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Abstract. It is, by now, classical that lattices in higher rank semisimple
groups have various rigidity properties. In this work, we add another such
rigidity property to the list, namely uniform stability with respect to the fam-
ily of unitary operators on finite-dimensional Hilbert spaces equipped with
submultiplicative norms. Towards this goal, we first build an elaborate coho-
mological theory capturing the obstruction to such stability, and show that the
vanishing of second cohomology implies uniform stability in this setting. This
cohomology can be roughly thought of as an asymptotic version of bounded
cohomology, and sheds light on a question raised in [Mon06] about a possible
connection between vanishing of second bounded cohomology and Ulam stabil-
ity. Along the way, we use this criterion to provide a short conceptual (re)proof
of the classical result of Kazhdan [Kaz82] that discrete amenable groups are
Ulam stable. We then use this machinery to establish our main result, that
lattices in a class of higher rank semisimple groups (which are known to have
vanishing bounded cohomology) are uniformly stable.

Dedicated to Robert J. Zimmer with admiration and affection

Introduction

Consider a semisimple group G = ∏k
i=1 Gi(Ki), where for 1 ≤ i ≤ k, Ki is a

local field, and Gi is an almost Ki-simple group. If the rank ∑k
i=1 rkKi(Gi) ≥ 2,

such a G is referred to as a higher rank semisimple group. The class of irre-
ducible lattices Γ in such groups G (referred to as higher rank lattices) form
an interesting class of groups, which over the years, have been shown to sat-
isfy many rigidity properties, such as local rigidity, Mostow strong-rigidity, Mar-
gulis super-rigidity (implying that they are arithmetic groups), Zimmer cocycle
rigidity, quasi-isometric rigidity, first-order rigidity, etc. (see [ES05], [ALM19],
[Mar91], [BFH20] and the references therein). A common feature of the classical
rigidity results is that such a higher rank lattice Γ has some clear family of rep-
resentations, and all other representations are just easy variants of them.
The goal of this paper is to demonstrate another type of rigidity phenomena of
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these lattices. Before stating the exact formulation, let us recall that Margulis
super-rigidity, while usually not formulated this way, also gives a full classification
of all the finite dimensional unitary representations of a higher rank lattice Γ as
above. Margulis super-rigidity implies that all such irreducible representations
come from a combination of those that factor through finite quotients (and these
are the only ones if Γ is a non-uniform lattice) and from the representations of
Γ appearing naturally in its definition as an arithmetic group by Galois twisting
(see §1.3 in [Mar91]). The rigidity phenomenon we study here, which is called
uniform stability, is the property that every unitary “almost-representation” of
Γ is a small deformation of a unitary representation.

Uniform Stability of Groups. Let Γ be a discrete group and (G,dG) be
a metric group (where dG is a bi-invariant metric on G). For ε > 0, a map
φ ∶ Γ → G is said to be an ε-almost homomorphism (or ε-homomorphism) if
dG(φ(xy), φ(x)φ(y)) ≤ ε for every x, y ∈ Γ. The value supx,y∈Γ dG(φ(xy), φ(x)φ(y))
is called the defect of φ.
Let G be a family of metric groups. We say that Γ is uniformly stable with re-
spect to G if for any ε > 0, there exists δ = δ(ε) with limε→0 δ(ε) = 0 such that
for any ε-homomorphism φ ∶ Γ → G (for G ∈ G), there exists a homomorphism
ψ ∈ Hom(Γ,G) with supx∈Γ dG(φ(x), ψ(x)) ≤ δ. In other words, Γ is uniformly
stable with respect to G if any almost homomorphism of Γ to any group in the
family G is close to a (true) homomorphism.

Questions of this nature were first raised and studied in [Tur38], [vN29]
and [Ula60], and of particular interest is the case when G is the family of unitary
operators on Hilbert spaces and the metric is given by a norm (on the space of
bounded operators), as studied in [Kaz82] and [BOT13]. Note that in this work,
we will be interested solely in uniform stability, as opposed to pointwise stability,
as studied in [DCGLT20], [AP15] and the references therein.

The notion of uniform stability with respect to unitary operators on Hilbert
spaces equipped with the operator norm is referred to in [BOT13] as strong Ulam
stability, while if we restrict the family to unitary operators on finite-dimensional
Hilbert spaces, it is referred to as Ulam stability. In the pioneering work of
Kazhdan [Kaz82] (and clarified further in [Sht13] and [Joh88]), it is shown that

Theorem 0.0.1 ([Kaz82]). Every (discrete) amenable group Γ is Ulam stable (in
fact, even strongly Ulam stable).
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It is worth noting that the only known examples of strongly Ulam stable
groups are amenable, and it is natural to ask if strong Ulam stability character-
izes amenability.
Let us mention at this point that one of the (innumerable) equivalent characteri-
zations of amenability is given in terms of the vanishing of bounded cohomology
with dual coefficients: Γ is amenable iff Hn

b (Γ, V ) = 0 for every dual Banach
Γ-module V and n > 0. Here Hn

b (Γ, V ) denotes the n-th bounded cohomology
group of Γ with coefficients in the Banach Γ-module V . Kazhdan’s proof does
not use this result explicitly but does use a notion of ε-cocycles and approximate
cohomology in degree 2.

Ulam stability was further studied in [BOT13] where they show more ex-
amples (and non-examples) of Ulam stable groups. It is shown there that if a
group contains a non-abelian free subgroup, then it is not strongly Ulam stable.
In particular, this means that higher rank lattices are not strongly Ulam stable.
On the positive side, they show:

Theorem 0.0.2 ([BOT13]). Let O be the ring of integers of a number field, S a
finite set of primes, and OS the corresponding localization. Then for every n ≥ 3,
SL(n,OS) is Ulam stable.

The proof of this result in [BOT13] uses the fact that SL(n,OS) (for
n ≥ 3) is boundedly generated by elementary matrices, and makes no reference
to bounded cohomology (this result is further extended in [Gam11] in the case of
n = 2 when OS has infinitely many units). However, note that for Γ = SL(n,OS),
H2
b (Γ, V ) = 0 for every dual separable Γ-module V . In fact, it is shown in [BM99]

that for every higher rank lattice Γ and any dual, separable Banach Γ-module
V with V Γ = {0}, H2

b(Γ, V ) = 0. All this hints at a possible connection between
bounded cohomology and Ulam stability, as raised by Monod in his ICM talk
[Mon06, Problem F], and serves as one of the starting points for our current work.

Main Results and Methods

In this paper, we generalize Theorem 0.0.1 and Theorem 0.0.2 to a wider
class of groups and metrics. We shall consider the question of uniform stability
with respect to the family U of groups of unitary operators on finite-dimensional
Hilbert spaces, with the metrics induced from submultiplicative norms on ma-
trices (which we shall denote uniform U-stability). These include the p-Schatten
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norms for 1 ≤ p ≤ ∞ (and in particular, uniform U-stability subsumes Ulam sta-
bility). Furthermore, we shall show uniform U-stability with a linear estimate,
which means that the distance of an almost homomorphism from a homomor-
phism is linearly bounded by its defect, and all our results are proved in this
stronger notion of stability.

To this end, we build a new type of bounded cohomological theory that can
capture obstructions to uniform U-stability, so that uniform U-stability follows as
a consequence of the vanishing of the second cohomology group in this theory.
While we shall develop this in full detail in §4, our technique involves the following
two main steps:

● Defect Diminishing: Expressing the problem of uniform stability as
a homomorphism lifting problem, we can treat it as a culmination of
intermediate lifts so that at each step, the lifting kernel is abelian. This is
a uniform variant of defect diminishing that was introduced in [DCGLT20]
in the non-uniform setting, and is applicable when the relevant norms in
the target groups are submultiplicative.

● Asymptotic Cohomology: Such a homomorphism lifting problem with
abelian kernel naturally leads to a cohomological reformulation (as in
[DCGLT20]). However, unlike in the non-uniform setting where ordinary
group cohomology comes up, in our uniform setting we need to carefully
construct a new cohomology theory such that the vanishing of the second
cohomology group in this model implies (uniform) defect diminishing, and
hence uniform stability.

The cohomological theory we construct is an asymptotic variant of the bounded
cohomology of the ultrapower ∗Γ with coefficients in a suitable ultraproduct Ba-
nach space W, but restricted to the “internal” objects in this universe, which we
shall call the asymptotic cohomology of Γ denoted H●

a(Γ,W).

Theorem 0.0.3. Suppose H2
a(Γ,W) = 0, then Γ is uniformly U-stable with a

linear estimate.

This new cohomology theory bears some similarity to the theory of bounded
cohomology, and sometimes we can easily adapt arguments there to our model (for
instance, we can show that H2

a(Γ,W) = 0 for an amenable group Γ, immediately
implying that amenable groups are Ulam-stable as in [Kaz82],[Sht13],[Joh88]),
though other times serious difficulties arise (which are responsible for the length
of this paper).
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The groups Γ that we will be particularly interested in are lattices in higher
rank semisimple groups. Unlike some of the other rigidity results which sometimes
hold for some lattices in rank one simple groups, we also first show the following
result:

Proposition 0.0.4. If Γ is a lattice in a semisimple group of rank 1, then Γ is
not uniformly U-stable.

It is shown in [Fuj98] that for such a Γ, H2
b(Γ,R) is infinite dimensional.

More precisely, Fujiwara constructs (many) non-trivial quasi-homomorphisms
witnessing that the comparison map c ∶ H2

b(Γ,R) → H2(Γ,R) is not injective.
By exponentiation, such quasimorphisms yield almost homomorphisms to U(1)
that are not close to any homomorphism (we shall discuss this in more detail in
§1). In particular, a lattice of rank one is not uniformly U-stable, and to hope
for uniform U-stability, the condition that rank of Γ is at least 2 is necessary.

For the main result of the paper, we need some definitions capturing prop-
erties of the class of semisimple groups we will be interested in. For a locally
compact group G, we denote by H●

b(G,R) the continuous bounded cohomology
of G with trivial coefficients.

● A locally compact group G is said to have the 2½property (of vanishing
bounded cohomology) if H2

b(G,R) = 0 and H3
b(G,R) is Hausdorff.

● Let G be a non-compact simple Lie group, and fix a minimal parabolic
subgroup P ≤ G. The group G is said to have Property-G(Q1,Q2) if
there exist two proper parabolic subgroups Q1 and Q2 containing P , both
having the 2½-property, such that G is boundedly generated by the union
Q1 ∪Q2. A semisimple group G is said to have Property-G(Q1,Q2) if all
its simple factors have Property-G(Q1,Q2).

Note that if a semisimple group has Property-G(Q1,Q2), then by definition, it
must be of rank at least 2. But note that not all simple groups have the property
(for instance, SL3(R)). However, in §6.3, we will show that many classes of
groups do have this property, for example, all simple groups (of rank at least 2)
over C or over a non-archimedean field, and SLn(R) for n ≥ 4.
We can now state our main result:

Theorem 0.0.5. Let Γ be a lattice in a semisimple group G that has Property-
G(Q1,Q2). Then H2

a(Γ,W) = 0, so in particular, Γ is uniformly U-stable.

The main result of our paper is thus concerned with showing that H2
a(Γ,W) =

0 for Γ being a lattice in a higher rank Lie group (satisfying certain conditions).
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For this, we take inspiration from the results of [BM99] about the vanishing of
bounded cohomology for such lattices. More specifically, our approach is inspired
by a proof of [MS04] specifically in degree two, and a version of that result and
proof technique are outlined below.

Theorem 0.0.6 ([MS04]). Let G be a higher rank simple group, and P ≤ G be a
minimal parabolic subgroup. Suppose G contains two proper parabolic subgroups
Q1 and Q2 such that P ⊆ Q1 ∩Q2, G is generated by Q1 ∪Q2, and H2

b(Q1,R) =
H2
b(Q2,R) = 0. Then for any lattice Γ in G and a dual separable Banach Γ-module

W , H2
b(Γ,W ) = 0.

The proof of Theorem 0.0.6 proceeds in several steps briefly sketched below,
where we also mention the corresponding steps and difficulties in the proof of
Theorem 0.0.5 even when G is simple:

● The first step is to use an Eckman-Shapiro induction to construct a dual,
separable, continuous Banach G-module V so that H2

b(Γ,W ) = H2
b(G,V ),

thus reducing the problem to showing that H2
b(G,V ) = 0. A similar induc-

tive procedure, described in §5, allows us to construct an ultraproduct Ba-
nach space V with an asymptotic action ofG so that H2

a(Γ,W) = H2
a(G,V).

Note that in the setting of asymptotic cohomology, we actually work with
ultrapowers ∗Γ and ∗G, and so ∗G/∗Γ is not locally compact. However,
the restriction to internal objects allows us to carefully work out an in-
duction procedure as needed. The induced module V also has an internal
continuity property (defined in §4.1) that we establish in §5.

● Since P is amenable, the bounded cohomology H●
b(G,V ) can be computed

as the cohomology of the complex

0 V G L∞(G/P,V )G L∞((G/P )2, V )G L∞((G/P )3, V )G . . .ε d0 d1 d2

Furthermore, for a parabolic subgroup P ≤ Q ≤ G, the bounded cohomol-
ogy H●

b(Q,V ) can be computed as the cohomology of the complex

0 V Q L∞(G/P,V )Q L∞((G/P )2, V )Q L∞((G/P )3, V )Q . . .ε d0 d1 d2

These steps too can be reworked in the asymptotic setting, analogous
to the procedure in bounded cohomology theory, again thanks to the
restriction on internality, and this is described in §4.

● The motivation behind the preceding step is that we have at our disposal
the following double ergodicity theorem: let V be a continuous G-module
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and α ∈ L∞ ((G/P )2, V )G, then α is essentially constant. This theorem
follows from the Mautner’s lemma: let V be a continuous G-module and
N ≤ G be a non-compact subgroup, then V N = V G. Both these results
are particularly useful in the context of H2

b(G,V ).
In our setting, there are particular difficulties in obtaining an analoguous
Maunter lemma due to the asymptotic nature of our model. We overcome
them for our specific Banach module V by applying a suitable correction
to exact cocycles using structure results for the semisimple group G; this
is worked out in §6.

● For the parabolic subgroups Q1 and Q2 as in the hypothesis, an inflation-
restriction sequence argument implies that H2

b(Qi, V ) = H2
b(Qi/Ni, V

Ni)
for Ni being the (amenable) radical of Qi for i ∈ {1,2}. By Maut-
ner’s lemma and the hypothesis that H2

b(Qi,R) = 0, one concludes that
H2
b(Qi, V ) = 0.

The analogous hypothesis in our asymptotic setting is Property-G(Q1,Q2),
where the conditions that H2

b(Qi,R) = 0 and H3
b(Qi,R) is Hausdorff to-

gether are used to conclude that H2
a(Qi,V) = 0 in §6.1.

● Let ω ∈ L∞ ((G/P )3, V )G be a bounded 2-cocycle forG. Since H2
b(Q1, V ) =

H2
b(Q2, V ) = 0, there exist α1 ∈ L∞ ((G/P )2, V )Q1

and α2 ∈ L∞ ((G/P )2, V ))Q2

such that ω = dα1 = dα2. In particular, α1 − α2 is a 1-cocycle for Q1 ∩Q2.
Since P ≤ Q1∩Q2, α1−α2 is a 1-cocycle for P as well. But since H1

b(P,V ) =
0, one can show using the double ergodicity theorem, that α1 = α2 (= α,
say), implying that α is equivariant with respect to both Q1 and Q2, and

hence is G-equivariant. Thus ω = dα for α ∈ L∞ ((G/P )2, V )G, proving

that H2
b(G,V ) = 0. This step too goes through in our setting once we have

our asymptotic variant of the ergodicity theorem used in the classical case.

While in this paper, we focus on using the theory of asymptotic cohomology
to prove uniform U-stability for lattices in semisimple groups, the framework
and tools developed here have also been used in subsequent work [FFR23] to
prove uniform U-stability for other classes of groups such as lamplighter groups
Γ ≀ Λ where Λ is infinite and amenable, as well as several groups of dynamical
origin such as Thompson’s group F . The techniques there too are analogous to
corresponding vanishing results of bounded cohomology in [Mon22], yet again
highlighting the connections between the theories of bounded cohomology and
asymptotic cohomology.

Outline of the Paper. We begin with the much simple setting of uniform sta-
bility with respect to the fixed group U(1) (equipped with the absolute value
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metric) in §1. In this case, we can reduce the question of uniform U(1)-stability
of Γ to the injectivity of the comparison map c ∶ H2

b(Γ,R) →H2(Γ,R). After re-
calling how classical results from [Fuj98] imply that lattices in Lie groups of rank
1 are not uniformly U(1)-stable, we then show that lattices in higher rank Lie
groups are uniformly U(1)-stable. While the connection between uniform U(1)-
stability of a group Γ and the second bounded cohomology H2

b(Γ,R) is classical,
it motivates the idea of using the logarithm map on an almost homomorphism to
construct a bounded 2-cocycle of Γ in a Banach space, which we develop in §3.2
for a more general setting.

In §2, we begin by defining the basic notions in full detail and rigor in §2.1.
In particular we focus on interpreting stability in terms of sequences of maps and
asymptotic homomorphisms, which we then refine further in §2.2 in the language
of non-standard analysis. This formulation will allow us to reinterpret the ques-
tion of uniform stability as a homomorphism lifting problem on the lines of the
approach used in [DCGLT20] [AP15]. While such a lifting problem motivates the
attempt at constructing a cohomology, an obstacle here is that the kernel of the
extension is not abelian. This issue is resolved in [DCGLT20] by considering lifts
in small increments so that the kernel at each step is abelian. This idea, known
as defect diminishing, is explored in §2.3, and can be shown to imply uniform
stability.

In §3 we begin by focusing on a particular family of metric groups for
which defect diminishing corresponds to a homomorphism lifting problem with an
abelian kernel. This is the family of unitary groups equipped with submultiplica-
tive norms, discussed in §3.1. In [DCGLT20], defect diminishing combined with
ordinary group cohomology with coefficients in the abelian kernel (which turns
out to be a Banach Γ-module) is sufficient to study non-uniform stability. But
in our setting, the uniformity condition involves subtleties that necessitate trans-
fering to the internal Lie algebra with an internal asymptotic-action of ∗Γ (the
ultrapower of Γ), and the formulation of an “internal and asymptotic” bounded
cohomology with cofficients in that internal space, denotedW. This is motivated
in §3.2, and we conclude the section by demonstrating the machinery built so far
in (re)proving the result of Kazhdan [Kaz82] that discrete amenable groups are
Ulam stable.

§4 begins with the rigorous definitions of an internal Banach spaces and
asymptotic ∗G-modules for a locally compact group G (defining our notions in
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the category of topological groups is necessary in order to deal with lattices in
Lie groups, which shall involve an Eckmann-Shapiro induction of cohomologies
explored in §5) in §4.1. In §4.2, we formally define H●

a(G,V) using an internal
L∞-spaces, and study some functorial properties and different cochain complexes
that can be used to compute H●

a(G,V) in §4.3. Many of the techniques used here
have parallels in the theory of continuous bounded cohomology as in [Mon01].

In §5, we restrict our attention to a lattice Γ in a Lie group G, and begin
by studying an intermediate structure L∞b (G,W)∼∗Γ that is not quite the induc-
tion module V = L∞(D,W) in our machinery, but comes with an internal (true)
∗G-action (as opposed to an action upto infinitesimals). This structure leads to
useful results proved in §5.1, and the actual induction module and an Eckmann-
Shapiro induction procedure are discussed in §5.2. We conclude the section with
a continuity property of our module V, which we use to define contracting ele-
ments to lay the groundwork for a Mautner’s lemma to be proved in the next
section.

Finally, in §6, we come to the higher rank semisimple groups of interest,
and begin by discussing an analogue of the Mautner’s lemma in our setting, along
with double ergodicity lemmas in §6.1, and use these to prove that H2

a(Q,V) = 0
for Q ≤ G being a proper parabolic subgroup. All these techniques come together
in §6.2 where we prove that H2

a(G,V) = 0 for semisimple groups G that have
Property-G(Q1,Q2), thus implying uniform stability with a linear estimate for
lattices in such groups. In §6.3, we list out classes of simple groups G that have
Property-G(Q1,Q2), and conclude in §7 with some discussion on the limitations
of our method and related open questions.
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1. U(1)-Stability of Groups

We begin with a simpler setting, namely uniform stability of a discrete
group Γ with respect to the abelian group U(1). This section can be read inde-
pendently of the rest.

Definition 1.0.1. For ε > 0, a map φ ∶ Γ→ U(1) is said to be an ε-homomorphism
if

sup
x,y∈Γ

∣φ(xy) − φ(x)φ(y)∣ ≤ ε

The value supx,y∈Γ∣φ(xy) − φ(x)φ(y)∣ is called the defect of φ.

Definition 1.0.2. A group Γ is said to be uniformly U(1)-stable if for every
δ > 0, there exists ε > 0 such that if φ ∶ Γ → U(1) is an ε-homomorphism, there
exists a homomorphism ψ ∶ Γ→ U(1) such that supx∈Γ∣φ(x) − ψ(x)∣ < δ.

