applies for moderate induction to discrete groups containing F;. However, a
priori this does not hold for induction through tychomorphisms since the correspond-
ing measure space is in general not atomic. This motivates the following:

Question 32. — Let G be a locally compact o-compact group. Suppose that every
continuous affine G-action on a Hilbert space preserving a norm-compact non-empty
set has a fized point. Does it follow that G is amenable?

Again, the question seems open even for G discrete.
(One can equivalently consider norm-compact convez sets in view of Mazur’s the-
orem [Maz30].)

Remark 33. — We already observed in the Introduction that the Banach—Steinhaus
uniform boundedness principle forces the considered actions to have at least some
unbounded orbit, and actually the points with unbounded orbits are dense. Moreover,
the action built in Section 2 also has a dense subset of points with bounded orbits:
the image in ¢2(G, u)/R of the functions with finite support.

Remark 84. — An action on a compact convex subset of a Hilbert space does not
necessarily extend to the whole ambient space. Let for instance V' be the space
?3(Z\{0}) and K in V be the compact convex subset of points = such that |z, | < n~!
and |z_,| < n~? for n > 0. Define the affine transformation 7: K — K by
xr

(T(2)), =ne—n  (T(x))_, ==
for any n > 0. This is a continuous involution of K. However, any linear extension
of T to V should map §,, to nd_,, for n > 0, which is impossible.

Remark 35. — In order to give some context to Lemma 21, we propose here a
whole family of representations ¢o: G — GL(V') of a topological group G on a Banach
space V.
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Consider any normed vector space U. Let G be the additive group of U endowed
with the weak topology and let V = R@®U*, where U* is the (strong) dual of U and
the sum is endowed with the £2-sum of the two norms. In particular, V is a separable
Hilbert space if U is so.

Finally, the representation g is defined by o(u)(t,x) = (¢t + x(u),z). Then every
orbital map is continuous by definition of the weak topology. On the other hand, we
have |o(u)| = |u| and hence g is locally bounded if and only if U is finite-dimensional.

We note in passing that the proof of Lemma 21 used the Banach—Steinhaus uniform
boundedness principle; hence the latter fails for general nets, illustrating the specific
assumptions made e.g. in [Bou55, III §3 N° 6].

Turning to the Dixmier problem, our next two questions would of course be moot
if every (locally compact) unitarisable group were amenable. This seems questionable
even in the discrete case; our questions, however, become obvious for discrete groups
(see Lemma 26).

Question 36. — Does unitarisability pass to closed subgroups of locally compact
groups?

A preliminary question being:

Question 87. — Let G be a locally compact group containing a discrete (non-
commutative) free subgroup. Is G non-unitarisable?
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