A closely related notion is that of a quasimorphism. A quasimorphism is a
map f ∶ Γ→R such that there exists D ≥ 0 such that for every x, y ∈ Γ,

∣f(x) + f(y) − f(xy)∣ ≤D

Let QM(Γ) denote the space of all quasimorphisms of Γ. A trivial example
of a quasimorphism is obtained by perturbing a homomorphism by a bounded
function, and such quasimorphisms form the subspace Hom(Γ,R) ⊕Cb(Γ,R) of
QM(Γ) (where Cb(Γ,R) denotes the space of all bounded functions from Γ to
R) A quasimorphism that is not at a bounded distance from any homomorphism
is called a non-trivial quasimorphism. In this setting, a question analogous to
uniform stability is whether every quasimorphism is at a bounded distance from
a homomorphism. That is, is QM(Γ) =Hom(Γ,R) ⊕Cb(Γ,R)?
It is known that every quasimorphism class contains a unique homogenous quasi-
morphism (a quasimorphism f is said to be homogenous if for every g ∈ Γ and
n ∈ N, f(gn) = nf(g)). Suppose f is a homogenous quasimorphism of Γ that
is not a homomorphism. Then its exponent µ ∶= e2πiεf ∶ Γ → U(1) is a func-
tion whose defect can be made arbitrarily small (by choosing ε → 0), but whose
distance from homomorphisms is bounded below by a positive constant.

Proposition 1.0.3 ([BOT13] [MS06]). If Γ admits a non-trivial quasimorphism,
then Γ is not uniformly U(1)-stable.

Quasimorphisms are also closely related to group cohomology (this is well-
known and classical, see [Fri17],[Mon06] for references). Observe that given a
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quasimorphism f ∶ Γ→R, the map

df ∶ Γ × Γ→R

df(x, y) = f(x) + f(y) − f(xy)
is a 2-coboundary for Γ in R, while also being a bounded function that satisfies the
2-cocycle condition (and hence a bounded 2-cocycle). This leads to the following
characterization of quasimorphisms classes ([Fri17], [Mon06]):

Proposition 1.0.4. The kernel, denoted EH2
b(Γ,R), of the comparison map

c ∶ H2
b(Γ,R) → H2(Γ,R) is isomorphic to the space of quasimorphisms modulo

the suabspace of trivial quasimorphisms.

EH2
b(Γ,R) ≅ QM(Γ)

Cb(Γ,R) ⊕Hom(Γ,R)

Hence to show that Γ is not U(1)-stable, it is sufficient to show that the
comparison map c ∶ H2

b(Γ,R) →H2(Γ,R) is not injective. In [Fuj98], it is shown
that for a lattice in a rank one semisimple Lie group, its comparison map has
non-zero kernel, and hence

Theorem 1.0.5. Let H be a semisimple group (as in the introduction) of rank
one, and let Γ be a lattice in H. Then Γ is not uniformly U(1)-stable.

The rest of this section is devoted to showing that higher rank lattices are
U(1)-stable. For this goal the bounded cohomology plays a central role. For
simplicity, we endow U(1) with the distance coming from seeing it as R/Z (so
we just have to apply a trigonometric formula if we prefer the norm distance).
Recall the long exact sequences associated to Z → R → R/Z for Hn and Hn

b .
Together with the comparison maps, we get a commutative diagram:

⋯ H1(Γ,R/Z) H2
b(Γ,Z) H2

b(Γ,R) H2(Γ,R/Z) ⋯

⋯ H1(Γ,R/Z) H2(Γ,Z) H2(Γ,R) H2(Γ,R/Z) ⋯

Consider the subset K ⊆ H2
b(Γ,R) given by

K = Ker(H2
b(Γ,R) →H2(Γ,R/Z)) = Image(H2

b(Γ,Z) → H2
b(Γ,R))

Recall that H2
b(Γ,R) is a Banach space; we can therefore consider the norm of

elements in K.
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Proposition 1.0.6. The following are equivalent for a group Γ.

(1) (Lipschitz U(1) stability): Every ε-representation to U(1) with ε small
enough is at distance less than ε from a representation.

(2) (Linear U(1) stability): There is a constant c such that every ε-representation
to U(1) is at distance less than cε from a representation.

(3) (U(1) stability): For each δ > 0 there is ε > 0 so that every ε-representation
to U(1) is at distance less than δ from a representation.

(4) (U(1) 1/3-stability): There is δ < 1/3 such that every ε-representation to
U(1) with ε small enough is at distance less than δ from a representation.

(5) (Cohomology gap): Non-zero elements of K have norm bounded below by
a positive constant.

Remark 1.0.7. The kernel of the comparison map H2
b(Γ,R) → H2(Γ,R) is

contained in K, see above diagram. Since this kernel is a vector space, point (5)
fails as soon as this kernel is non-zero. This explains why quasimorphisms imply
non-stability: it is a special case of the above as quasimorphisms “live” in K.

Proof. Trivially (1)⇒(2)⇒(3)⇒(4).

We prove (4)⇒(5) for the positive constant ε as in (4) which, without loss
of generality, can be made to satisfy ε < 1 − 3δ. Consider a class [ω] in K with
∥[ω]∥ < ε. We can choose the representative ω ∈ `∞(Γ2) such that ∥ω∥∞ < ε. Since
[ω] is in the kernel to H2(Γ,R/Z), there is f ∶Γ → R such that ω ≡ df modulo
Z. The map π = exp(2πif) is an ε-representation. Thus π is at distance less
than δ of an actual representation, which means that there is b∶Γ → [−δ, δ] with
d(f + b) ≡ 0 modulo Z. This means that ω + db is integer-valued. On the other
hand, ∥db∥∞ is at most 3δ. Thus, since ε + 3δ < 1 we deduce that ω + db actually
vanishes and thus [ω] is zero in K.

We now prove (5)⇒(1). We show it for 0 < ε < 1/4 smaller than the constant
given by (5). For any π∶Γ → U(1), choose f ∶Γ → R such that π = exp(2πif). If
π is an ε-representation, then there is ω∶Γ2 → [−ε, ε] such that ω ≡ df modulo Z.
In particular, dω ≡ 0 modulo Z, i.e. dω is integer-valued. Given that ∥dω∥∞ ≤ 4ε,
we have in fact dω = 0 and hence we obtain a class [ω] in K of norm less than
ε. Therefore, we can assume that [ω] is trivial, which means ω = db for some
b ∈ `∞(Γ).

In fact the operator d on `∞(Γ) has norm one: this was first observed
by [Mit84, p. 468] in a special case; the short proof is given in general in (the
proof of) Corollary 2.7 in [MM85]. We can therefore choose b such that ∥b∥∞ ≤ ε.
Now exp(2πi(f − b)) is a representation at distance less than ε of π. �
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Theorem 1.0.8. Let Γ be a group such that H2
b(Γ,R) is finite-dimensional and

injects into H2(Γ,R). Then Γ is uniformly U(1)-stable.

Lemma 1.0.9. Let A be an abelian group and let B be a subgroup of HomZ(A,Z).
If the image of B in HomZ(A,R) spans a subspace of finite R-dimension d, then
B is free abelian of rank d.

Proof of Lemma 1.0.9. We can consider B as a subgroup spanning a space of
finite Q-dimension d in HomZ(A,Q). Viewing A as a quotient of a free abelian
group on some set X, the group HomZ(A,Z) is contained in ZX . While ZX is
not free abelian in general, in Specker (Satz I p. 133 in [Spe50]) it is proved that
countable subgroups of ZX are free abelian . To be more precise, Specker proved
it for X countable but his proof works in general; alternatively, the statement
immediately reduces to the case X countable by taking a subset of X separating
the points of B. Our B, being a subgroup of a finite dimensional Q-space,
is countable and hence free (from the above mentioned result from [Spe50]).
Spanning a d-dimensional Q-vector space, its rank must be also d. �

Proof of Theorem 1.0.8. It suffices to show that Γ satisfies the cohomology gap
— i.e., condition (5) of Proposition 1.0.6. Let B̃ denote the image of H2

b(Γ,Z) in
H2(Γ,Z). Thus the image of B̃ in H2(Γ,R) is precisely the image of K.

H2
b(Γ,Z) K ⊆ H2

b(Γ,R)

B̃ ⊆H2(Γ,Z) H2(Γ,R)

Let d < ∞ be the dimension of the space spanned by K in H2
b(Γ,R). To

prove the cohomology gap (5), we first claim that K is free abelian of rank d.
This claim implies that K is discrete in the finite dimensional space H2

b(Γ,R)
since it spans a space of dimension d (we use here the comparison with the
standard lattice Zd in Rd and the fact that linear maps are continuous in finite
dimensions). Then, discreteness implies the desired gap. To prove the claim that
K is free abelian of rank d, we can work with H2(Γ,R) since H2

b(Γ,R) injects
there. The universal coefficient theorem gives the following commutative diagram
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with exact rows.

0 Ext1Z(H1(Γ,Z),Z) H2(Γ,Z) HomZ(H2(Γ,Z),Z) 0

0 H2(Γ,R) HomZ(H2(Γ,Z),R) 0

Therefore it suffices to show that the image B of B̃ in HomZ(H2(Γ,Z),Z)
is free abelian of rank d, which follows from Lemma 1.0.9 applied to A =H2(Γ,Z).

�

Since finitely presented groups have finite-dimensional H2, we obtain the
following clean necessary and sufficient condition:

Corollary 1.0.10. Let Γ be a finitely presented group. Then Γ is uniformly
U(1)-stable if and only if every quasi-morphism of Γ is at bounded distance from
a homomorphism.

Proof. As explained above if QM(Γ) ≠ 0 (i.e., not every quasi-morphism of Γ is
at bounded distance from a homomorphism) then Γ is not U(1)-stable. On the
other hand, if QM(Γ) = 0, then Ker(H2

b(Γ,R) → H2(Γ,R)) = 0, i.e., H2
b(Γ,R)

injects into H2(Γ,R). If in addition Γ is finitely presented H2(Γ,R) is of finite
dimension. Thus all the assumptions of Theorem 1.0.8 are satisfied and Γ is
uniformly U(1)-stable. �

Now, back to the case in which Γ is a lattice in a higher rank group. For such
Γ, Burger and Monod [BM99] showed that H2

b(Γ,R) injects into H2(Γ,R). Such
Γ is “usually” finitely presented (and then we can apply the last corollary) except
when Γ is a lattice in (rank 2) semisimple Lie group of positive characteristic.
But in this case H2

b(Γ,R) is anyway zero, by another result of Burger and Monod
[BM99], so Theorem 1.0.8 applies and we can deduce:

Theorem 1.0.11. If Γ is a higher rank lattice then it is uniformly U(1)-stable.

The main result of this paper will be a far reaching extension of the above
theorem (with some additional assumptions on the lattice Γ) to a larger family
of metric groups (namely any unitary group U(n) equipped with any submul-
tiplicative matrix norm ∥ ⋅ ∥). In this general case, bounded cohomology theory
would not suffice, so we will motivate and build a more appropriate cohomology
theory in the upcoming sections.
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We conclude this section with an observation in the case of groups of Her-
mitian type:

Proposition 1.0.12. Let G be a split Lie group of Hermitian type (for example,
Sp(2m,R)), with universal central extension G̃. Let Γ be a cocompact lattice in
G, and Γ̃ be its preimage in G̃. Then Γ̃ is not uniformly U(1)-stable (and hence,
not uniformly U-stable).

Proof. Consider the non-trivial 2-cocycle α ∈H2(Γ,Z) corresponding to the cen-
tral extension Γ̃ of Γ. From [GW78], we know that α is actually an element of
H2
b(Γ,R) that does not vanish in H2(Γ,R). In particular, α is not contained in

the kernel of the comparison map c ∶ H2
b(Γ,R) →H2(Γ,R).

Since the extension Γ̃ of Γ is central (in particular, has amenable kernel), α has
a pullback α̃ ∈ H2

b(Γ̃,R) which is a non-trivial bounded 2-cocycle. However, α̃
is trivial in cohomology, hence α̃ is an element of the kernel of the comparison
map c ∶ H2

b(Γ̃,R) → H2(Γ̃,R). Thus, from Propositions Proposition 1.0.3 and
Proposition 1.0.4, we conclude that Γ̃ is not uniformly U(1)-stable. �

Remark 1.0.13. A non-trivial quasimorphism in the above proof of Proposi-
tion 1.0.12 can be explicitly described: let j ∶ Γ → Γ̃ be a section corresponding
to the cocycle α ∈ H2(Γ,Z) so that as a set, Γ̃ = Z × j(Γ). Consider the map
φ ∶ Γ̃ →R defined to be φ(m,j(γ)) ∶=m. One can check that this is a non-trivial
quasimorphism of Γ̃, and note that this map is “trivial” on Γ and we do know,
from Theorem 1.0.11, that Γ is indeed uniformly U(1)-stable if it has rank at least
2, even if Γ̃ is not.

2. Preliminaries and Basic Constructions

In this section, we establish the connection between uniform stability and a
homomorphism lifting problem, which is then further explored in §3 for discrete
groups, and in §4 for topological groups.
In the first §2.1, we define our central notion of uniform stability, and describe
it using sequences of maps. This then allows for a reformulation of the notion
of stability as a homomorphism lifting problem using the language of ultrafilters
in §2.2. Finally, in §2.3, we introduce the idea of defect diminishing, which is a
relaxation of the lifting problem with abelian kernels. This property can naturally
be related to a cohomological problem that is then studied in the subsequent §3.
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2.1. Uniform Stability and Asymptotic Homomorphisms. Let Γ be a
countable discrete group, and let (G,dG) be a metric group (that is, a group
G equipped with a bi-invariant metric dG). We use the metric to define the
(uniform) distance between maps from Γ to G as follows: for f1, f2 ∶ Γ → G, the
distance between f1 and f2, denoted distΓ,G(f1, f2), as

distΓ,G(f1, f2) ∶= sup
x∈Γ

dG (f1(x), f2(x))

This allows us to define the distance of a function f ∶ Γ→ G from a homomorphism
as follows:

Definition 2.1.1. The homomorphism distance of a function f ∶ Γ → G,
denoted DΓ,G(f), is defined as

DΓ,G(f) ∶= inf{distΓ,G(f,ψ) ∶ ψ ∈Hom(Γ,G)}

The function f is said to be δ-close to a homomorphism if DΓ,G(f) ≤ δ.

There is another invariant of a function f that also quantifies its distance
from being a homomorphism.

Definition 2.1.2. For a function f ∶ Γ → G, we define its (uniform) defect
defΓ,G(f) as

defΓ,G(f) ∶= sup
x,y∈Γ

dG (f(xy), f(x)f(y))

The function f is said to be an ε-homomorphism if defΓ,G(f) ≤ ε.

Note that a priori both defΓ,G(f) and DΓ,G(f) could be ∞. It is easy to
show (by the triangle inequality) that defΓ,G(f) ≤ 3DΓ,G(f) for any function f ,
so if f is close to a homomorphism, then it has small defect. Uniform stability
is the question of whether the converse is true: is any function with small defect
necessarily close to a homomorphism?
Uniform stability is usually studied with respect to not just one metric group
(G,dG) but a family G of metric groups. In this case, we can define

FΓ,G ∶ [0,∞] → [0,∞]

FΓ,G(ε) ∶= sup
G∈G

sup
f

{DΓ,G(f) ∶ defΓ,G(f) ≤ ε}

Definition 2.1.3. The group Γ is said to be uniformly G-stable if

lim
ε→0+

FΓ,G(ε) = 0
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A further refinement of the above definition involves a quanitification of
the above convergence:

Definition 2.1.4. The group Γ is uniformly G-stable with a linear estimate if
∃ε0 > 0 and ∃M ≥ 0 such that ∀ε < ε0 and ∀G ∈ G, every ε-homomorphism
φ ∶ Γ→ G is Mε-close to a homomorphism.

It is helpful to rephrase these notions also in terms of sequences of maps,
especially since we shall further refine this view in §2.2 and §2.3. Consider a
sequence of functions {φn ∶ Γ→ Gn}n∈N where Gn ∈ G for every n ∈ N.

● A sequence {φn ∶ Γ → Gn}n∈N is said to be a (uniform) asymptotic
homomorphism of Γ to G if lim

n→∞defΓ,Gn(φn) = 0.

● A sequence {φn ∶ Γ → Gn}n∈N is said to be (uniformly) asymptotically
close to a homomorphism if lim

n→∞DΓ,Gn(φn) = 0.

It is easy to see that a group Γ is uniformly G-stable iff every asymptotic homo-
morphism of Γ to G is asymptotically close to a homomorphism.
Uniform G-stability with a linear estimate too can be rephrased in terms of se-
quences of maps. Recall the Laundau big-O notation: for sequences {xn}n∈N
and {yn}n∈N of positive real numbers, we denote xn = O(yn) if there exists a
constant C ≥ 0 and N ∈ N such that for all n ≥ N , xn ≤ Cyn. We denote
by xn = o(yn) if there exists a sequence {εn}n∈N with limn→∞ εn = 0 and such
that xn = εnyn. Firstly, note that if Γ is uniformly G-stable with a linear es-
timate, then for any asymptotic homomorphism {φn ∶ Γ → Gn}n∈N of Γ to G,
DΓ,Gn(φn) = O (defΓ,Gn(φn)). The following lemma shows that the converse is
also true:

Lemma 2.1.5. The group Γ is uniformly G-stable with a linear estimate iff for
every asymptotic homomorphism {φn ∶ Γ→ Gn}n∈N of Γ to G,

DΓ,Gn(φn) = O (defΓ,Gn(φn))

Proof. Suppose Γ is not uniformly G-stable with a linear estimate. Then for any
M > 0 and any ε > 0, there exists a map φ ∶ Γ → G (for some G ∈ G) such
that defΓ,G(φ) ≤ ε and DΓ,G(φ) > Mε. Now consider a sequence {Mn}n∈N with
limn→∞Mn = ∞ and a sequence {εn}n∈N with limn→∞ εn = 0. For each n ∈ N,
let φn ∶ Γ → Gn be the map with defΓ,Gn(φn) ≤ εn but DΓ,Gn(φn) >Mnεn. Then
{φn}n∈N is an asymptotic homomorphism of Γ to G such that DΓ,Gn(φn) is clearly
not O (defΓ,Gn(φn)). �
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We shall now conclude this section by informally introducing the following
relaxation of the hypothesis of Lemma 2.1.5, which we shall call asymptotic defect
diminishing. The idea is to look for improvements to the asymptotic homomor-
phism, rather than a true homomorphism.

Definition 2.1.6. The group Γ is said to have the asymptotic defect dimin-
ishing property with respect to the family G if for any asymptotic homomorphism
{φn ∶ Γ → Gn}n∈N, there exists an asymptotic homomorphism {ψn ∶ Γ → Gn}n∈N
such that

● The defect defΓ,Gn(ψn) = o (defΓ,Gn(φn)).
● The distance distΓ,Gn(φn, ψn) = O (defΓ,Gn(φn)).

The following results motivate this notion, which we shall formally study
in more detail in §2.2 in an ultraproduct setting.

Lemma 2.1.7. Suppose Γ has the asymptotic defect diminishing property with
respect to G. Then there exists ε0 > 0 and M > 0 such that for ε < ε0 and
any ε-homomorphism φ ∶ Γ → G, there exists a map ψ ∶ Γ → G with defect
defΓ,G(ψ) < 1

2
defΓ,G(φ) and distΓ,G(ψ) <MdefΓ,G(φ).

Proof. We shall prove this by contradiction, so suppose for every ε > 0 and every
M > 0, there exists an ε-homomorphism φ ∶ Γ → G such that for any ψ ∶ Γ → G,
either defΓ,G(ψ) ≥ 1

2
defΓ,G(φ) or distΓ,G(ψ) ≥MdefΓ,Gn(φn).

Consider a sequence {Mn}n∈N with limn→∞Mn = ∞ and a sequence {εn}n∈N with
limn→∞ εn = 0. For each n ∈ N, let φn ∶ Γ → Gn (with Gn ∈ G) be a map
with defΓ,Gn(φn) ≤ εn such that for any map ψ ∶ Γ → Gn, either defΓ,Gn(ψn) ≥
1
2
defΓ,Gn(φn) or distΓ,Gn(ψn) ≥MndefΓ,Gn(φn). Then the asymptotic homomor-

phism {φn}n∈N as constructed proves that that Γ does not have the asymptotic
defect diminishing property with respect to G. �

Theorem 2.1.8. Suppose G is such that every G ∈ G is a complete metric space
(with respect to its metric dG). Then group Γ is uniformly G-stable with a linear
estimate iff Γ has the asymptotic defect diminishing property with respect to G

Proof. Suppose Γ is uniformly G-stable with a linear estimate, then the implica-
tion is immediate. Conversely, suppose Γ has the asymptotic defect diminishing
property with respect to G. From the previous lemma, this means that there
exists ε0 > 0 and M > 0 such that for any ε-homomorphism φ ∶ Γ → G (with
ε < ε0), there exists a map ψ ∶ Γ → G with defect defΓ,G(ψ) < 1

2
defΓ,G(φ) and

distΓ,G(ψ) < MdefΓ,G(φ). Set φ(0) ∶= φ and φ(1) ∶= ψ. Applying Lemma 2.1.7
inductively on φ(i) to get φ(i+1), we obtain a sequence of maps {φ(j) ∶ Γ → G}j∈N
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where for each j ∈ N, φ(j) has defect at most ε/2j and is of distance at most Mε/2j
from φ(j−1). This gives us a Cauchy sequence of maps from Γ → G. Since G is
a complete, the sequence {φ(j) has a limit φ∞ ∶ Γ → G with defect def(φ∞) = 0
(hence it is a homomorphism). As for its distance from φ,

distΓ,G(φ,φ∞) ≤
∞
∑
j=0

Mε

2j
= 2Mε

Hence Γ is uniformly G-stable with a linear estimate. �

2.2. Ultraproducts and Internal Maps. We can quantify the asymptotic
rates succintly using ultraproducts. We shall now briefly review some concepts
from the theory of ultraproducts and non-standard analysis that would be of rel-
evance to our constructions (for more details, refer [Gol12] and [ACH12]).
Let U be a non-principal ultrafilter on N, which is fixed throughout. A subset
S ⊆ N is said to be large if S ∈ U .

Definition 2.2.1. The (algebraic) ultraproduct ∏U Xn (or alternately, {Xn}U)
of an indexed collection {Xn}n∈N of sets is defined to be

∏
U
Xn ∶= ∏

n∈N
Xn/ ∼

where for {xn}n∈N,{yn}n∈N ∈ ∏n∈NXn, {xn}n∈N ∼ {yn}n∈N if {n ∶ xn = yn} ∈ U .

In other words, we identify two sequences {xn}n∈N,{yn}n∈N ∈ ∏n∈NXn if
they agree on a large set of indices. The image of a sequence {xn}n∈N ∈ ∏n∈NXn

under this equivalence relation shall be denoted {xn}U . Conversely, given an
element of ∏U Xn, we shall always regard it as {xn}U for some sequence {xn}n∈N ∈
∏n∈NXn.
If Xn = X for every n ∈ N, then ∏U X is called the (algebraic) ultrapower of X,
denoted ∗X. Note that X can be embedded in ∗X via a diagonal embedding (for
x ∈X, x↦ {x}U ∈ ∗X).
Ultraproducts can be made to inherit algebraic structures of their building blocks.
More precisely, let {Xn}n∈N, {Yn}n∈N, and {Zn}n∈N be indexed families of sets
with operations ∗n ∶ Xn × Yn → Zn for every n ∈ N. This naturally defines an
operation ∗ ∶ ∏U Xn ×∏U Yn →∏U Zn by

{xn}U ∗ {yn}U = {xn ∗n yn}U

We shall frequently encounter the following examples of ultraproducts:
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● The ultrapower ∗G of a group G is itself a group. This can be seen by
noting that ∗G is the quotient of the direct product group ∏n∈NG by the
normal subgroup comprising elements {gn}n∈N with {n ∶ gn = 1} ∈ U .

● The ultrapower ∗R of R is a non-archimedean ordered field called the
hyperreals.

● Let {Wn}n∈N be a family of Banach spaces. Then ∏UWn can be given
the structure of a ∗R-vector space. In fact, it also comes equipped with
a ∗R-valued norm.

One of the standard tools of non-standard analysis is the transfer principle which
relates the truth of statements concerning objects and their counterparts in the
ultraproduct universe. Intuitively, our standard universe comprises all objects
under normal consideration like R, C, etc. but maybe formally modeled as
follows: define

V0(R) = R

Vn+1(R) = Vn(R) ∪ P (Vn(R))

where P (Vn(R)) denotes the power set of (Vn(R)). Then

V (R) = ∪n≥0Vn(R)

is called the superstructure over R, and can be interpreted as comprising all the
natural structures we study in mathematics. This shall comprise our standard
universe Univ.
We can construct a mapping ∗ ∶ V (R) → V (∗R) that takes an object in the super-
structure of R (our standard universe Univ) to an object in the superstructure
of ∗R satisfying the following:

● (Extension Principle) The mapping ∗ maps R to ∗R.
● (Transfer Principle) For any first-order formula φ involving k variables,

and A1, . . . ,Ak ∈ V (R), the statement φ(A1, . . . ,Ak) is true in V (R) iff
φ(∗A1, . . . ,

∗Ak) is true in V (∗R).
● (Countable Saturation) Suppose {Xn}n∈N is a collection of sets in ∗ (V (R))

such that the intersection of any finite subcollection is non-empty. Then
∩Xn is non-empty.

It is a basic result of non-standard analysis that such a mapping ∗ exists, and can
be constructed using a non-principal ultrafilter on N. The image of this mapping
shall be referred to as our non-standard universe∗Univ, which is

∗Univ = {{Xn}U ∣Xn ∈ Univ}
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comprising ultraproducts of elements of Univ. Note that ∗R, ∗C, ∗Γ are all con-
tained in ∗Univ.
Objects contained in Univ are called standard, while objects contained in ∗Univ
are called internal. In particular, a subset S of an ultraproduct ∏U Xn is an in-
ternal subset if there exist subsets Sn ⊆Xn for every n ∈ N such that S = ∏U Sn.
A function f ∶ ∏U Xn →∏U Yn is said to be an internal function if there exists
a sequence {fn ∶Xn → Yn}n∈N such that f = {fn}U .
Objects that are not contained in ∗Univ are called external. Note that standard
objects like R and C too are external. We can always consider objects that are
neither in Univ nor in ∗Univ. Two important examples of non-standard external
subsets are

● The set of bounded hyperreals, denoted ∗Rb, is the subset comprising
elements {xn}U ∈ ∗R for which there exists C ∈ R≥0 such that ∣xn∣ ≤ C for
every n ∈ N.

● The set of infinitesimal hyperreals, denoted ∗Rinf , is the subset com-
prising elements {xn}U ∈ ∗R such that for every real ε > 0, there exists a
large set S ∈ U such that ∣xn∣ < ε for every n ∈ S.

● For x, y ∈ ∗R, denote by x = OU(y) if x/y ∈ ∗Rb, and by x = oU(y) if
x/y ∈ ∗Rinf (in particular,any bounded element x ∈ ∗Rb is x = OU(1)
while any infinitesimal element ε ∈ ∗Rinf is ε = oU(1)).

Note that the preimage of ∗Rb under the map ∏n∈N R→ ∗R includes the subset
of all bounded sequences, while the preimage of ∗Rinf includes the subset of in-
finitesimal sequences (that is, sequences that converge to 0).
The subset ∗Rb forms a valuation ring with ∗Rinf being the unique maximal
ideal, with quotient ∗Rb/∗Rinf ≅ R. The quotient map st ∶ ∗Rb →R is known as
the standard part map or limit along the ultrafilter U .
The previous construction can also be replicated for metric spaces with specified
base points. Let {(Xn, dn, pn)}n∈N be an indexed family of metric spaces (where
the space Xn comes with the metric dn and the base point pn). The ultraproduct
∏U Xn comes equipped with an ∗R-values metric ∏U dn and base point ∏U pn.
Consider the subset, denoted (∏U Xn)b, of ∏U Xn comprising {xn}U such that
{dn(xn, pn)}U ∈ ∗Rb (such elements are referred to as bounded or admissible), and
a subset, denoted (∏U Xn)inf , comprising {xn}U such that {dn(xn, pn)}U ∈ ∗Rinf .
Define an equivalence relation ∼ on (∏U Xn)b by {xn}U ∼ {yn}U if {dn(xn, yn)}U ∈
∗Rinf . The set of equivalence classes (∏U Xn)b / ∼ is called the ultralimit of
{(Xn, dn, pn)}n∈N. We will return to this notion in the context of Banach spaces
in §4.
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Remark 2.2.2. For convenience, we shall henceforth denote by “for n ∈ U” to
mean “for n ∈ S for some S ∈ U”.

Returning to our setting, consider a sequence {φn ∶ Γ→ Gn}n∈N where Gn ∈
G. This can be used to construct an internal map {φn}U ∶ ∗Γ→∏U Gn, and allows
us to redefine asymptotic homomorphisms and closeness to homomorphisms in
the ultraproduct.

● Given two internal maps φ(1) ∶ ∗Γ → ∏U Gn and φ(2) ∶ ∗Γ → ∏U Gn, we

denote by dist(φ(1), φ(2)) ∶= {distΓ,Gn(φ
(1)
n , φ

(2)
n )}U . The maps φ(1) and

φ(2) are said to be (internally) asymptotically close to each other if
dist(φ(1), φ(2)) ∈ ∗Rinf .

● An internal map ψ ∶ ∗Γ → ∏U Gn is said to be an internal homomor-
phism if there exists a sequence {ψn}n∈N of homomorphisms such that
ψ = {ψn}U .

● An internal map φ ∶= {φn}U ∶ ∗Γ → ∏U Gn is said to be (internally)
asymptotically close to an internal homomorphism if there exists
an internal homomorphism ψ = {ψn ∶ Γ → Gn}n∈N such that dist(φ,ψ) ∈
∗Rinf (in other words, {DΓ,Gn}U ∈ ∗Rinf ).

● An internal map φ ∶= {φn}U ∶ ∗Γ → ∏U Gn is called an internal as-
ymptotic homomorphism if def(φ) ∶= {def(φn)}U ∈ ∗Rinf . For ε ∈
∗Rinf , we shall call an internal asymptotic homomorphism φ an inter-
nal ε-homomorphism if def(φ) = ε (we similarly define internal OU(ε)-
homomorphisms and internal oU(ε)-homomorphisms).

The following lemmas are variants of Lemma 2.1.5 and Theorem 2.1.8 in the
ultraproduct setting:

Lemma 2.2.3. The group Γ is uniformly G-stable iff every internal asymptotic
homomorphism φ ∶ ∗Γ → ∏U Gn for Gn ∈ G is asymptotically close to an internal
homomorphism.

Proof. We shall prove both directions by contradiction.
Let φ = {φn}U ∶ ∗Γ → ∏U Gn be an internal asymptotic homomorphism that
is not asymptotically close to any internal homomorphism. This means that
{def(φn)}U ∈ ∗Rinf , but there exists some real c > 0 and S ∈ U such that
DΓ,Gn(φn) ≥ c for n ∈ S. In particular, for this c and any ε > 0, there exists
a map φn ∶ Γ→ Gn with defect def(φn) ≤ ε and DΓ,Gn ≥ c, thus proving that Γ is
not uniformly G-stable.
Conversely, suppose Γ is not uniformly G-stable. This means, by definition, that
there exists δ > 0 such that for every ε > 0, there exists G ∈ G and φ ∶ Γ → G
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such that def(φ) ≤ ε and distΓ,G(φ) > δ. Let us fix this δ, and consider a se-
quence {εn}n∈N with limn→∞ εn = 0. For each such εn, there exists Gn ∈ G and
φn ∶ Γ → Gn with def(φn) ≤ εn and distΓ,Gn(φn) > δ. Consider the internal as-
ymptotic homomorphism {φn}U . Clearly it is not asymptotically close to any
internal homomorphism. �

Lemma 2.2.4. The group Γ is G-uniformly stable with a linear estimate iff for
every internal asymptotic homomorphism φ ∶ ∗Γ→∏U Gn, there exists an internal
homomorphism ψ ∶ ∗Γ→∏U Gn with dist(φ,ψ) = OU (def(φ)).

Proof. (The proof is similar to Lemma 2.1.5) Suppose Γ is not uniformly G-stable
with a linear estimate. Consider a sequence {Mn}n∈N with limn→∞Mn = ∞ and a
sequence {εn}n∈N with limn→∞ εn = 0. For each n ∈ N, let φn ∶ Γ→ Gn be the map
with defΓ,Gn(φn) ≤ εn but DΓ,Gn(φn) >Mnεn. Then the ultraproduct φ = {φn}U ∶
∗Γ → ∏U Gn is an internal asymptotic homomorphism with def(φ) = ε ∶= {εn}U
such that for any internal homomorphism ψ ∶ ∗Γ → ∏U Gn, dist(φ,ψ)/def(φ) is
not in ∗Rb.
Conversely, suppose Γ is G-uniformly stable with a linear estimate, and let φ ∶
∗Γ → ∏U Gn be an internal asymptotic homomorphism. There exists ε0 > 0,
M > 0 and a large subset Sε0 ∈ U such that for every n ∈ Sε0 , φn ∶ Γ → Gn has
defect def(φn) ≤ ε0, and DΓ,Gn(φn) ≤ Mdef(φn), allowing us to construct an
internal homomorphism ψ ∶ ∗Γ→∏U Gn that is asymptotically close to φ. �

We now reformulate the notion of defect diminishing in this ultraproduct
setting:

Definition 2.2.5. The group Γ is said to have the defect diminishing property
with respect to the family G if for any internal asymptotic homomorphism φ ∶
∗Γ → ∏U Gn, there exists an asymptotic homomorphism ψ ∶ ∗Γ → ∏U Gn such
that

● The defect def(ψ) = oU (def(φ)).
● The distance dist(φ,ψ) = OU (def(φ)).

The following lemma reformulates Theorem 2.1.8 in the ultraproduct set-
ting, and the proof is on the same lines.

Theorem 2.2.6. The group Γ is uniformly G-stable with a linear estimate iff Γ
has the defect diminishing property with respect to G.
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2.3. Internal Liftings and Defect Diminishing. In this §, we shall reinterpret
an internal asymptotic homomorphism as a (true) homomorpism to a quotient
group. This will allow us to describe defect diminishing as a homomorphism
lifting problem. In §3.1 we will restrict to a family of metric groups of interest
such that this homomorphism lifting problem has an abelian kernel, allowing us
to build a cohomological theory capturing the obstruction to uniform stability.
Let φ ∶ ∗Γ → ∏U Gn be an internal asymptotic homomorphism. Consider the
external subset (∏U Gn)inf defined as

(∏
U
Gn)

inf

∶= {{gn}U ∶ {dn(gn,1)}U ∈ ∗Rinf}

In other words, (∏U Gn)inf comprises all elements that are infinitesimally close
to the identity in ∏U Gn. It is easy to check that (∏U Gn)inf is not just a
subset but a normal subgroup of ∏U Gn. Since φ has defect def(φ) ∈ ∗Rinf , this

means that for every x, y ∈ ∗Γ, φ(xy)−1φ(x)φ(y) ∈ (∏U Gn)inf , making φ̃ ∶ ∗Γ →
∏U Gn/ (∏U Gn)inf a homomorphism. Thus,

Lemma 2.3.1. Given an internal asymptotic homomorphism φ ∶ ∗Γ → ∏U Gn,
its composition, denoted φ̃, with the canonical quotient homomorphism ∏U Gn →
∏U Gn/ (∏U Gn)inf is a homomorphism from ∗Γ to the group ∏U Gn/ (∏U Gn)inf .

Note that a homomorphism from ∗Γ to ∏U Gn/ (∏U Gn)inf does not neces-
sarily arise as the composition of an internal map ∗Γ → ∏U Gn and the quotient
homomorphism ∏U Gn → ∏U Gn/ (∏U Gn)inf . However, we will be specifically
interested in homomorphisms that arise this way.

Definition 2.3.2. Let F ∶ ∗Γ→∏U Gn/ (∏U Gn)inf be a homomorphism. We say

that F has an internal lift F̂ ∶ ∗Γ→∏U Gn if F̂ is internal, and its composition
with the canonical quotient homomorphism ∏U Gn →∏U Gn/ (∏U Gn)inf is F .
We say that F has an internal lift homomorphism if there exists an internal
lift F̂ of F that is also a homomorphism from ∗Γ to ∏U Gn.

Observe that for an internal asymptotic homomorphism φ ∶ ∗Γ→∏U Gn, φ
itself is an internal lift of the homomorphism φ̃. Conversely,

Lemma 2.3.3. Suppose a homomorphism F ∶ ∗Γ → ∏U Gn/ (∏U Gn)inf has an

internal lift F̂ ∶ ∗Γ → ∏U Gn. Then F̂ is an internal asymptotic homomorphism.
Furthermore, suppose F̂ (1) and F̂ (2) are two internal lifts of a homomorphism
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F ∶ ∗Γ→∏U Gn/ (∏U Gn)inf , then F̂ (1) and F̂ (2) are asymptotically close to each
other.

Proof. The map F̂ ∶ ∗Γ → ∏U Gn , being internal, is of the form F̂ = {F̂n}U
for F̂n ∶ Γ → Gn for every n ∈ N. Since F is a homomorphism, for every
x = {xn}U , y = {yn}U ∈ ∗Γ, {F̂n(xnyn)−1F̂n(xn)F̂n(yn)}U ∈ (∏U Gn)inf which

means that {def(F̂n)}U ∈ ∗Rinf , making F̂ an internal asymptotic homomor-
phism.
Since both F̂ (1) and F̂ (2) are internal lifts of the homomorphism F ∶ ∗Γ →
∏U Gn/ (∏U Gn)inf , for every x = {xn}U ∈ ∗Γ, {dn(F̂ (1)n (xn), F̂ (2)n (xn))}U ∈ ∗Rinf .

�

This motivates the following equivalent condition for uniform G-stability in
terms of internal lifts.

Lemma 2.3.4. The group Γ is uniformly G-stable iff every homomorphism φ̃ ∶
∗Γ → ∏U Gn/ (∏U Gn)inf that has an internal lift also has an internal lift homo-
morphism.

Proof. Let φ ∶ ∗Γ → ∏U Gn be an internal asymptotic homomorphism, and φ̃ ∶
∗Γ → ∏U Gn/ (∏U Gn)inf be the homomorphism obtained by composing φ with
the quotient map ∏U Gn → ∏U Gn/ (∏U Gn)inf . Let ψ ∶ ∗Γ → ∏U Gn be an in-

ternal lift homomorphism of φ̃. Then by the previous Lemma 2.3.3, φ is asymp-
totically close to the internal homomorphism ψ. By Lemma 2.2.3, we conclude
that Γ is uniformly G-stable. The converse follows by definition of uniform G-
stability. �

Remark 2.3.5. The quotient group ∏U Gn/ (∏U Gn)inf is called the metric ul-
traproduct of the sequence {Gn}n∈N of groups. For (pointwise) stability of groups,

it is shown in [AP15] that Γ is (pointise) G-stable if any homomorphism φ̃ ∶ Γ →
∏U Gn/ (∏U Gn)inf from Γ to the metric ultraproduct, can be lifted to a homo-
morphism ψ ∶ Γ→∏U Gn. In our setting, the uniformity requirement forces us to
work with internal maps from the ultrapower ∗Γ as opposed to just maps from Γ.

We shall further refine the internal lifting property parametrizing it by the
precise defect. Let φ = {φn}U ∶ ∗Γ → ∏U Gn be an internal asymptotic homo-
morphism with defect def(φ) = ε ∈ ∗Rinf . Consider the subset B(ε) (elements
bounded by ε) of ∏U Gn defined as follows:

B(ε) ∶= {{gn}U ∈ ∏
U
Gn ∶ {dn(gn,1n)}U = OU(ε)}
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Note that B(ε) is an externally defined subset. Since the metric on Gn is bi-
invariant, the subset B(ε) is a normal subgroup of ∏U Gn. Let qB(ε) ∶ ∏U Gn →
∏U Gn/B(ε) be the canonical quotient homomorphism, and denote by φ̃ the
composition map qB(ε) ⋅ φ ∶ ∗Γ → (∏U Gn) /B(ε). The following lemma is a
parametrized reformulation of Lemma 2.3.3, and the proof is on the same lines,
which we omit here:

Lemma 2.3.6. The map φ̃ ∶ ∗Γ→ (∏U Gn) /B(ε) is a group homomorphism.

Conversely, let F ∶ ∗Γ → ∏U Gn/B(ε). An internal map F̂ ∶ ∗Γ → ∏U Gn

is said to be an internal lift of φ̃ if qB(ε) ⋅ F̂ = F . We again have an analogue of
Lemma 2.3.3 here too, whose proof is similar:

Lemma 2.3.7. Suppose a homomorphism F ∶ ∗Γ→∏U Gn/B(ε) has an internal

lift F̂ ∶ ∗Γ → ∏U Gn. Then F̂ is an internal OU(ε)-homomorphism. Futhermore,

if F̂ (1) and F̂ (2) are two such internal lifts of F , then F̂ (1) and F̂ (2) are internally
OU(ε)-close to each other.

Lemma 2.3.8. The group Γ is uniformly G-stable with a linear estimate iff for
every ε ∈ ∗Rinf , every homomorphism φ̃ ∶ ∗Γ → ∏U Gn/B(ε) that has an internal
lift also has an internal lift homomorphism.

Proof. Suppose φ ∶ ∗Γ → ∏U Gn is an internal asymptotic homomorphism with
defect ε ∈ ∗Rinf . Then φ̃ ∶∶ ∗Γ → ∏U Gn/B(ε) is a homomorphism which has
internal lift φ. Thus, it also has an internal lift homomorphism ψ ∶ ∗Γ → ∏U Gn

which is internally OU(ε)-close to φ. Hence, by Lemma 2.3.4, Γ is uniformly
G-stable with a linear estimate. The converse is immediate. �

Thus, for an infinitesimal ε ∈ ∗Rinf , if a homomorphism φ̃ ∶ ∗Γ→∏U Gn/B(ε)
that has an internal lift, can be internally lifted to an internal homomorphism
ψ ∶ ∗Γ → ∏U Gn, then Γ is uniformly G-stable with a linear estimate. We shall
now try to obtain such a lift by a sequence of intermediate lifts.
For ε ∈ ∗Rinf , denote by I(ε) the subset of ∏U Gn (elements infinitesimal with
respect to ε) defined as

I(ε) ∶= {{gn}U ∈ ∏
U
Gn ∶ {dn(gn,1n)}U = oU(ε)}

Note that by the bi-invariance of the metric, I(ε) ⊆ B(ε) is a normal subgroup
of ∏U Gn. Let qI(ε) ∶ ∏U Gn → ∏U Gn/I(ε) be the canonical quotient homomor-
phism. The following lemma is similar to Lemma 2.3.3, and the proof too is on
the same lines:
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Lemma 2.3.9. Suppose φ ∶ ∗Γ → ∏U Gn is an internal oU(ε)-homomorphism,
then qI(ε) ⋅ φ ∶ ∗Γ → ∏U Gn/I(ε) is a homomorphism. Conversely, suppose a

homomorphism F ∶ ∗Γ→∏U Gn/I(ε) has an internal lift F̂ ∶ ∗Γ→∏U Gn, then F̂
is an internal oU(ε)-homomorphism, and any two internal lifts of F are internally
oU(ε)-close to one another.

We can now reformulate the defect diminishing property in terms of internal
lifts.

Lemma 2.3.10. The group Γ has the defect diminishing property with respect to
G iff for every ε ∈ ∗Rinf and every homomorphism F ∶ ∗Γ→∏U Gn/B(ε) that has

an internal lift, F has an internal lift F̂ ∶ ∗Γ → ∏U Gn such that qI(ε) ⋅ F̂ ∶ ∗Γ →
∏U Gn/I(ε) is a homomorphism.

Proof. Suppose Γ has the defect diminishing property, then it is immediate from
Definition 2.2.5 that for every ε ∈ ∗Rinf and every homomorphism F ∶ ∗Γ →
∏U Gn/B(ε) that has an internal lift, F has an internal lift F̂ ∶ ∗Γ→∏U Gn such
that qI(ε) ⋅ F ∶ ∗Γ→∏U Gn/I(ε) is a homomorphism.
Conversely, consider an internal asymptotic homomorphism φ ∶ ∗Γ→∏U Gn with
defect def(φ) = ε, and the induced homomorphism φ̃ ∶ ∗Γ → ∏U Gn/B(ε). By
the hypothesis of the lemma (and Lemma 2.3.9), there exists an internal oU(ε)-
homomorphism ψ ∶ ∗Γ→∏U Gn which is OU(ε)-close to φ. This shows that Γ has
the defect diminishing property with respect to G. �

We now recap the results obtained so far:

Theorem 2.3.11. Let Γ be a discrete group, and G be a family of metric groups
such that for every group G ∈ G, its metric dG is complete. Then the following
are equivalent:

(1) The group Γ is uniformly G-stable with a linear estimate.
(2) The group Γ has the defect diminishing property with respect to G.
(3) For every ε ∈ ∗Rinf and every homomorphism F ∶ ∗Γ → ∏U Gn/B(ε) that

has an internal lift, F has an internal lift F̂ ∶ ∗Γ → ∏U Gn such that
qI(ε) ⋅ F̃ ∶ ∗Γ→∏U Gn/I(ε) is a homomorphism.

3. A Cohomological Interpretation of Stability

We concluded the previous section by noting that in order to prove that Γ
is uniformly G-stable with a linear estimate, it is sufficient to show that it has
the defect diminishing property with respect to G. Furthermore, we interpreted
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this property in terms of internal lifts of homomorphisms to quotient groups.
Recall that a matrix norm ∥ ⋅ ∥ on Mn(C) is said to be submultiplicative if for
every A,B ∈Mn(C), ∥AB∥ ≤ ∥A∥ ⋅ ∥B∥. From now on, we shall work exclusively
with the family of unitary groups, each equipped with a unitarily bi-invariant
submultiplicative matrix norm, and shall denote this family by U.

U ∶= { (U(n), ∥ ⋅ ∥) ∶ n ∈ N and ∥ ⋅ ∥ is submultiplicative}

In particular, these include the p-Schatten norms given by

∥A∥p =
⎧⎪⎪⎨⎪⎪⎩

(Tr∣A∣p)1/p 1 ≤ p < ∞
sup∥ν∥=1 ∥Aν∥ p = ∞

Note that for p = ∞, this is the operator norm (as studied in [Kaz82] and
[BOT13]), while for p = 2, this is the Frobenius norm or the (unnormalized)
Hilbert-Schmidt norm (as studied in [DCGLT20] and [AD22]).

Before we proceed further, we state and sketch the proof of the following
useful transference lemma for uniform U-stability with a linear estimate, which we
shall use in §6. The proof is on the lines of a relative version of [BOT13, Theorem
3.2] (which reproves Kazhdan’s result on the Ulam stability of amenable groups),
which we can adapt here in the simpler setting of finite index.

Lemma 3.0.1. Let Λ ≤ Γ be a subgroup of finite index. Then Γ is uniformly
U-stable with a linear estimate iff Λ is uniformly U-stable with a linear estimate.

Sketch. Suppose Γ is uniformly U-stable with a linear estimate. Then the proof
of [BOT13, Corollary 2.7] (further explained in [Gam11, Lemma II.22]) implies
that Λ too is uniformly U-stable with a linear estimate.
Conversely, suppose Λ is uniformly U-stable with a linear estimate, and let φ ∶
Γ→ U(n) be an ε-homomorphism. Since the finite index subgroup Λ is uniformly
U-stable with a linear estimate, we can assume that the restriction of φ to Λ is a
homomorphism, and furthermore, φ(gδ) = φ(g)φ(δ) for every g ∈ Γ, δ ∈ Λ. Now
define φ′ ∶ Γ→M(n) as

φ′(g) ∶= 1

∣Γ ∶ Λ∣ ∑x∈Γ/Λ
φ(gx)φ(x)∗

Note that φ′(g) is just the average over coset representatives in Γ/Λ, and M(n)
is the space of n×n matrices. Just as in the proof of [BOT13, Theorem 3.2], this
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φ′ can be normalized to obtain φ1 ∶ Γ → U(n) such that φ1 has defect Cε2 (for a
universal constant C not depending on n), and we repeat the process to obtain
a (true) homomorphism as the limit. �

Remark 3.0.2. In fact, it is further shown in [FFR23, Proposition 1.5] that
for a subgroup Λ ≤ Γ that is co-amenable in Γ, if Λ is uniformly U-stable with
a linear estimate, then Γ too is uniformly U-stable with a linear estimate. This
generalizes one direction of Lemma 3.0.1, though the converse is not true in this
level of generality.

Remark 3.0.3. In particular, if Γ1 and Γ2 are commensurable, then Γ1 is uni-
formly U-stable with a linear estimate iff Γ2 is uniformly U-stable with a linear
estimate.

Given a sequence of unitary groups {U(kn)}n∈N, we denote its ultraproduct
by ∏U U(kn),and given an element u = {un}U ∈ ∏U U(kn) (where for each n ∈ N,
un ∈ U(kn)), we denote its distance from the identity 1 ∈ ∏U U(kn) by ∥u − 1∥ ∶=
{∥un − I∥}U ∈ ∗Rb, for notational convenience.
Note that for ε ∈ ∗Rinf and an ultraproduct ∏U U(kn), the subsets B(ε) ⊆ ∏U Gn

and I(ε) ⊆ B(ε) can now be written as

B(ε) = {u ∈ ∏
U
U(kn) ∶ ∥u − I∥ = OU(ε)}

I(ε) = {u ∈ ∏
U
U(kn) ∶ ∥u − I∥ = oU(ε)}

Furthermore, the submultiplicativity of the norms implies that:

Lemma 3.0.4. The group B(ε)/I(ε) is abelian.

Proof. Let a, b ∈ B(ε), and consider the commutator aba∗b∗. We shall prove that
aba∗b∗ ∈ I(ε). Observe that ∥aba∗b∗ − I∥ = ∥ab − ba∥ since the norm is unitarily
invariant.

∥ab − ba∥ = ∥(a − I)(b − I) − (b − I)(a − I)∥ ≤ 2∥a − I∥∥b − I∥

This is because of the submultiplicativity of the norm. Since a, b ∈ B(ε), we
conclude that ∥aba∗b∗ − I∥ = OU(ε2) = oU(ε). �

The fact that B(ε)/I(ε) is an abelian group will allow us to rephrase the
lifting property discussed in §2.3 in terms of the vanishing of a cohomology which
we shall develop in detail in §3.2 and §4.
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In §3.1, we explicitly work out the “cocycles” corresponding to possible lifts of a
homomorphism, which are then transferred to the linearized setting in §3.2 where
a cohomological theory begins to reveal itself. Finally, in §3.3, we demonstrate
the notions discussed in the case of discrete abelian groups, showing that the
vanishing of our second cohomology implies uniform stability.

3.1. Lifting with an Abelian Kernel. Let φ ∶ ∗Γ → ∏U U(kn) be an internal
ε-homomorphism that induces a homomorphism φ̃ ∶ ∗Γ → ∏U U(kn)/B(ε). Let
ψ ∶ ∗Γ→∏U U(kn) be an internal lift of φ̃.
To an internal lift ψ ∶ ∗Γ→∏U U(kn) of φ̃, we associate an internal map

ρψ ∶ ∗Γ ×∏
U
U(kn) →∏

U
U(kn)

(3.1) ρψ(g)(u) ∶= ψ(g) ⋅ u ⋅ ψ(g)−1

For every g ∈ ∗Γ and u ∈ B(ε), ρψ(g)(u) ∈ B(ε), while for u ∈ I(ε), ρψ(g)(u) ∈ I(ε).

Lemma 3.1.1. The internal map ρψ ∶ ∗Γ × ∏U U(kn) → ∏U U(kn) induces an
action, denoted ρ̃ψ, of ∗Γ on the abelian group B(ε)/I(ε).

Proof. For g1, g2 ∈ ∗Γ and u ∈ B(ε), we want to show that ρψ(g1)(ρψ(g2)(u)) −
ρψ(g1g2)(u) ∈ I(ε). Note that for every g1, g2 ∈ ∗Γ, ψ(g1g2)−1ψ(g1)ψ(g2) ∈ B(ε),
so

∥ψ(g1)ψ(g2)uψ(g2)−1ψ(g1)−1−ψ(g1g2)uψ(g1g2)−1∥ = ∥ψ(g1g2)−1ψ(g1)ψ(g2)u−uψ(g1g2)−1ψ(g1)ψ(g2)∥

Since the elements ψ(g1g2)−1ψ(g1)ψ(g2) and u are in B(ε), their commutator is
in I(ε) (as in proof of Lemma 3.0.4). �

We shall call ρ̃ψ the action induced from ψ. Observe that we have defined
ρψ using a given internal lift ψ. However, this induced action of ∗Γ on B(ε)/I(ε)
is independent of the choice of internal lift of φ̃.

Lemma 3.1.2. For two internal lifts ψ1 and ψ2 of ψ̃, ρ̃ψ1 = ρ̃ψ2.

Proof. Note that for g ∈ ∗Γ, ψ2(g)−1ψ1(g) ∈ B(ε) since they are both internal lifts
of φ̃. Hence for u ∈ B(ε), again as in the proof of Lemma 3.0.4, ψ2(g)−1ψ1(g)u −
uψ2(g)−1ψ1(g) ∈ I(ε), which implies that ψ1(g)uψ1(g)−1 − ψ2(g)uψ2(g)−1 ∈ I(ε).

�
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So while the internal map ρψ ∶ ∗Γ × ∏U U(kn) → ∏U U(kn) depends on ψ,

the induced action ρ̃ψ is independent of the choice of internal lift of φ̃. Hence we
can denote this action by ρ̃φ.
Define the internal map

αψ ∶ ∗Γ × ∗Γ→∏
U
U(kn)

αψ(g1, g2) ∶= ψ(g1)ψ(g2)ψ(g1g2)−1

Note that by construction αψ takes values in B(ε) (and our goal is to find some
lift ψ for which αψ takes values only in I(ε)). Observe that

Lemma 3.1.3. For g1, g2, g3 ∈ ∗Γ,

αψ(g1, g2) ⋅ αψ(g1g2, g3) ⋅ αψ(g1, g2g3)−1 = ψ(g1) ⋅ αψ(g2, g3)ψ(g1)−1

Let qB/I ∶ B(ε) → B(ε)/I(ε) be the canonical quotient homomorphism.
Since αψ takes values in B(ε), let α̃ψ ∶= qB/I ⋅ αψ ∶ ∗Γ × ∗Γ → B(ε)/I(ε). Since
B(ε)/I(ε) is abelian, Lemma 3.1.3 implies the following corollary:

Corollary 3.1.4. For g1, g2, g3 ∈ ∗Γ,

ρ̃φ(g1) ⋅ α̃ψ(g2, g3) − α̃ψ(g1g2, g3) + α̃ψ(g1, g2g3) − α̃ψ(g1, g2) = 0

While we noted that the action ρ̃ψ of ∗Γ on B(ε)/I(ε) does not depend on
the choice of lift ψ, the map α̃ψ ∶ ∗Γ × ∗Γ→ B(ε)/I(ε) does depend on the choice
of lift ψ. Our hope is to prove the existence of some choice of lift ψ such that α̃ψ
is trivial.
Consider α̃ψ1 and α̃ψ2 for two different internal lifts ψ1 and ψ2 of φ̃. Define an
internal map

βψ1,ψ2 ∶ ∗Γ→∏
U
Gn

βψ1,ψ2(g) ∶= ψ2(g)ψ1(g)−1

Since βψ1,ψ2 takes values in B(ε), denote by β̃ψ1,ψ2 ∶ ∗Γ → B(ε)/I(ε) its compo-
sition with the quotient map B(ε) → B(ε)/I(ε). Then for g1, g2 ∈ ∗Γ, a careful
computation shows that

(3.2) α̃ψ2 − α̃ψ1 = β̃ψ1,ψ2(g1) + ρ̃φ(g1) ⋅ β̃ψ1,ψ2(g2) − β̃ψ1,ψ2(g1g2)
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Suppose there exists an internal map β ∶ ∗Γ → ∏U Gn that takes values in B(ε)
such that for the lift ψ, the following equation holds for all g1, g2 ∈ ∗Γ:

α̃ψ(g1, g2) = β̃(g1) + ρ̃φ(g1) ⋅ β̃(g2) − β̃(g1g2)

Then the internal map

ψ∼ ∶ ∗Γ→∏
U
U(kn)

ψ∼(g) ∶= ψ(g)β(g)−1

is also an internal lift of φ̃ such that for every g1, g2 ∈ ∗Γ,

α̃ψ∼(g1, g2) = 0

In particular, this means that ψ∼ is the internal lift that we want.
The above discussion hints at a cohomological theory that captures the obstruc-
tion to such lifts. The idea is as follows: any candidate internal lift ψ of φ̃, with
defect OU(ε), gives us a type of 2-cocycle of ∗Γ with coefficients in B(ε)/I(ε), and
if that cocycle happens to be a 1-couboundary, then the lift ψ can be corrected
to obtain another lift that has defect oU(ε) and is still OU(ε)-close to ψ (and φ),
thus implying the defect diminishing property that we want.

Remark 3.1.5. In [DCGLT20], it is shown (using the idea mentioned in Re-
mark 2.3.5 and defect diminishing) that Γ is (pointwise) stable (with respect to
unitary matrices equipped with the Frobenius norm) if H2 (Γ,B(ε)/I(ε)) vanishes.
From Lemma 3.1.3, it might be tempting to simply consider α̃ψ as a bounded 2-
cocycle for the group ∗Γ with coefficients in the abelian group B(ε)/I(ε), and in-
terpret Eq. (3.2) (and the ensuing discussion) as insisting that α̃ψ is the cobound-
ary of a bounded 1-cochain of ∗Γ in B(ε)/I(ε). But we cannot simply work
with H2

b (∗Γ,B(ε)/I(ε)), since we need to ensure that the bounded 2-cocycle α̃ψ
(which was induced from an internal map αψ) is the coboundary of a bounded

1-cochain β̃ ∶ ∗Γ → B(ε)/I(ε) that is itself also induced from an internal map
β ∶ ∗Γ → ∏U U(kn). This insistence on our maps being induced from internal
maps is essential in our setting of uniform stability, and leads to the definition
of an internal and asymptotic bounded cohomology machinery that we construct
in §4.
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3.2. Linearization and the Lie Algebra. In the previous section we observed
that the defect diminishing property could be interpreted as a cohomological
problem based on an action of ∗Γ on the abelian group B(ε)/Iε. However, as
pointed out in Remark 3.1.5 the subtlety here involves the requirement that we
deal only with maps that are induced from some internal mapping to ∏U U(kn).
At that level we do not have the abelianness that would allow us to properly
formulate a cohomology theory. In this §, we transfer to the Lie algebra allowing
us to work with spaces of maps from the group to Banach spaces.
For a matrix A ∈Mn(C), consider the matrix logarithm given by

logA ∶=
∞
∑
j=1

(−1)j−1 (A − I)j

j

The series above converges if ∥A−I∥ < 1 (for some submultiplicative matrix norm
∥ ⋅ ∥). By subadditivity and submultiplicativity of the norm ∥ ⋅ ∥, if ε ≤ 1/2 and
∥u − I∥ ≤ ε,

∥ logu∥ ≤
∞
∑
j=1

∥u − I∥j ≤ 2ε

Lemma 3.2.1. For every ε < 1/2, n ∈ N, u ∈ U(n) and every submultiplicative
norm ∥ ⋅ ∥ on Mn(C), if ∥u − I∥ ≤ ε, then ∥ logu∥ ≤ 2ε.

It is a classical result that for a unitary matrix u ∈ U(n), its logarithm logu
(whenever it is defined) is an anti-Hermitian matrix. Denote by u(n) the (real)
vector space of anti-Hermitian matrices in Mn(C).
In the other direction, we have the matrix exponential map defined as

exp(A) =
∞
∑
j=0

Aj

j!

which is well-defined for every A ∈Mn(C). For an anti-hermitian matrixW ∈ u(n)
of the form W = U ○ diag(iθj)nj=1 ○ U∗ for U ∈ U(n), its exponential exp(W ) =
U ○ diag(eiθj)nj=1 ○U∗. The following trivial bound is sufficient for our purposes:

Lemma 3.2.2. For every ε > 0, n ∈ N and a submultiplicative norm ∥ ⋅ ∥ on
Mn(C), for a matrix W ∈ u(n) with ∥W ∥ < ε, ∥exp(W ) − I∥ ≤ eε − 1.

Note that since u(n) is finite-dimensional, it is complete for any norm,
making it a finite-dimensional real Banach space. It comes with an isomet-
ric (adjoint) action of U(n) given as follows: for v ∈ u(n) and U ∈ U(n),
Ad(U)(v) ∶= UvU∗ ∈ u(n).
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Consider the family of R-vector spaces of anti-hermitian matrices u(n) each
equipped with a submultiplicative norm.

{ (u(n), ∥ ⋅ ∥) ∶ n ∈ N and ∥ ⋅ ∥ is submultiplicative}

For an infinitesimal ε ∈ ∗Rinf , define the internal map

ε log ∶ ∏
U
U(kn) →∏

U
u(kn)

ε logu ∶= 1

ε
{logukn}U

and similarly, the internal map exp ∶ ∏U u(kn) → ∏U U(kn) given by

ε expu ∶= {exp εknukn}U

Let us denote the ultraproduct ∏U u(kn) by W from now on. Note that W
comes with a ∗R-valued norm, which we shall denote simply as ∥ ⋅ ∥, obtained as
the ultraproduct of the respective norms of each u(kn). The bounded elements
of W shall be denoted Wb while the infinitesimal elements of W are denoted by
Winf . That is,

(3.3) Wb ∶= {w ∈ W ∶ ∥w∥ ∈ ∗Rb}

(3.4) Winf ∶= {w ∈ W ∶ ∥w∥ ∈ ∗Rinf}

The motivation behind scaling the definitions of log and exp by 1/ε and ε respec-
tively is as follows:

Proposition 3.2.3. The internal map ε log ∶ ∏U U(kn) → W when restricted to
B(ε), takes values in Wb, and elements in I(ε) are taken to Winf . This induces
an isomorphism of the abelian groups Wb/Winf and B(ε)/I(ε).

Proof. It follows from Lemma 3.2.1 that for u ∈ B(ε), ε logu ∈ Wb, and for u ∈ I(ε),
ε logu ∈ Winf . The map is surjective on Wb since the map ε log (εexp v) = v for
v ∈ Wb (and similarly for Winf as well).
From properties of the logarithm map, it follows that for u1, u2 ∈ B(ε),ε logu1u2−
(εlogu1 +ε logu2) ∈ Winf . Hence ε log induces a surjective group homomorphism
from B(ε) to Wb/Winf with kernel I(ε). �
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The ultralimit Wb/Winf shall be denoted W̃. The above lemma tells us

that W̃ ≅ B(ε)/I(ε). In fact, W̃ ≅ B(ε)/I(ε) is not just an abelian group but has
the structure of a real Banach space. It is an example of a construction known
as a Banach space ultralimit. We shall not prove this result here, but refer to
[Hei80] and [ACH12] for more details:

Proposition 3.2.4 ([Hei80]). The space W̃ = B(ε)/I(ε) is a real Banach space.

Recall that we had defined (Eq. (3.1)) an internal map ρψ ∶ ∗Γ×∏U U(kn) →
∏U U(kn) defined as ρψ(g)v = ψ(g)vψ(g)−1 which had induced an action ρ̃φ of
∗Γ on B(ε)/I(ε). We can similarly define an internal map

πψ ∶ ∗Γ ×W →W

through the internal adjoint action of ∏U U(kn) on W (that is, conjugation),

(3.5) πψv ∶= ψ(g)vψ(g)−1

Again, by the submultiplicativity of the norms, for v ∈ Wb and g1, g2 ∈ ∗Γ,

πψ(g1g2)v − πψ(g1)πψ(g2)v ∈ Winf

Thus, the internal map πψ as defined above induces an action of ∗Γ on Wb/Winf .
Unless there is ambiguity, we shall denote the induced action of g ∈ ∗Γ on ṽ ∈
Wb/Winf through πψ by g ⋅ ṽ.

Lemma 3.2.5. The internal map ε log ∶ ∏U U(kn) → W induces a ∗Γ-equivariant
(additive) group isomorphism between B(ε)/I(ε) (with the action induced from
ρψ) and W̃ (with the action induced from πψ).

Proof. We already saw that ε log induces a group isomorphism between B(ε)/I(ε)
and Wb/Winf . Let g ∈ ∗Γ and u ∈ B(ε). Then ρψ(g)u = ψ(g)uψ(g)−1, which
means that ε log(ρψ(g)u) = ψ(g)ε loguψ(g)−1 since the matrix logarithm is in-
variant with respect to conjugation by a unitary matrix. �

In particular, W̃ is a real Banach space with an isometric action of ∗Γ (it
is a real Banach ∗Γ-module).

Remark 3.2.6. The fact that W = B(ε)/I(ε) is a real Banach ∗Γ-module is
useful in reducing (pointwise) stability of Γ with respect to the family U to showing
that H2(Γ,W) = 0, and this line of study is pursued in [DCGLT20] and [LO20].
However, in our setting of uniform stability, the Banach structure of W is not as
directly relevant.
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Corresponding to the internal map αψ ∶ ∗Γ × ∗Γ → ∏U U(kn), define the
internal map

α ∶ ∗Γ × ∗Γ→W

(3.6) α(g1, g2) ∶=ε logαψ(g1, g2)

Since αψ ∶ ∗Γ × ∗Γ → ∏U U(kn) takes values only in B(ε), it is clear that α ∶
∗Γ × ∗Γ → W takes values only in Wb. We shall denote by α̃ ∶ ∗Γ × ∗Γ → W̃ the
map induced obtained by composing α with the canonical quotient mapWb → W̃.

Lemma 3.2.7. The map α ∶ ∗Γ × ∗Γ → W satisfies the following condition: for
any g1, g2, g3 ∈ ∗Γ,

πψ(g1)α(g2, g3) − α(g1g2, g3) + α(g1, g2g3) − α(g1, g2) ∈ Winf

Proof. Recall that αψ satisfies the following property: for g1, g2, g3 ∈ ∗Γ,

αψ(g1, g2)αψ(g1g2, g3)αψ(g1, g2g3)−1 = ρψ(g1)αψ(g2, g3)

The conclusion then follows from the fact that the map ε log ∶ ∏U U(kn) → W
induces a ∗Γ-equivariant group homomorphism between B(ε)/I(ε) andWb/Winf .

�

Thus, the induced map α̃ ∶ ∗Γ × ∗Γ → W satisifes the 2-cocycle condition
given by: for g1, g2, g3 ∈ ∗Γ,

(3.7) g1 ⋅ α̃(g2, g3) − α̃(g1g2, g3) + α̃(g1, g2g3) − α̃(g1, g2) = 0

So transfering to the internal Lie algebra through the ε log map, we thus have
a map α ∶ ∗Γ × ∗Γ → W which takes values in Wb and satisfies the 2-cocycle
condition moduloWinf . Recall that the defect diminishing condition was implied
by the following statement: suppose αψ ∶ ∗Γ × ∗Γ → ∏U U(kn) is an internal
function taking values in B(ε) and such that α̃φ satisfies the 2-cocycle condition.
Then there exists an internal β ∶ ∗Γ→∏U U(kn) taking values in B(ε) such that
α̃φ(g1, g2) = β̃(g1) + g1 ⋅ β̃(g2) − β̃(g1g2) Using the ε log map to transfer to W, we
conclude with the following proposition summarizing our work so far:

Proposition 3.2.8. Suppose for every internal α ∶ ∗Γ×∗Γ→W with Im(α) ⊆ Wb

that satisfies the 2-cocycle condition (Eq. (3.7)), there exists an internal β ∶ ∗Γ→
W taking values in Wb such that

α̃(g1, g2) = β̃(g1) + g1 ⋅ β̃(g2) − β̃(g1g2)

then Γ exhibits the defect diminishing property, and is therefore uniformly U-stable
with a linear estimate.
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Since we shall work with internal maps from (∗Γ)2 (or ∗Γ) to W that take
values in Wb, it is helpful to describe such a map as an ultraproduct of bounded
maps. Let {αn ∈ `∞(Γ2,u(kn))}∞k=1 be a family of maps such that there exists a
constant C > 0 such that ∥αn∥∞ ≤ C for every n ∈ N. Then it is clear that the
ultraproduct α = {αn}U has image Im(α) ⊆ Wb. Conversely,

Lemma 3.2.9. Let α ∶ ∗Γ× ∗Γ→W be an internal map with Im(α) ⊆ Wb. Then
there exists a family {αn ∈ `∞(Γ2,u(kn))}∞k=1 such that α = {αn}U . Conversely,
if {αn ∈ `∞(Γ2,u(kn))}∞k=1 is a family of maps such that {∥αn∥∞}U ∈ ∗Rb, then
α = {αn}U∗Γ × ∗Γ→W is an internal map with Im(α) ⊆ Wb.

Proof. Since α is internal, it is of the form α = {fn}U for a family of maps
fn ∶ Γ × Γ → u(kn). For a subset S ∈ U , suppose fn is unbounded for every n ∈ S.
Then for each n ∈ S, there exists xn, yn ∈ Γ such that fn(xn, yn) has norm at least
n. In particular, for x = {xn}U and y = {yn}U , we have α(x, y) ∉ Wb. This is
a contradiction to the hypothesis that Im(α) ⊆ Wb. The converse is immediate
from the definition of Wb. �

Thus, an internal map α ∶ ∗Γ × ∗Γ→W with Im(α) ⊆ Wb can be described
as {αn}U where for every k ∈ N, αn ∶ Γ × Γ → u(kn) is a bounded map, and such
that {∥αn∥∞}U ∈ ∗Rb. In other words, the internal map α is the ultraproduct of
bounded maps, and is also bounded as an ultraproduct.
From now on, we shall regard α as an element of ∏U `∞((∗Γ)2,u(kn), which we
shall henceforth denote L∞((∗Γ)2,W) (understood as the space of internal maps
from (∗Γ)2 to W. In fact, α is actually an element of L∞((∗Γ)2,W)b since not
only is it internally bounded, but also {∥αn∥∞}U ∈ ∗Rb. In general, we shall use
the following notation:

● For m ∈ N, the internal space L∞((∗Γ)m,W) is defined as

L∞((∗Γ)m,W) ∶= {`∞(Γm,u(kn))}U

● The (external) subspace of L∞((∗Γ)m,W) comprising internal functions
with bounded (supremum) norm will be denoted L∞b ((∗Γ)m,W) while the
(external) subspace of L∞b ((∗Γ)m,W) comprising internal functions with
infinitesimal (supremum) norm will be denoted L∞inf((∗Γ)m,W).

● The quotient L∞b ((∗Γ)m,W)/L∞inf((∗Γ)m,W) shall be denoted L̃∞((∗Γ)m,W).
This space comprises bounded maps from (∗Γ)m to W̃ that are induced
from internal maps in L∞((∗Γ)m,W). As in Remark 3.2.6, L̃∞((∗Γ)m,W)
is a real Banach space.
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● For a map f ∈ L∞b ((∗Γ)m,W), we shall denote by f̃ ∈ L̃∞((∗Γ)m,W)
the composition of f with the canonical quotient map L∞b ((∗Γ)m,W) →
L̃∞((∗Γ)m,W).

For convenience, we restate Proposition 3.2.8 in this notation:

Proposition 3.2.10. Suppose for every α ∈ L∞b ((∗Γ)2,W) that satisfies the 2-
cocycle condition (Eq. (3.7)), there exists a β ∈ L∞b ((∗Γ)1,W) such that

α̃(g1, g2) = β̃(g1) + g1 ⋅ β̃(g2) − β̃(g1g2)

then Γ exhibits the defect diminishing property, and is therefore uniformly U-stable
with a linear estimate.

3.3. Uniform Stability of Amenable groups. In this section, we shall demon-
strate an application of Proposition 3.2.10 to amenable groups. The first step is
to recognize the duality of W in an internal way.
Consider the space W = ∏U u(kn), and let W♯ ∶= ∏U(u(n))∗. For the Banach
space u(n), consider its dual space (u(n))∗ and let ⟨⋅∣⋅⟩ the canonical duality (for
instance, if u(n) is equipped with the Schatten p-norm for p > 1, then (u(n))∗
comes equipped with the Schatten q-norm, where 1/p+1/q = 1). Denote byW♯ the
ultraproduct ∏U(u(kn))∗, and its external subsets W♯

b and W♯
inf as in (Eq. (3.3))

and (Eq. (3.4)). Note that the internal pairing

⟨⋅∣⋅⟩U ∶ W♯ ×W → ∗R

induces a pairing

⟨⋅∣⋅⟩ ∶ W̃♯ × W̃ →R

Equivalently, W♯
b comprises λ ∈ W♯ such that λ(v) ∈ ∗Rb for every v ∈ Wb, while

W♯
inf comprises λ ∈ W♯ such that λ(v) ∈ ∗Rinf for every v ∈ Wb.

We can use the internal map πψ ∶ ∗Γ ×W →W to define the internal map

(3.8) π♯ψ ∶
∗Γ ×W♯ →W♯

which on λ ∈ W♯ and v ∈ W is defined to be

π♯ψ(g)(λ)(v) ∶= λ(πψ(g
−1)v)

Lemma 3.3.1. The internal map π♯ψ restricts to a map on W♯
b that induces an

action of ∗Γ on W♯
b/W♯

inf .
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Proof. Let λ ∈ W♯
b . For v ∈ W, since π♯ψ(g)(λ)(v) = λ(πψ(g−1)v), note that

πψ(g−1)v ∈ Wb for v ∈ Wb. Hence π♯ψ(g)(λ) ∈ W♯
b for every g ∈ ∗Γ. Similarly, for

λ ∈ W♯
inf , π

♯
ψ(λ) ∈ W♯

inf . That this induces an action of ∗Γ on W♯
b/W♯

inf follows

easily from the fact that πψ induces an action of ∗Γ on Wb/Winf . �

Going one step further, we can obtain a canonical identification of W with
(W♯)♯ (which has the same norm as W) so that we can regard W as (W♯)♯ with
(π♯ψ)♯ = πψ. This is true for W since W = ∏U u(n), and u(n) is finite-dimensional
for each n ∈ N.

Remark 3.3.2. We shall often use this reflexivity property of W to regard its
dual W♯ as its predual, so that v ∈ W acts on λ ∈ W♯ by v ⋅ λ = λ(v). However,
note that for the following discussion of amenability, what we actually need is not
reflexivity but merely the property that W is dual.

Let us now recall the definition of amenability for discrete groups. While
there are innumerable equivalent definitions of amenability, here we shall see the
definition that is most relevant to us (later on in §4.3, we shall study amenability
and amenable actions in the locally compact case). Consider the Banach space
`∞(Γ) with the following action of Γ: for g, x ∈ Γ and f ∈ `∞(Γ), (g ⋅ f)(x) =
f(g−1x). A mean on `∞(Γ) is a bounded linear functional m ∶ `∞(Γ) → R such
that ∥m∥ ≤ 1, m(1) = 1 and m(f) ≥ 0 whenever f ≥ 0. The mean m is said to be
Γ-invariant if for every g ∈ Γ and f ∈ `∞(Γ), m(g ⋅ f) =m(f).

Definition 3.3.3. The discrete group Γ is said to be amenable if there exists a
Γ-invariant mean on `∞(Γ).

While the definition of amenability asks for a Γ-invariant mean on `∞(Γ),
this can be easily extended to obtain a Γ-equivariant mean on `∞(Γ,W ) for a dual
normed W -module (where the action of Γ on `∞(Γ,W ) is given by (g ⋅ f)(x) =
g ⋅ f(g−1x). The following lemma builds on this idea to construct an internal
mean on L∞(∗Γ,W).

Lemma 3.3.4. Suppose Γ is amenable. Then there exists an internal map
min ∶ L∞(∗Γ,W) → W such that min induces a linear map m̃ ∶ L̃∞(∗Γ,W) → W̃
satisfying the following two conditions:

● Suppose f̃ ∈ L̃∞(∗Γ,W) is the constant function f̃(g) = ṽ for every g ∈ ∗Γ,
then m̃(f̃) = ṽ.

● For f̃ ∈ L̃∞(∗Γ,W), ∥m̃(f̃)∥ ≤ ∥f̃∥.
● For g ∈ ∗Γ and f̃ ∈ L̃∞(∗Γ,W), m̃ (g ⋅ f̃) = g ⋅ m̃(f̃).
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Proof. Consider f = {fn}U ∈ L∞(∗Γ,W). Since W = (W♯)♯, for each λ ∈ W♯, we
get an internal map

fλ ∶ ∗Γ→ ∗R

fλ(x) ∶= f(x)(λ)
Note that fλ being internal, is of the form {(fλ)n}U where (fλ)n ∈ `∞(Γ). This
allows us to construct the internal map mλ

in ∶ L∞(∗Γ,W) → ∗R as

mλ
in(f) = {m ((fλ)n)}U

and finally min ∶ L∞(∗Γ,W) → (W♯)♯ as

min(f)(λ) ∶=mλ
in(f)

It is straightforward to check that min as defined induces a linear map m̃ ∶
L̃(∗Γ,W) → Wb/Winf . As for ∗Γ-equivariance, this follows from the observation
that (g ⋅ f)λ(x) = π(g)f(g−1x)(λ) while (g ⋅ fλ)(x) = f(g−1x)(λ). The conditions
on m̃ follow from the definition and properties of the Γ-invariant mean m on
`∞(Γ). �

We shall denote the internal mean above by mx
in (or m̃x) when the mean

is understood to be taken over x ∈ Γ. This would be particularly useful when
working with multivariate maps where we fix certain coordinates to obtain a uni-
variate map which we can take a mean over (as in the following Proposition 3.3.5).
Note that in this notation, it is easy to see that the ∗Γ-equivariance of the mean
constructed above translates to the simpler (invariant) form: for f̃ ∈ L̃∞(∗Γ,W)
and g ∈ ∗Γ,

m̃x (f̃(gx)) = m̃x (f̃(x))

We shall now use this internal map min and the ∗Γ-equivariant map m̃ to show
the following:.

Proposition 3.3.5. Suppose Γ is amenable. Then for every α ∈ L∞b ((∗Γ)2,W)
that satisfies the 2-cocycle condition (Eq. (3.7)), there exists a β ∈ L∞b (∗Γ,W)
such that

α̃(g1, g2) = β̃(g1) + g1 ⋅ β̃(g2) − β̃(g1g2)

Proof. Suppose α ∈ L∞L((∗Γ)2,W) satisfies the 2-cocyle condition: for every
g1, g2, x ∈ ∗Γ,

α̃(g1, g2) = g1 ⋅ α̃(g2, x) − α̃(g1g2, x) + α̃(g1, g2x)
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For a fixed g, the map αg ∶ ∗Γ→W defined as αg(x) ∶= α(g, x) is clearly contained
in L∞(∗Γ,W). Define β ∈ L∞(∗Γ,W) as

β(g) ∶=min (αg)

In other words, β(g) =mx
in (α(g, x)). Then the 2-cocycle condition satisfied by α

immediately implies that

α̃(g1, g2) = g1 ⋅ β̃(g2) − β̃(g1g2) + β̃(g1)

�

Observe that the proof of Proposition 3.3.5 is almost exactly on the lines of
the proof that H2

b(Γ, V ) = 0 for amenable Γ and dual normed Γ-module W (refer
to Theorem 3.6 in [Fri17] for more details).
In light of Proposition 3.3.5 and Proposition 3.2.10, we conclude that:

Corollary 3.3.6. If Γ is a discrete amenable group, then Γ is uniformly U-stable
with a linear estimate.

Note that while on the one hand Corollary 3.3.6 generalizes Kazhdan’s
result [Kaz82] to a larger family (where we allow any submultiplicative matrix
norm as opposed to just the operator norm as in [Kaz82] and [BOT13]), we do
not prove here the analogous result of strong Ulam stability, where the family
comprises groups of unitary operators on (possibly infinite-dimensional) Hilbert
spaces.

4. Asymptotic Cohomology of Groups

In this section, we shall formally define the asymptotic cohomology theory
of (topological) groups, and study some basic properties along the lines of the
theory of bounded cohomology. Recall that our goal is to prove uniform U-
stability for lattices in higher rank Lie groups, so this forces us to develop the
cohomology theory for locally compact groups (as opposed to just discrete groups
as we briefly saw in §3.2 and §3.3).
The basic objects we shall deal with are defined in §4.1, where we describe the
category of asymptotic cohomology abstractly using tools from cohomological
algebra. In §4.3, we define the asymptotic cohomology of groups and relate it to
the way it was motivated in §3.3. Finally, in §4.3, we use Zimmer amenability
and the functorial relations of §4.1 to obtain other complexes that compute the
same cohomology, which we shall use in §5 and §6.
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4.1. Basic Definitions and Some Cohomological Algebra. Recall, from
§2.2, that we fix a non-principal ultrafilter U on N to define ultraproducts and
internal objects. For convenience, we set some notation and conventions now. Let
C be a category, with C-objects and C-morphisms. We shall define a category
∗C in ∗Univ as follows:

● The objects of ∗C, referred to as internal C-objects, shall be ultraproducts
∏U Xn where {Xn}n∈N is an indexed collection of C-objects.

● The morphisms of ∗C, referred to as internal morphism, are of the form
φ = {φn}U (also denoted ∏U φn), where {φn}n∈N is an indexed collection
of C-morphisms.

Given a category C, the internal C-objects and internal C-morphisms form a
category ∗C in ∗Univ, and these two categories have the same first-order theories,
allowing us to use the transfer principle, as remarked in §2.2.

Definition 4.1.1. Let A be a property of C-objects (resp, C-morphisms). Then
∏U Xn (resp, φ ∶ ∏U Xn →∏U Yn) has internal A if Xn (resp, φn) has A for every
n ∈ S with S ∈ U .

For example, let G be a locally compact, second countable topological
group, and consider the ultrapower group ∗G and let E = {En}U be an inter-
nal Banach space. An internal map π ∶ ∗G×E → E , where π = {πn ∶ G×En → En},
is an internal action of ∗G on E (or E is an internal ∗G-representation) if the
map πn ∶ G ×En → En is an isometric G-representation for every n ∈ N, and the
internal map π is internally continuous if πn ∶ G×En → En is continuous for every
n ∈ N (here G ×En is endowed with the product topology). All of these notions
simply involve passing from standard categories to their internal counterparts in
∗Univ.
We shall now work with the category Ban whose objects are (real) Banach spaces
and whose morphisms are bounded linear maps, and study ∗Ban. Consider the
ultraproduct E = ∏U En of the real Banach spaces {En}n∈N, which is an in-
ternal Banach space. For an element v ∈ E where v = {vn}U , we denote by
∥v∥ ∶= {∥vn∥}U ∈ ∗R. Given two internal Banach spaces E = {En}U and F = {Fn}U ,
we shall denote byH(E ,E) the set of internal morphisms between E and F . These
are exactly of the form φ ∶= {φn ∶ En → Fn}U where φn ∶ En → Fn is a bounded lin-
ear map for every n ∈ N (such maps are internal morphisms). Note that H(E ,E)
itself is an internal Banach space when endowed with the internal operator norm
(that is, ∥φ∥ ∶= {∥φn∥op}U).
Consider the set H(E , ∗R), which is the internal dual of E , denoted E ♯. Explicitly,
for each Banach space En as above, let E♯

n denote its (constinuous) dual Banach
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space, and let ⟨⋅∣⋅⟩ the canonical duality, and E ♯ denote the ultraproduct ∏U E♯
n.

Note that we have an internal pairing

⟨⋅∣⋅⟩U ∶ E ♯ × E → ∗R

We shall call E an internal dual Banach space if E is the internal dual of some
internal Banach space (which we shall denote E ♭ = ∏U E♭

n). For φ ∈ H(E ,E), we
shall denote by φ♯ ∈ H(E ♯,E ♯) the internal adjoint map with respect to the internal
pairing above: that is φ♯ is such that for every v ∈ E and w ∈ E ♯, ⟨φ♯w, v⟩U =
⟨w,φv⟩U .
We shall now see some general functorial aspects of (standard) real Banach spaces
and extend them naturally to internal Banach spaces. Let X, Y , E and F be
(standard) real Banach spaces. Let B(X×E) denote the Banach space of bounded
bilinear formsX×E →R, and L(E,F ) denote the Banach space of bounded linear
functions from E to F . Through the canonical pairing, note that B(X × E) is
naturally isometrically isomorphic to the Banach space of bounded linear maps
E → X♯ (and also to the Banach space of bounded linear maps X → E♯). That
is,

(4.1) B(X ×E) ≅ L(E,X♯) ≅ L(X,E♯)

Using these identifications, we now consider two functors:

● Given a bounded linear operator k ∶ X♯ → Y ♯, define a bounded linear
operator k∗ ∶ B(X ×E) → B(Y ×E) by (k∗β)(⋅, e) = kβ(⋅, e)). Note that
the correspondence k → k∗ is covariant (although k∗ depends on E, for
ease of notation, we assume the relevant Banach space from context).

● Given a bounded linear operator σ ∶ E → F , define a bounded linear
operator σ∗ ∶ B(X × F ) →∶ B(X ×E) by (σ∗β)(x, e) = β(x,σ(e)). In this
case, the correspondence σ → σ∗ is contravariant (although σ∗ depends
on X, for ease of notation, we assume the relevant Banach space from
context).

Proposition 4.1.2. Let k ∶ X♯ → Y ♯ and σ ∶ E → F , and consider the covariant
k∗ ∶ B(X × E) → B(Y × E) and contravariant σ∗ ∶ B(X × F ) →∶ B(X × E) as
defined above. Then

● k∗σ∗ = σ∗k∗
● ∥k∗σ∗∥ ≤ ∥k∗∥ ⋅ ∥σ∗∥

These notions extend easily to internal Banach spaces as well. Let X = {Xn}U ,
Y = {Yn}U and E = {En}U , F = {Fn}U be internal Banach spaces. Denote by
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B(X ×E) the internal Banach space B(X ×E) ∶= ∏U B(Xn×En) and by L(X ,E) ∶=
∏U L(Xn,En). Then

B(X × E) ≅ L(E ,X ♯) ≅ L(X ,E ♯)

where the isomorphisms are internally isometric. Let k ∶ X ♯ → Y♯ (where k =
{kn}U), and σ ∶ E → F (where σ = {σn}U) be internal morphisms. Then we
have the covariant internal morphism k∗ ∶ B(X × E) → B(Y × E) defined as k∗ =
{(kn)∗}U), and the contravariant internal morphism σ∗ ∶ B(X × F) → B(X × E)
defined by σ∗ = {σ∗n}U such that k∗σ∗ = σ∗k∗ and ∥k∗σ∗∥ ≤ ∥k∗∥ ⋅ ∥σ∗∥.
Let E be an internal Banach space. Just as in as in (Eq. (3.3)) and (Eq. (3.4)),
the internal norm ∥ ⋅ ∥ ∶ E → ∗R allows us to define special external subsets as
follows:

Eb ∶= {v ∈ E ∶ ∥v∥ ∈ ∗Rb}

Einf ∶= {v ∈ E ∶ ∥v∥ ∈ ∗Rinf}

and denote the ultralimit Eb/Einf by Ẽ , which is a real Banach space [Hei80]).

The correspondence E ↦ Ẽ is not a functor from ∗Ban to Ban as such, because
an internal morphism φ ∈ H(E ,F) need not induce a morphism φ̃ ∶ Ẽ → F̃ in
general. However, if we restrict ourselves to bounded objects and morphisms in
∗Ban, then we do get a functorial correspondence. That is, consider the external
subsets Hb(E ,F) and Hinf(E ,F). Then

Proposition 4.1.3. Any φ ∈ Hb(E ,F), induces a map φ̃ ∈Hom(Ẽ , F̃).

Proof. Note that φ ∶= {φn ∶ En → Fn}U , where each φn ∶ En → Fn is a bounded
linear map for every n ∈ N. Since φ ∈ Hb(E ,F), this means that φ(Eb) ⊆ Fb, and
φ(Einf) ⊆ Finf , thus inducing a bounded linear map φ̃ ∶ Ẽ → F̃ between the real

Banach spaces Ẽ and F̃ . �

For example, if φ ∶ E → F is an internal isometry, then φ ∈ Hb(E ,F) induces
φ̃ ∶ Ẽ → F̃ .
Observe that H̃(E ,F) is a subspace of Hom(Ẽ , F̃). The latter comprises the
Banach space of all bounded linear maps between real Banach spaces Ẽ and F̃ ,
while the former is a Banach subspace comprising those bounded linear maps
that were induced from internal morphisms from E to F .

Proposition 4.1.4. Let E be an internal Banach space with dual E ♯. Then the
internal pairing ⟨⋅⟩U ∈ Bb(E ♯,E). Furthermore, for φ ∈ Hb(E ,E), its internal
adjoint φ♯ ∈ Hb(E ♯,E ♯).
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Thus, many of our functorial results about internal Banach spaces in ∗Ban
pass through when we restrict to bounded elements, and induce corresponding
results in Ban.
Our main structure of interest is an asymptotic variant of internal ∗G-representations
using the external subsets Eb and Einf :

Definition 4.1.5. Let G be a locally compact, second countable topological
group, and E be an internal Banach space. An internal isometry π ∶ ∗G × E → E
be an internal isometry such that it induces an action π̃ ∶ ∗G × Ẽ → Ẽ of ∗G on
the real Banach space Ẽ . The internal Banach space E , equipped with such an
internal map π, is called an asymptotic Banach ∗G-module with asymptotic
∗G-representation π.

We shall denote an asymptotic Banach ∗G-module either by (π,E), or just
E if the map π can implicitly be assumed in context.
Observe that the real Banach space Ẽ is a (true) representation of ∗G through
π̃. An element v ∈ Eb is said to be asymptotically fixed by g ∈ ∗G if its image
ṽ ∈ Ẽ is (truly) fixed by g. The set of asymptotically ∗G-fixed elements of E shall
be denoted E∼∗Gb . More generally, for an internal subgroup N ≤ ∗G, the set of
asymptotically N -fixed elements of E shall be denoted E∼Nb
For an asymptotic Banach ∗G-module E , consider its dual internal Banach space
E ♯ = L(E , ∗R). In this case, the internal map π ∶ ∗G × E → E defines an internal
map

π♯ ∶ ∗G × E ♯ → E ♯

π♯(g)(λ)(v) = λ (π(g)−1v)

in the usual way, and it is easy to check that E ♯ an asymptotic Banach ∗G-module
(π♯,E ♯). Essentially, we are simply defining the internal adjoint of π(g) with
respect to the pairing of E and E ♯, and the functorial results of Proposition 4.1.4
and Proposition 4.1.3 ensure that the map π♯ defined this way is an asymptotic
∗G-representation of ∗G on E ♯. An asymptotic Banach ∗G-module (π,E) is called
a dual asymptotic Banach ∗G-module if (π,E) is the dual of an asymptotic
Banach ∗G-module (π♭,E ♭).

More generally, let (π,E) and (ρ,F) be asymptotic Banach ∗G-modules.
Then L(E ,F) and B(E ,F) can also be regarded as asymptotic Banach ∗G-
modules in a natural way.

47



Definition 4.1.6. Let (π,E) and (ρ,F) be asymptotic Banach ∗G-modules. An
asymptotic ∗G-morphism from E to F is a map φ ∈ Lb(E ,F) such that the in-
duced φ̃ ∶ Ẽ → F̃ is ∗G-equivariant (that is, φ̃ is a morphism of ∗G-representations
Ẽ and F̃).

In other words, an asymptotic ∗G-morphism is an element of Lb(E ,F)
whose image in L̃(E ,F) is a ∗G-fixed point, and the set of such elements is
denoted HG(E ,F). The following proposition tells us that the functors k ↦ k∗
and σ ↦ σ∗, defined for internal Banach spaces, respect the asymptotic ∗G-
representations.

Proposition 4.1.7. Let E ,F ,X and Y be asymptotic Banach ∗G-modules, and
k ∶ X ♯ → Y♯ and σ ∶ E → F be asymptotic ∗G-morphisms. Then k∗ ∶ B(X ,E) →
B(Y,E) and σ∗ ∶ B(X ,F) → B(X ,E) are also asymptotic ∗G-morphisms.

Definition 4.1.8. An asymptotic ∗G-cochain complex (E●, d●) is a Z≥0-indexed
sequence

0 E0 E1 E2 E3 . . .d0 d1 d2 d3 d4

where for every n ≥ 0, En is an asymptotic Banach ∗G-module, dn is an asymptotic
∗G-morphism, and dn+1dn(Enb ) ⊆ En+2

inf .

We shall also denote (E●, d●) by just E● if the maps dn are assumed from
context, and also assume that E−1 = 0 to make statements with indices easier.
Observe that the condition dn+1dn(En−1

b ) ⊆ En+1
inf is a relaxation to infinitesimals

of the usual condition on differential maps. In fact, since the maps dn are as-
ymptotic ∗G-morphisms, the asymptotic ∗G-cochain complex induces a (true)
cochain complex

0 (Ẽ0)∗G (Ẽ1)∗G (Ẽ2)∗G (Ẽ3)∗G . . .d̃0 d̃1 d̃2 d̃3 d̃4

allowing us to define the following:

Definition 4.1.9. The asymptotic cohomology of the asymptotic ∗G-cochain
complex (E●, d●), denoted H●

a(E●, d●) or H●
a(E●), is defined to be

Hm
a (E●) ∶= ker(d̃m+1)/Im(d̃m)

An element α ∈ Eb such that α̃ ∈ ker(d̃m+1) is called an asymptotic m-cocycle,
and will be called an asymptotic m-coboundary if α̃ ∈ Im(d̃m).
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To understand the correspondence E● ↦ H●
a(E●), we now define morphisms

and homotopies of asymptotic ∗G-cochain complexes.

Definition 4.1.10. Let (E●, d●E) and (F●, d●F) be asymptotic ∗G-cochain com-
plexes. An asymptotic ∗G-morphism α● ∶ E● → F● between (E●, d●E) and (F●, d●F)
is a family of asymptotic ∗G-morphisms αn ∶ En → Fn for every n ∈ Z≥0 such that
for every n ∈ Z≥0,

(dn+1
F αn − αn+1dnE)(Enb ) ⊆ Fn+1

inf

Again, this simply means that we have a ∗G-morphism of the cochain com-
plexes

0 (Ẽ0)∗G (Ẽ1)∗G (Ẽ2)∗G (Ẽ3)∗G . . .

0 (F̃0)∗G (F̃1)∗G (F̃2)∗G (F̃3)∗G . . .

d̃0

α̃0

d̃1

α̃1

d̃2

α̃2

d̃3

α̃3

d̃4

d̃0 d̃1 d̃2 d̃3 d̃4

Let α● be an asymptotic ∗G-morphism between the asymptotic ∗G-cochain com-
plexes X ● and Y●. While this clearly gives us an induced map H●

a(X ●) → H●
a(Y●),

we now describe when two such asymptotic ∗G-morphisms α● and β● correspond
to the same induced maps of cohomologies.

Definition 4.1.11. Let α●, β● ∶ X ● → Y● be two asymptotic ∗G-morphisms be-
tween the asymptotic ∗G-cochain complex X ● and Y●. Then α● is said to be
asymptotically ∗G-homotopic to β● if there exists a family of asymptotic ∗G-
morphisms σn ∶ En → Fn−1 such that

d̃nσ̃n + σ̃n+1d̃n+1 = α̃n − β̃n

for every n ∈ Z≥0.

The following lemma lists results that follow from standard cohomological
techniques:

Proposition 4.1.12. Let X ● and Y● be asymptotic ∗G-cochain complexes.

● Suppose α●, β● ∶ X ● → Y● are asymptotic ∗G-morphisms such that α●

is asymptotically ∗G-homotopic to β●. Then they induce the same map
H●
a(X ●) → H●

a(Y●) at the level of cohomology.
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● Suppose α● ∶ X ● → Y● and β● ∶ Y● → X ● are asymptotic ∗G-morphisms
such that α● ○β● ∶ Y● → Y● is asymptotically ∗G-homotopic to the identity
on Y●, and β● ○ α● ∶ X ● → X ● is asymptotically ∗G-homotopic to the
identity on X ●. Then H●

a(X ●) is isomorphic to H●
a(Y●). In this case, the

maps α● and β● are called asymptotic ∗G-homotopy equivalences between
X ● and Y●.

Given an asymptotic ∗G-cochain complex (X ●, d●) and another asymptotic
Banach ∗G-module E , we can use the functors dn → dn∗ to construct an asymptotic
∗G-cochain complex

0 B(X 0 × E) B(X 1 × E) B(X 2 × E) B(X 3 × E) . . .d0 d1 d2 d3 d4

which we shall denote B(X ●,E). Combining the functorial properties of k → k∗
and σ → σ∗ and the fact that they respect the structure of the asymptotic ∗G-
representations, we get the following:

Proposition 4.1.13. Let k● be an asymptotic ∗G-morphism between the asymp-
totic ∗G-cochain complexes (X ●)♯ and (Y●)♯, and E be an asymptotic Banach
∗G-module. Then k●∗ is an asymptotic ∗G-morphism between the asymptotic ∗G-
cochain complexes B(X ● × E) and B(Y● × E).

Note that while we cannot conclude anything about H●
a(B(X ●,E)) from

H●
a(X ●), we can still use Proposition 4.1.12 to show that:

Lemma 4.1.14. Let k● ∶ (X ●)♯ → (Y●)♯ and j● ∶ (Y●)♯ → (X ●)♯ be asymptotic
∗G-homotopy equivalences (as in Proposition 4.1.12) between the asymptotic ∗G-
cochain complexes (X ●)♯ and (Y●)♯. Let E be an asymptotic Banach ∗G-module.
Then k●∗ ∶ B(X × E) → B(Y × E) and j●∗ ∶ B(Y × E) → B(X × E) be asymptotic ∗G-
homotopy equivalences between the asymptotic ∗G-cochain complexes B(X ●,E)
and B(Y●,E).

4.2. The L∞-cohomology and H●
a(G,V). We now come to our definition of

the asymptotic cohomology of the group G with coefficients in a dual asymptotic
Banach ∗G-module (π,V), where V = {Vn}U . We shall first define it explicitly,
and then relate it to the notions discussed in §4.1 to derive further results.
Our objects of interest shall be ultraproducts of L∞-spaces. Since these are not
spaces of functions but spaces of equivalence classes of functions upto null sets,
we now quickly review some notions regarding its essential image. For m ≥ 0
and dual Banach space V (with predual V ♭, and equipped with the weak-∗ topol-
ogy), L∞w∗(Gm, V ) denotes the Banach space of (equivalence classes of) essentially
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bounded weak-∗ measurable maps from Gm to V with (essential) supremum norm
∥ ⋅ ∥.
For a weak-∗ measurable function f ∶ Gm → V , the set f−1(Ou) is measurable in
Gm. Define the essential image Im(f) to be

Im(f) = {u ∈ V ∣ µ(f−1(Ou)) > 0 for every weak-∗ neighborhood Ou of v}

where µ is the Haar measure on Gm. We extend this notion to function classes
in L∞w∗(Gm, V ) as well. Let f ∈ L∞w∗(Gm, V ).

● For any functions f1, f2 in the class of f , Im(f1) = Im(f2). That is,
essential image is independent of the representative of f , allowing us to
define Im(f) as the essential image of any representative in its class.

● Let f0 be a representative of f , then Im(f) ⊆ range(f0) (for u ∈ Im(f),
any Ou intersects with range(f0)).

● If u /∈ Im(f) then there is a representative f0 such that u /∈ range(f0) (in
this case, there is a neighborhood Ou such that f−1(Ou) has measure 0,
and so, one may redefine f on f−1(Ou) to avoid Ou).

● Im(f) = ⋂{range(g) ∣ g is a representative off}.
● There is a representative f0 of f such that range(f0) ⊆ Im(f) (this is be-

cause Im(f), being a norm bounded closed subset of V , is second count-
able, and so f−1(Im(f)) is measurable and of the full measure).

Formally, we shall call f ∈ L∞w∗(Gm, V ) essentially constant if there exists v ∈ V
with Im(f) = {v}.
Consider the internal Banach space

L∞ ((∗G)m,V) ∶= ∏
U
L∞w∗(Gm, Vn)

For f = {fn}U ∈ L∞ ((∗G)m,V), we denote by ∥f∥ the hyperreal {∥fn∥}U ∈
∗R and by Im(f) the subset {Im(fn)}U ⊆ V. Note that the external subset
L∞b ((∗G)m,V) is the subset of function classes f = {fn}U such that Im(f) ⊆ Vb,
while while L∞inf((∗G)m,V) is the subset of function classes f = {fn}U such that
Im(f) ⊆ Vinf . Observe that Im(f) is an internal subset of V, while Vb and Vinf
are external.

Claim 4.2.1. For f = {fn}U ∈ L∞b ((∗G)m,V), Im(f) ⊆ V∼∗Gb iff there exists
an internal function f ′ = {f ′n}U with f ′n in the class of fn for n ∈ U such that
range(f ′) = {range(f ′n)}U ⊆ V∼

∗G
b .
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Proof. Suppose Im(f) ⊆ V∼∗Gb . Then since there exists an internal representative
f ′ with range(f ′) ⊆ Im(f), we have range(f ′) ⊆ V∼∗Gb as well for this f ′.
Conversely, suppose there exists an internal representative function f ′ with range(f ′) ⊆
V∼∗Gb . Let ε = {εn}U where εn = ess.sup ∥πn(g)v − v∥ ∣ v ∈ range(f ′n), g ∈ G). Note
that ε ∈ ∗Rinf since range(f ′) ⊆ V∼∗Gb . This allows us to express the internal
subset range(f ′) as a subset of the internal set E = {En}U where

En = {v ∈ Vn ∣ ∥v∥ ≤ ∥f ′n∥ and ∀g ∈ G, ∥πn(g)v − v∥ ≤ εn}

That is, range(f ′) ⊆ E ⊆ V∼∗Gb with E being internal. Also note that for n ∈ U ,
En is closed in the weak-∗ topology. Hence Im(f) ⊆ E ⊆ V∼∗Gb . �

The internal map π ∶ ∗G × V → V can be used to define the internal map
τm ∶ ∗G × L∞((∗G)m,V) → L∞((∗G)m,V) for each m ≥ 0 defined as

(4.2) (τm(g)(f))(g1, g2, . . . , gm) ∶= π(g)f(g−1g1, . . . , g
−1gm)

for every g ∈ ∗G and every g1, . . . , gm ∈ ∗G. This internal map τm ∶ ∗G ×
L∞((∗G)m,V) → L∞((∗G)m,V) induces an action τ̃m of ∗G on the ultralimit
space L̃∞((∗G)m,V). In particular, this means that (τm,L∞((∗G)m,V)) is an
asymptotic Banach ∗G-module.
For simplicity, we shall denote the induced action of g ∈ ∗G on f̃ ∈ L̃∞((∗G)m,V)
simply by g ⋅ f̃ . We shall denote by L∞((∗G)m,V)∼∗G the set of elements f ∈
L∞((∗G)m,V) such that f̃ ∈ L̃∞((∗G)m,V)∗G. Such an element f shall be re-
ferred to as asymptotically ∗G-equivariant.

Remark 4.2.2. Later we shall also deal with (truly) ∗G-invariantmaps f ∈ L∞(∗Gm,V)
with an internal right action of G on the domain. In this case, we mean that
f(x) = f(xg) for every g ∈ ∗G, and for x = {xn}U ⊆ {Xn}U ⊆ ∗G where Xn ⊆ G is
co-null in G. We shall refer to this as f(x) = f(xg) for every g ∈ ∗G, and almost
every x ∈ ∗G, for convenience.

For each m ≥ 0, define the internal map

dm ∶ L∞((∗G)m,V) → L∞((∗G)m+1,V)

dmf(g0, . . . , gm) ∶=
m

∑
j=0

(−1)jf(g0, . . . , ĝj, . . . , gm)

It is clear that dm ○ dm−1 = 0 for every m ≥ 1. Note that dm induces a map

d̃m ∶ L̃∞((∗G)m,V) → L̃∞((∗G)m+1,V)

Furthermore, when we restrict to L∞((∗G)m,V)∼∗G,
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Lemma 4.2.3. For f ∈ L∞((∗G)m,V)∼∗G, dmf ∈ L∞((∗G)m+1,V)∼∗G. That is,
d● is an asymptotic ∗G-morphism of asymptotic Banach ∗G-modules.

Proof. Consider

π(g)(dmf(g0, . . . , gm)) =
m

∑
j=0

(−1)jπ(g)f(g0, . . . , ĝj, . . . , gm)

Note that since f ∈ L∞((∗G)m,V)∼∗G, π(g)f(g0, . . . , ĝm, . . . , gm)−f(gg0, . . . , ggm) ∈
Vinf , thus implying the conclusion. �

Since the maps d̃m ∶ L̃∞((∗G)m,V) → L̃∞((∗G)m+1,V) are ∗G-equivariant
for every m ≥ 1, with d̃m ○ d̃m−1 = 0, we have an asymptotic ∗G-cochain complex

0 L∞(∗G,V) L∞((∗G)2,V) L∞((∗G)3,V) L∞((∗G)4,V) . . .d0 d1 d2 d3 d4

and the induced ∗G-cochain complex

0 L̃∞(∗G,V)∗G L̃∞((∗G)2,V)∗G L̃∞((∗G)3,V)∗G . . .d̃0 d̃1 d̃2 d̃3

Definition 4.2.4. The asymptotic cohomology group of G with coeffi-
cients in a dual asymptotic Banach ∗G-module V, denoted H●

a(G,V), is
defined to be the asymptotic cohomology of the asymptotic ∗G-cochain complex

0 L∞(∗G,V) L∞((∗G)2,V) L∞((∗G)3,V) L∞((∗G)4,V) . . .d0 d1 d2 d3 d4

Let us illustrate the above definitions in the case of a discrete group Γ
and the coefficients being the asymptotic Banach ∗Γ-module (πΓ,W) where W =
∏U ukn and πΓ = πψ is as defined in (Eq. (3.5)), and relate the construction to
Proposition 3.2.10. In this case, the asymptotic bounded cohomology H●

a(Γ,W)
is the cohomology of the complex given by

0 L̃∞(∗Γ,W)∗Γ L̃∞((∗Γ)2,W)∗Γ L̃∞((∗Γ)3,W)∗Γ . . .d̃0 d̃1 d̃2 d̃3

We shall now construct the same cohomology in another equivalent way which
relates to Proposition 3.2.10. For m ≥ 0, define an internal map

δm ∶ L∞((∗Γ)m,W) → L∞((∗Γ)m+1,W)

δm(f)(g1, . . . , gm+1) ∶= πΓ(g1)f(g2, . . . , gm+1)+
m

∑
j=1

(−1)jf(g1, . . . , gjgj+1, . . . , gm+1)+(−1)m+1f(g1, . . . , gm)
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Again, δm restricts to a map from L∞b ((∗Γ)m,W) to L∞b ((∗Γ)m+1,W) (which
we shall continue to call δm), which maps L∞inf((∗Γ)m,W) to L∞inf((∗Γ)m+1,W).
Since πΓ induces an asymptotic action of ∗Γ on W, the induced map

δ̃m ∶ L̃∞((∗Γ)m,W) → L̃∞((∗Γ)m+1,W)

δ̃m(f̃)(g1, . . . , gm+1) = g1f̃(g2, . . . , gm+1)+
m

∑
j=1

(−1)j f̃(g1, . . . , gjgj+1, . . . , gm+1)+(−1)m+1f̃(g1, . . . , gm)

is exactly the coboundary map on ˜̀((∗Γ)m,W). Essentially, we now work with
the ∗Γ-complex C●

0 W̃ L̃∞(∗Γ,W) L̃∞((∗Γ)2,W) L̃∞((∗Γ)3,W) . . .δ̃0 δ̃1 δ̃2 δ̃3

Since δ̃m ⋅ δ̃m−1 = 0, for m ≥ 1, denote the m-th cohomology group of this complex
by Hm(C●). In this notation, it is immediate that Proposition 3.2.10 can be
restated as

Theorem 4.2.5. Suppose H2(C●) = 0, then Γ is uniformly U-stable with a linear
estimate.

We now conclude this subsection by showing that H●(C●) ≅ H●
a(Γ,W).

Theorem 4.2.6. For every m ≥ 1, Hm(C●) ≅ Hm
a (Γ,W). In particular, suppose

H2
a(Γ,W) = 0, then Γ is uniformly U-stable with a linear estimate.

Proof. Consider the internal map

hm ∶ L∞((∗Γ)m+1,W) → L∞((∗Γ)m,W)

hmf(g1, . . . , gm) ∶= f(1, g1, g1g2, . . . , g1g2⋯gm)

This is simply a reparametrization, and its restriction to L∞b ((∗Γ)m,W)∼∗Γ in-
duces an isomorphism

h̃m ∶ L̃∞((∗Γ)m+1,W)
∗Γ → L̃∞((∗Γ)m,W)

such that the homogenous coboundary map d̃m translates to the coboundary map
δ̃m thus making Hm

a (Γ,W) canonically isomorphic to Hm(C●). �
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Remark 4.2.7. This complex C● can be thought of as the bar resolution in our
context, where we work with an inhomogenous differential map, and the proof of
Theorem 4.2.6 goes through to show that in general, H●

a(G,V) can be computed
using an inhomogenous cochain complex just as with Γ. We shall work with this
bar resolution for the rest of this subsection.

We conclude this subsection with some results on Ha(G,V) when the map
π ∶ ∗G × V → V is an internal trivial action of ∗G on V (that is, for every g ∈ ∗G
and every v ∈ V, π(g)v = v). Such an asymptotic Banach ∗G-module shall be
referred to as a trivial Banach ∗G-module.
We first recall the following facts about the vanishing moduli of G which are
implicit in [MM85] and clarified further in [MN21, Definition 2.5] and [FFLM22,
Lemma 4.12]:

Theorem 4.2.8 ([MM85][MN21][FFLM22]). Let V be trivial dual Banach G-
module.

● Suppose H2
b(G,V ) = 0. Then there exists a constant C1 > 0 such that for

every (inhomogenous) 2-cocycle α′ ∈ L∞w∗(G2, V ), there exists an (inho-
mogenous) 1-cochain β ∈ L∞w∗(G,V ) such that α′ = δ1β and ∥β∥ ≤ C1∥α∥.

● Suppose H3
b(G,V ) is Hausdorff. Then there exists a constant C2 > 0 such

that for every (inhomogenous) 2-cochain α ∈ L∞w∗(G2, V ), there exists an
(inhomogenous) 2-cocycle α′ ∈ L∞w∗(G2, V ) such that ∥α − α′∥ ≤ C2∥δ2α∥.

We can now use Theorem 4.2.8 for V = R to show that:

Proposition 4.2.9. Suppose H2
b(G,R) = 0 and H3

b(G,R) is Hausdorff. Then
H2
a(G, ∗R) = 0

Proof. Let α = {αn}U ∈ L∞b ((∗G)2, ∗R) with δ2α ∈ L∞inf((∗G)2, ∗R). From The-
orem 4.2.8, there exist constants C1,C2 > 0 such that for n ∈ U , there exists
βn ∈ L∞(G,R) such that ∥αn − δ1βn∥ ≤ C2∥δ2αn∥ and ∥βn∥ ≤ C1∥δ1βn∥. Setting
β = {βn}U ∈ L∞b (∗G, ∗R), we see that α − δ1β ∈ L∞inf((∗G)2, ∗R), to conclude that

H2
a(G, ∗R) = 0 �

To extend this lemma to show vanishing of H2
a(G,V) for more general trivial

Banach ∗G-modules V, we would need the constants C1 and C2 in Theorem 4.2.8
to work uniformly across all trivial Banach G-modules.

Lemma 4.2.10. Suppose H2
b(G,V ) = 0 and H3

b(G,V ) is Hausdorff for every
trivial dual Banach G-module V .
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● There exists a constant C1 > 0 such that for every trivial dual Banach G-
module W and a (inhomogenous) 2-cocycle α′ ∈ L∞w∗(G2,W ), there exists
an (inhomogenous) 1-cochain β ∈ L∞w∗(G,W ) such that α′ = δ1β and ∥β∥ ≤
C1∥α∥.

● There exists a constant C2 > 0 such that for any trivial for every trivial
dual Banach G-module W and (inhomogenous) 2-cochain α ∈ L∞w∗(G2,W ),
there exists an (inhomogenous) 2-cocycle α′ ∈ L∞w∗(G2,W ) such that ∥α −
α′∥ ≤ C2∥δ2α∥.

Proof. Suppose, for the sake of contradiction, that there exists a sequence {Wn}n∈N
of dual Banach spaces (all with trivial actions ofG), and 2-cocyles {αn ∈ L∞w∗(G2,Wn)}n∈N
with ∥αn∥ = 1 for every n ≥ 1, such that for every sequence {βn ∈ L∞w∗(G,Wn)}n∈N
with δ1βn = αn for every n ≥ 1, we have ∥βn∥ ≥ n. Consider the `∞ direct sum
W ∶= ⊕nWn (which is a dual Banach space) and the 2-cocycle α ∶= ⊕nαn with
∥α∥ = 1. Then since H2

b(G,W ) = 0, that there exists β ∈ L∞w∗(G,W ) with δ1β = α,
and let ∥β∥ = C1. Note that the projections of β on Wn for n > C1 would give
us βn ∈ L∞w∗(G,Wn) with δ1βn = αn and ∥βn∥ ≤ C1, contradicting our assumption.
The proof of the second item is similar. �

We now use the universality of the constants C1 and C2 in Lemma 4.2.10
to show the vanishing of H2

a(G,V) for a trivial Banach ∗G-module, just like in
Proposition 4.2.9.

Proposition 4.2.11. Suppose H2
b(G,V ) = 0 and H3

b(G,V ) is Hausdorff for every
trivial dual Banach G-module V . Then H2

a(G,V) = 0 for every trivial asymptotic
Banach ∗G-module V.

While the assumption that H2
b(G,V ) = 0 and H3

b(G,V ) is Hausdorff for
every trivial dual Banach G-module V , a priori, seems stronger than the as-
sumption that H2

b(G,R) = 0 and H3
b(G,R) is Hausdorff, we now show that the

former is actually implied by the latter. Recall that a Banach space V is said to
be injective if for any Banach space embedding V ⊂W , V has a complement in
W .

Proposition 4.2.12. Suppose H2
b(G,R) = 0 and H3

b(G,R) is Hausdorff. Then
the image δ2L∞(G2) in L∞(G3) is injective.

Proof. Note that the image δ1L∞(G) in L∞(G2) is closed, since H2
b(G,R) = 0. In

particular, this image is isomorphic to L∞(G)/R, which is injective since L∞(G)
and R are injective. Next, since H3

b(G,R) is Hausdorff, the image δ2L∞(G2) is
closed, and isomorphic to L2(G)/δ1L∞(G), which is injective since L∞(G2) and
δ1L∞(G) are injective. �

56



Lemma 4.2.13. Suppose H2
b(G,R) = 0 and H3

b(G,R) is Hausdorff. Then for
any trivial dual Banach G-module V , H2

b(G,V ) = 0 and H3
b(G,V ) is Hausdorff.

Proof. Note (Eq. (4.3) and Eq. (4.1)) that L∞w∗(Gj, V ) ≅ L (V ♭, L∞(Gj)). In
this identification, the differential is just given by applying the scalar differen-
tial δ to the image L∞(Gj). It follows that the complementing map given by
Proposition 4.2.12 provides a complementing map for the image δ2L∞w∗(G2, V ) of
L∞w∗(G2, V ) in L∞w∗(G3, V ). In particular this image is closed and hence H3

b(G,V )
is Hausdorff. Similarly, we can show that H2

b(G,V ) = 0 as well. �

Combining Lemma 4.2.13 and Proposition 4.2.11, we conclude that

Corollary 4.2.14. Suppose H2
b(G,R) = 0 and H3

b(G,R) is Hausdorff. Then
H2
a(G,V) = 0 for any trivial dual Banach ∗G-module V.

This property of vanishing H2
b(G,R) and Hausdorffness of H3

b(G,R) will
be very useful to us in Section 6.3, and in Section 6.3 we shall study this property
(called the “2½-property”) in more detail.

4.3. Amenable Actions and Cohomology of Subgroups. Recall that we
had presented the asymptotic cohomology of G with coefficients in the dual as-
ymptotic Banach ∗G-module V as asymptotic cohomology of the complex

0 L∞(∗G,V) L∞((∗G)2,V) L∞((∗G)3,V) L∞((∗G)4,V) . . .d0 d1 d2 d3 d4

In this subsection, we shall relate the functorial descriptions in §4.1 with Defini-
tion 4.2.4 to obtain other complexes that can also be used to compute the same
cohomology.
The first step is to interpret H●

a(G,V) in a way that fits with Proposition 4.1.13.
For this, we recall the following classical fact that follows from the Dunford-Pettis
theorem: for a (standard) dual Banach space E,

(4.3) B(L1(Gm) ×E) ≅ L (L1(Gm),E♯) ≅ L∞w∗(Gm,E♯)

In fact, this goes through even when we consider the analogous asymptotic Ba-
nach ∗G-modules. Denoting the ultrapower ∗L1(Gm) by L1(Gm), we note that
L∞((∗G)m) is a dual asymptotic ∗G-module with predual L1((∗G)m). In fact,
it is more than just an asymptotic ∗G-representation: ∗G actually has a (true)
internal action on L1((∗G)m) and its dual L∞((∗G)m).
This allows us to construct H●

a(G,V) starting from the G-cochain complex

0 L∞(G) L∞(G2) L∞(G3) L∞(G4) . . .d0 d1 d2 d3 d4
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extending it internally to the asymptotic ∗G-cochain complex (which, in this case,
turns out to be a (true) internal cochain complex)

0 L∞(∗G) L∞((∗G)2) L∞((∗G)3) L∞((∗G)4) . . .d0 d1 d2 d3 d4

and finally using the covariant functor d ↦ d∗ for the coefficient module V♭ (the
predual of V) to get

0 B(L1(∗G) × V♭) B(L1((∗G)2) × V♭) B(L1((∗G)3) × V♭) . . .d0 d1 d2 d3

which, in turn, is seen to be the same as

0 L∞(∗G,V) L∞((∗G)2,V) L∞((∗G)3,V) L∞((∗G)4,V) . . .d0 d1 d2 d3 d4

The advantage of this reformulation of H●
a(G,V) is that we can use Lemma 4.1.14

to construct other asymptotic ∗G-cochain complexes that compute the same co-
homology H●

a(G,V). In view of this approach, we review some definitions and
facts from [Mon01]:

Definition 4.3.1. Let S be a regular G-space. A conditional expectation
m ∶ L∞(G × S) → L∞(S) is a measurable norm one linear map such that

● m(1G×S) = 1S
● For every f ∈ L∞(G × S) and every measurable set A ⊂ S, m(f ⋅ 1G×A) =
m(f) ⋅ 1A.

TheG-action on S is said to be Zimmer amenable if there exists aG-equivariant
conditional expectation m ∶ L∞(G × S) → L∞(S).

What we shall use is the following consequence of Zimmer amenability:

Proposition 4.3.2. Let S be a regular G-space with a Zimmer-amenable ac-
tion of G. Then there exists a G-homotopy equivalence between the G-cochain
complexes

0 L∞(G) L∞(G2) L∞(G3) L∞(G4) . . .d0 d1 d2 d3 d4

and

0 L∞(S) L∞(S2) L∞(S3) L∞(S4) . . .d0 d1 d2 d3 d4
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Extending this internally, if S a regular G-space with a Zimmer-amenable
action of G, then this gives us an asymptotic ∗G-homotopy equivalences between
the asymptotic ∗G-cochain complexes

0 L∞(∗G) L∞((∗G)2) L∞((∗G)3) L∞((∗G)4) . . .d0 d1 d2 d3 d4

and

0 L∞(∗S) L∞((∗S)2) L∞((∗S)3) L∞((∗S)4) . . .d0 d1 d2 d3 d4

Now, since (L1(Sm))♯ = L∞(Sm) andB(L1(Sm)×E) ≅ L (L1(Sm),E♯) ≅ L∞w∗(Sm,E♯),
applying Lemma 4.1.14 with X ● = L1((∗G)●), Y● = L1((∗S)●) and E = V♭, we get

Theorem 4.3.3. Let S be a regular G-space with a Zimmer-amenable action of
G. Then H●

a(G,V) can be computed as the asymptotic cohomology of the asymp-
totic ∗G-cochain complex

0 L∞(∗S,V) L∞((∗S)2,V) L∞((∗S)3,V) L∞((∗S)4,V) . . .d0 d1 d2 d3 d4

We now state some observations that follow immediately from Theorem 4.3.3,
which we shall use later in Proposition 6.1.12 in §6. Let S and T be two
Zimmer-amenable regular G-spaces, so that by Theorem 4.3.3, we have an asymp-
totic ∗G-homotopy equivalence between the asymptotic ∗G-cochain complexes
L∞((∗S)●,V) and L∞((∗T )●,V) given by k● ∶ L∞((∗S)●,V) → L∞((∗T )●,V) and
j● ∶ L∞((∗T )●,V) → L∞((∗S)●,V).

● Let ω ∈ L∞b ((∗T )m+1,V)∼∗G be an asymptoticm-cocycle such that Im(ω) ⊆
V∼∗Gb . Then Im(jmω) ⊆ V∼∗Gb . This follows from the construction of jm

and Proposition 4.1.2.
● Let ω ∈ L∞b ((∗S)m+1,V)∼∗G be an asymptoticm-cocycle such that Im(kmω) ⊆
V∼∗Gb . Then, setting ω1 = jmkmω ∈ L∞b ((∗S)m+1,V)∼∗G, note that Im(ω1) ⊆
V∼∗Gb . Furthermore, since k● and j● are asymptotic ∗G-homotopy equiv-
alences, ω and ω1 are asymptotically cohomologous, that is, there exists
α ∈ L∞b ((∗S)m,V)∼∗G such that

(4.4) ω̃ − ω̃1 = d̃mα̃

Theorem 4.3.3 has the following two immediate corollaries which we shall use in
§5 and §6. The first of these is an asymptotic analogue of the classical result that
amenable groups have vanishing bounded cohomology, and follows from the fact
that if G is amenable, then the trivial space is Zimmer-amenable for G.
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Corollary 4.3.4. Let G be an amenable group and V be a dual asymptotic Banach
∗G-module. Then for every n ≥ 1, Hn

a(G,V) = 0.

The second corollary uses the fact that for a lattice Γ in a locally compact
group G, G is Zimmer-amenable as a regular Γ-space. This serves as the starting
point for an induction procedure to go from Γ to G which we describe in §5.

Corollary 4.3.5. Let Γ ≤ G be a lattice in a locally compact group G, and let W
be a dual asymptotic Banach ∗Γ-module. Then H●

a(Γ,W) can be computed as the
asymptotic cohomology of the asymptotic ∗Γ-cochain complex

0 L∞(∗G,W) L∞((∗G)2,W) L∞((∗G)3,W) L∞((∗G)4,W) . . .d0 d1 d2 d3 d4

The next corollary uses the fact that for a closed subgroup Q ≤ G (and in
particular, when Q = G), and a closed amenable subgroup P ≤ G, the space G/P
is a regular Q-space that is Zimmer-amenable for the Q-action.

Corollary 4.3.6. Let P ≤ G be a closed amenable subgroup of G, Q be a closed
subgroup of G, and V be a dual asymptotic Banach ∗G-module. Then H●

a(Q,V)
can be computed as the asymptotic cohomology of the asymptotic ∗Q-cochain com-
plex

0 L∞((∗(G/P )),V) L∞((∗(G/P ))2,V) L∞((∗(G/P ))3,V) . . .d0 d1 d2 d3

The second corollary uses the fact that for a closed subgroup Q ≤ G, the
space G/P is a regular Q-space that is Zimmer-amenable for the Q-action.

5. The Induction Module

In the previous section, we noted (in Corollary 4.3.5) that for a lattice Γ in
a Lie group G, the cohomology H●

a(Γ,W) could be computed as the asymptotic
cohomology of the asymptotic ∗Γ-cochain complex

0 L∞(∗G,V) L∞((∗G)2,V) L∞((∗G)3,V) L∞((∗G)4,V) . . .d0 d1 d2 d3 d4

We shall now apply an induction procedure to go from ∗Γ-equivariance to ∗G-
equivariance, and shall construct an asymptotic Banach ∗G-module V such that
H●
a(Γ,W) ≅ H●

a(G,V).
In §5.1, we begin by studying useful properties of an intermediary structure
L∞b (∗G,W)∼∗Γ that shall arise in the induction procedure worked out in §5.2.
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This structure is, upto infinitesimals, equal to the induced module L∞(∗D,W)
that we shall use, but has the additional useful feature of being equipped with a
(true) internal action of ∗G. A 1-cohomology argument is used to pass between
asymptotically equivariant maps in L∞(∗D,W) and (truly) equivariant maps in
L∞b (∗G,W)∼∗Γ, which is a result we shall often use, especially in §6.1. Finally,
the induction procedure is described in §5.2.

5.1. The ∗G-action on L∞b (∗G,W)∼∗Γ. Recall that the internal Banach space
W = ∏U u(kn) came with an internal map πΓ ∶ ∗Γ ×W → W such that this map
induced an action of ∗Γ on W̃ = Wb/Winf . Let S be an Zimmer-amenable regular
G-space. For m ≥ 0, consider the internal Banach space

L∞((∗S)m,W)

equipped with the following internal ∗G-action: for g ∈ ∗G, f ∈ L∞((∗S)m,W),

(g ⋅ f)(x1, . . . , xm) = f(g−1x1, . . . , g
−1xm)

for x1, . . . , xm ∈ ∗S. Clearly L∞b ((∗S)m,W) is invariant with respect to this ∗G-

action, and induces a ∗G-action on L̃∞((∗S)m,W).
Consider the subsets L∞b ((∗S)m,W)∗G of bounded ∗G-fixed points of this action,
and the subset L∞b ((∗S)m,W)∼∗G of bounded asymptotically ∗G-fixed points.
Clearly,

L∞b ((∗S)m,W)
∗G + L∞inf((∗S)m,W) ⊆ L∞b ((∗S)m,W)∼

∗G

We shall now show that the containment goes through in the other direction too.
That is,

Lemma 5.1.1. For every f ∈ L∞b ((∗S)m,W)∼∗G, there exists β ∈ L∞inf((∗S)m,W)
such that f −β ∈ L∞b ((∗S)m,W)∗G. Moreover, the map f ↦ β is induced from an
internal map from L∞((∗S)m,W) to itself.

Proof. Consider the internal map α ∶ ∗G → L∞((∗S)m,W) defined as α(g) ∶=
g ⋅ f − f . Note that since f ∈ L∞b ((∗S)m,W)∼∗G, Im(α) ⊆ L∞inf((∗S)m,W) (hence
∥α∥ ∈ ∗Rinf ). Let α = {αn}U where for every n ∈ N, αn ∶ G → L∞w∗(Sm,u(kn)).
Observe that each such αn is a bounded function that satisfies the (inhomogenous)
1-cocycle condition. That is, αn ∈ H1

b (G,L∞w∗(Sm,u(kn))). From [Mon01], we
know that L∞w∗(Sm,u(kn)) is a relatively injective Banach G-module, and hence
H1
b (G,L∞w∗(Sm,u(kn))) = 0. In fact, there exists a constant C (independent of n)

such that for every n ∈ N, there exists βn ∈ L∞w∗(Sm,u(kn)) with αn(g) = g ⋅βn−βn,
with ∥βn∥ ≤ C∥αn∥. Set β = {βn}U so that for g ∈ ∗G, α(g) = g ⋅ β − β implying
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that g ⋅ (f − β) = f − β. Since ∥β∥ ≤ C∥α∥, β ∈ L∞inf((∗S)m,W). Note that the
correspondence f ↦ β is internal by construction. �

A special case of particular interest to us is the internal Banach space
L∞(∗G,W). This space comes equipped with an internal ∗G-action and an as-
ymptotic ∗Γ-action:

● For g ∈ ∗G and f ∈ L∞(∗G,W), define (g ⋅ f)(x) = f(xg) for x ∈ ∗G. This
makes L∞(∗G,W) an internal ∗G-representation.

● Consider the internal map π′Γ ∶ ∗Γ × L∞(∗G,W) → L∞(∗G,W) defined as
follows: for γ ∈ ∗Γ and f ∈ L∞(∗G,W), define

(π′Γ(γ)f)(x) = πΓ(γ)f(γ−1x)

where x ∈ ∗G. This makes L∞(∗G,W) into an asymptotic Banach ∗Γ-
module.

Remark 5.1.2. Note that ∗G acts internally on L∞(∗G,W), while ∗Γ does not
act, through π′Γ, on L∞(∗G,W), but only induces an action on the quotient
L̃∞(∗G,W).

Let us restrict to the subspace L∞b (∗G,W)∼∗Γ comprising functions that are
asymptotically ∗Γ-equivariant. Note that L∞b (∗G,W)∼∗Γ is not an internal space.

Lemma 5.1.3. The subset L∞b (∗G,W)∼∗Γ is invariant under the internal action
of ∗G.

Consider the subspaces (L∞b (G,W)∼∗Γ)
∗G

and (L∞b (G,W)∼∗Γ)∼
∗G

. Observe
that the proof of Lemma 5.1.1 goes through when restricted to asymptotically
∗Γ-equivariant elements, giving us:

Corollary 5.1.4. For v ∈ (L∞b (∗G,W)∼∗Γ)∼
∗G

, there exists w ∈ (L∞b (∗G,W)∼∗Γ)
∗G

such that v −w ∈ L∞inf(∗G,W). Moreover, the map v ↦ w is induced from an in-
ternal map from L∞(∗G,W) to itself.

An element f ∈ (L∞b (G,W)∼∗Γ)
∗G

satisfies the following two conditions:

● For every g ∈ ∗G and almost every x ∈ ∗G, f(xg) = f(x). In other words, f
is an essentially constant function, where the constant value is an element
of Wb.

● For γ ∈ ∗Γ and almost every x ∈ ∗G, f(γx) − γf(x) ∈ Winf (that is, the

constant value of f is an element of Wb)∼
∗Γ).
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Thus, f ∈ (L∞b (G,W)∼∗Γ)
∗G

can be represented as an element of (Wb)∼
∗Γ.

Lemma 5.1.5. The internal map e ∶ W → L∞(G,W) defined as e(w)(g) ∶= w for

w ∈ Wb and g ∈ ∗G restricts to a bijection between W∼∗Γ
b and (L∞b (G,W)∼∗Γ)

∗G
.

Corollary 5.1.4 and Lemma 5.1.5 together imply that, upto infinitesimals,

(L∞b (∗G,W)∼∗Γ)∼
∗G

can be identified with W∼∗Γ
b , and this bijection is (trivially)

∗G-equivariant and induced from an internal map between L∞(∗G,W) and W.
We combine the results above to obtain a corollary that will be useful later in §6.

Proposition 5.1.6. Let Q be a closed subgroup of G. Let f ∈ L∞b ((∗Q)m,L∞(∗G,W))∼
∗Q

be such that Im(f) ⊆ (L∞b (∗G,W)∼∗Γ)∼∗G. Then there exists β ∈ L∞inf ((∗Q)m,L∞(∗G,W))
such that f −β is ∗Q-fixed, and Im(f −β) ⊆ (L∞b (∗G,W)∼∗Γ)

∗G = W∗Γ
b . The map

f ↦ β is induced from an internal map from L∞ ((∗Q)m,L∞(∗G,W)) to itself.

Proof. Since Im(f) ⊆ (L∞b (∗G,W)∼∗Γ)∼∗G, Corollary 5.1.4 gives us f ′ ∈ L∞b ((∗Q)m,L∞(∗G,W))∼
∗Q

with f − f ′ ∈ L∞inf ((∗Q)m,L∞(∗G,W)) and Im(f ′) ⊆ (L∞b (∗G,W)∼∗Γ)∗G = W∼∗Γ
b .

The conclusion then follows from applying Lemma 5.1.1 to f ′. �

Recall Lemma 5.1.1 where an element in L∞b ((∗S)m,W)∼∗G was shown to
be corrected to get a truly ∗G-fixed element in L∞b ((∗S)m,W)∼∗G. We shall now
see a similar result with coefficients being L∞(∗G,W) instead, which we shall use
in §5.2. For m ≥ 0, consider the internal space

L∞ ((∗G)m,L∞(∗G,W))

The internal action of ∗G on L∞(∗G,W) can be extended to the following internal
action of ∗G on this space in the natural way: for g, h ∈ ∗G, F ∈ L∞ ((∗G)m,L∞(∗G,W)),

(g ⋅ F )(g1, g2, . . . , gm)(x) = F (g−1g1, . . . , g
−1gm)(xg)

For convenience, let us denote by

L∞ ((∗G)m,L∞b (∗G,W)∼
∗Γ)

the space of internal maps in L∞ ((∗G)m,L∞in(∗G,W)) whose image is contained
in L∞b (∗G,W)∼∗Γ. From Lemma 5.1.3, this space is invariant under the internal
action of ∗G, so denote by

L∞ ((∗G)m,L∞b (∗G,W)∼
∗Γ)

∗G
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the subspace of ∗G-equivariant maps, and by

L∞ ((∗G)m,L∞b (∗G,W)∼
∗Γ)

∼∗G

the subspace of asymptotically ∗G-equivariant maps. That is, f ∈ L∞ ((∗G)m,L∞b (∗G,W)∼∗Γ)∼
∗G

if for every g ∈ ∗G, g ⋅ f − f ∈ L∞inf ((∗G)m,L∞(∗G,W)).
Note that

L∞ ((∗G)m,L∞b (∗G,W)∼
∗Γ)

∗G
+L∞inf ((∗G)m,L∞(∗G,W)) ⊆ L∞ ((∗G)m,L∞b (∗G,W)∼

∗Γ)
∼∗G

In other words, a perturbation of a ∗G-equivariant function by an infinitesimal
function is clearly an asymptotically ∗G-equivariant function. We now show that
the converse is true. That is, any asymptotically ∗G-equivariant map is infinites-
imally close to a ∗G-equivariant map.

Proposition 5.1.7. For f ∈ L∞ ((∗G)m,L∞b (∗G,W)∼∗Γ)∼
∗G

, there exists β ∈
L∞inf ((∗G)m,L∞(∗G,W)) such that f − β ∈ L∞ ((∗G)m,L∞b (∗G,W)∼∗Γ)

∗G
(that

is, f − β is (truly) ∗G-equivariant). The map f ↦ β is induced from an internal
map from L∞ ((∗G)m,L∞(∗G,W)) to itself.

Proof. The argument is exactly as in the proof of Lemma 5.1.1, except that
now we use the fact that L∞w∗(Gm, L∞w∗(G,u(kn))) is relatively injective as a G-
module. �

In conclusion,

L∞ ((∗G)m,L∞b (∗G,W)∼
∗Γ)

∗G
+L∞inf ((∗G)m,L∞(∗G,W)) = L∞ ((∗G)m,L∞b (∗G,W)∼

∗Γ)
∼∗G

5.2. L∞(∗D,W) and the Eckmann-Shapiro Induction. Consider the space
L∞b (∗G,W)∼∗Γ. We shall now show that, upto infinitesimals, this space can be
identified with the internal Banach space V ∶= L∞b (∗D,W) where D is a Borelian
left fundamental domain of Γ in G. This will then be used to serve as the
coefficients to define the asymptotic cohomology H●

a(G,V) of G.
Consider the internal map

θ ∶ L∞(∗G,W) → L∞(∗D,W)

given by restriction of a function to ∗D. That is, for f = {fn}U ∈ L∞(∗G,W),

(5.1) θf = {fn∣D}U
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In the other direction, consider the internal map

ζ ∶ L∞(∗D,W) → L∞(∗G,W)

(5.2) ζf(g) ∶= πΓ(γ)f(z)

where g = γz for γ ∈ ∗Γ and z ∈D. Observe that θ ⋅ζ is the identity on L∞(∗D,W).
As for ζ ⋅ θ,

Lemma 5.2.1. For any f ∈ L∞b (∗G,W)∼∗Γ, (ζ ⋅ θ)(f) − f ∈ L∞inf(∗G,W).

Proof. Since f ∈ L∞b (∗G,W)∼∗Γ, we note that for γ ∈ ∗Γ and z ∈ ∗D, f(γz) −
πΓ(γ)f(z) ∈ Winf . �

Furthermore, since θ maps L∞inf(∗G,W) to L∞inf(∗D,W), and ζ maps L∞inf(∗D,W)
to L∞inf(∗G,W),

Lemma 5.2.2. The internal maps θ and ζ induce bijections

θ̃ ∶ L∞b (∗G,W)∼
∗Γ/L∞inf(∗G,W) → L̃∞(∗D,W)

ζ̃ ∶ L̃∞(∗D,W) → L∞b (∗G,W)∼
∗Γ/L∞inf(∗G,W)

with ζ̃ = θ̃−1.

Henceforth we shall restrict θ to L∞b (∗G,W)∼∗Γ. We shall now define an
internal map

πG ∶ ∗G × L∞(∗D,W) → L∞(∗D,W)

(5.3) πG(g)(f)(z) ∶= πΓ(γ)f(x)

where zg = γx for γ ∈ ∗Γ and x ∈ ∗D. Note that ∗G×∗D → ∗D given by (g, z) ↦ x,
where zg = γx, defines an internal right action of ∗G on ∗D. So the above map
πG in Eq. (5.3) can be denoted as

πG(g)(f)(z) ∶= πΓ(γ)f(zg)

This map πG induces an action of ∗G on L̃∞(∗D,W), which we shall denote π̃G.
In particular, note that this gives the internal Banach space L∞(∗D,W) the struc-
ture of an asymptotic Banach ∗G-module, with the asymptotic ∗G-representation
being πG as defined above.
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Lemma 5.2.3. The maps θ̃ and ζ̃ are ∗G-equivariant.

Proof. Note that while we have an internal action of ∗G on L∞(∗G,W) that
is invariant on L∞b (∗G,W)∼∗Γ, the internal map πG is not an action of ∗G on
L∞(∗D,W). Nevertheless, let f ∈ L∞b (∗G,W)∼∗Γ and g ∈ ∗G. Then πG(g)(θf)(z) =
πΓ(γ)(θf)(x) = πΓ(γ)f(x) where zg = γx. Also, (θgf)(z) = f(zg) = f(γx).
Since f ∈ L∞b (∗G,W)∼∗Γ, f(γx) − πΓ(γ)f(x) ∈ Winf . Thus, θgf − πG(g)θf ∈
L∞inf(∗D,W). A similar argument hold for ζ as well. �

Remark 5.2.4. Consider the space L∞(∗D,W)∼∗G of asymptotic ∗G-fixed ele-

ments. The restrictions of the maps ζ and θ to L∞(∗D,W)∼∗G and (L∞(∗G,W)∼∗Γ)∼
∗G

allows us to identify these two spaces upto infinitesimals. Furthermore, from
Corollary 5.1.4 and Lemma 5.1.5, we see that, upto infinitesimals, L∞(∗D,W)∼∗G
can be identified with W∼∗Γ

b .

One of the advantages of defining and working with L∞(∗D,W) (instead
of L∞(∗G,W)∼∗Γ) is that, not only is it an asymptotic Banach ∗G-module, but
is also easily seen to be dual, which we explicitly describe below. Consider the
internal Banach space L1(∗D,W♭) constructed as

L1(∗D,W♭) ∶= ∏
U
L1 (D, (u(kn))♭)

where L1 (D, (u(kn))♭) is the Bochner-Lebesgue space of Bochner-integrable func-
tions fromD to (u(kn))♭. Note that L∞(D,u(kn)) is the dual space of L1(D, (u(kn))♭),
so in particular, an element of L∞(∗D,W) is an internal linear map from L1(∗D,W♭)
to ∗R. We now have an explicit dual pairing can be used to construct the pred-
ual asymptotic ∗G-action given πG. For f = {fn}U ∈ L∞(∗D,W) and η = {ηn}U ∈
L1(∗D,W♭), define ⟨f, η⟩ as

⟨f, η⟩ = {∫
D
⟨fn(x), ηn(x)⟩dx}

U

This defines an internal pairing

⟨, ⟩U ∶ L∞(∗D,W)×L1(∗D,W♭) → ∗R

that induces a pairing between the R-spaces L̃∞(∗D,W) and L̃1(∗D,W♭). The
space L1(∗D,W♭) comes with an internal map

π♭G ∶
∗G × L1(∗D,W♭) → L1(∗D,W♭)

such that:
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● The map π̃G is contragredient to π̃♭G, that is, for f ∈ L∞(∗D,W), η ∈
L1(∗D,W♭) and g ∈ ∗G,

⟨πG(g)f, η⟩ − ⟨f, π♭G(g)η⟩ ∈
∗Rinf

● The internal map π♭G induces an action of ∗G, denoted π̃♭G, on the quotient

L̃1(∗D,W♭).

Thus,

Proposition 5.2.5. The internal Banach space (πG,L∞(∗D,W)) is a dual as-
ymptotic Banach ∗G-module with predual L1(∗D,W♭).

We now have the dual asymptotic Banach ∗G-module V = L∞(∗D,W) and
an internal map

πG ∶ ∗G × V → V

that induces an action of ∗G on Ṽ. This allows us to define the asymptotic
cohomology of G with coefficients in V as in §4.1, as the cohomology of the
complex

0 Ṽ∗G L̃∞(∗G,V)∗G L̃∞((∗G)2,V)∗G . . .d̃−1 d̃0 d̃1

Theorem 5.2.6. For every m ≥ 0, Hm
a (G,V) ≅ Hm

a (Γ,W).

The first step towards proving Theorem 5.2.6 involves a bijection between
∗Γ-invariants in L̃∞((∗G)m,W), and ∗G-invariants in L̃∞ ((∗G)m,V). After that,
we shall use the internal maps θ ∶ L∞(∗G,W) → L∞(∗D,W) and ζ ∶ L∞(∗D,W) →
L∞(∗G,W) (defined in (Eq. (5.1)) and (Eq. (5.2))) to pass between L∞b (∗G,W)∼∗Γ

and V.
Let α̃ ∈ L̃∞((∗G)m,W)∗Γ, and let α ∈ L∞((∗G)m,W) be an internal map that
induces α̃ (note that α ∈ L∞b ((∗G)m,W)∼∗Γ). Define the internal map

Aα ∶ (∗G)m → L∞(∗G,W)

Aα(g1, . . . , gm)(x) ∶= α(xg1, . . . , xgm)

Firstly it is clear that Aα ∈ L∞ ((∗G)m,L∞(∗G,W)). Furthermore,

Proposition 5.2.7. For every α̃ ∈ L̃∞((∗G)m,W)∗Γ, the map Aα ∈ L∞ ((∗G)m,L∞(∗G,W))
takes values in L∞b (∗G,W)∼∗Γ and is ∗G-equivariant.
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Proof. For g, x ∈ ∗G,

Aα(gg1, . . . , ggm)(x) = α(xgg1, . . . , xggm) = Aα(g1, . . . , gm)(xg)

This proves that Aα is ∗G-equivariant. Next, for γ ∈ ∗Γ,

Aα(g1, . . . , gm)(γx) = α(γxg1, . . . , γxgm)

Since α̃ ∈ L̃∞((∗G)m,W)∗Γ, this means that

α(γxg1, . . . , γxgm) − πΓ(γ)α(xg1, . . . , xgm) ∈ Winf

Hence Aα(g1, . . . , gm)(γx) − πΓ(γ) (Aα(g1, . . . , gm)(γx)) ∈ Winf . This shows that

Aα(g1, . . . , gm) ∈ L∞b (∗G,W)∼∗Γ. �

Thus, given a ∗Γ-equivariant map α̃ ∈ L̃∞((∗G)m,W), we obtain an in-
ternal ∗G-equivariant map Aα ∈ L∞ ((∗G)m,L∞(∗G,W)) that takes values in
L∞b (∗G,W)∼∗Γ.
Conversely, suppose we have an internal ∗G-equivariant mapA ∈ L∞ ((∗G)m,L∞(∗G,W))
that takes values in L∞b (∗G,W)∼∗Γ. Define the internal map

αA ∈ L∞((∗G)m,W)

αA(g1, . . . , gm) ∶= A(x−1g1, . . . , x
−1gm)(x)

for x ∈ ∗G. Note that sinceA is ∗G-equivariant, the map x↦ A(x−1g1, . . . , x
−1gm)(x)

is essentially constant in W, making the above well-defined.

Lemma 5.2.8. Given an internal ∗G-equivariant map A ∈ L∞ ((∗G)m,L∞(∗G,W))
that takes values in L∞b (∗G,W)∼∗Γ, the internal map αA as defined above induces
the map α̃A that is ∗Γ-equivariant. That is, α̃A ∈ L̃∞((∗G)m,W)∗Γ.

Proof. Let γ ∈ ∗Γ, then since A is ∗G-equivariant,

αA(γg1, . . . , γgm) = A(x−1γg1, . . . , x
−1γgm)(x) = A(x−1g1, . . . , x

−1gm)(γx)

Since A takes values in L∞b (∗G,W)∼∗Γ, we know that

A(x−1g1, . . . , x
−1gm)(γx) − πΓ(γ) (A(x−1g1, . . . , x

−1gm)(x)) ∈ Winf

Thus, αA(γg1, . . . , γgm)−πΓ(γ)αA(g1, . . . , gm) ∈ Winf , proving that α̃A ∈ L̃∞((∗G)m,W)∗Γ.
�
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Furthermore, the correspondences

α ↦ Aα(5.4)

A↦ αA(5.5)

are clearly inverses of each other, thus giving a bijection between internal maps
α ∈ L∞b ((∗G)m,W) that are asymptotically ∗Γ-equivariant, and internal ∗G-
equivariant maps A ∈ L∞ ((∗G)m,L∞(∗G,W)) that take values in L∞b (∗G,W)∼∗Γ.

Proof of Theorem 5.2.6. For m ∈ Z≥0, it is sufficient to show a bijection between
the quotients L̃∞((∗G)m+1,W)∗Γ and L̃∞((∗G)m+1,V)∗G that commutes with the
differentials d̃.
Let α ∈ L∞b ((∗G)m+1,W)∼∗Γ and let

Aα ∈ L∞ ((∗G)m+1,L∞(∗G,W))

be its lift (as in (Eq. (5.4))) that is asymptotically ∗G-equivariant and takes
values in L∞b (∗G,W)∼∗Γ. Composing Aα with θ, we get

θ ⋅Aα ∈ L∞b ((∗G)m+1,V)∼
∗G

In the other direction, for an internal map A′ ∈ L∞b ((∗G)m+1,V)∼
∗G

, we first com-

pose ζ (defined in (Eq. (5.2))) with A′ to get ζ ⋅A′ ∈ L∞ ((∗G)m+1,L∞b (∗G,W)∼∗Γ),

where ζ ⋅A′ is asymptotically ∗G-equivariant. LetA ∈ L∞ ((∗G)m+1,L∞b (∗G,W)∼∗Γ)
∗G

be the ∗G-equivariant map infinitesimally close to ζ ⋅A′ (as guaranteed by Propo-
sition 5.1.7).
Now we can descend to Γ by defining the internal map

αA ∈ L∞((∗G)m+1,W)

αA(g0, . . . , gm) ∶= A(x−1g0, . . . , x
−1gm)(x)

Since A is ∗G-equivariant, from Lemma 5.2.8 we conclude that αA is asymptoti-
cally ∗Γ-equivariant. Thus, we have a bijection between the quotients L̃∞((∗G)m+1,W)∗Γ

and L̃∞((∗G)m+1,V)∗G that commutes with the differentials d̃. �

5.3. Internal Contraction and Fixed Points. Recall that we have the dual
asymptotic Banach ∗G-module L∞(∗D,W) with the asymptotic ∗G-action of ∗G
given by πG as in (Eq. (5.3)). The map πG can be studied in terms of two in-
ternal maps: an internal right ∗G-action ∗G × ∗D → ∗D of ∗G on ∗D given by
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(g, z) ↦ zg, and another internal twisting map ∗G × ∗D → ∗Γ given by (g, z) ↦ γ
(here γ ∈ ∗Γ and x ∈ ∗D are such that zg = γx). The latter map is then composed
with πΓ to give πG(g)(f)(z) ∶= πΓ(γ)f(x) as in (Eq. (5.3)).
We now see a continuity property of the asymptotic ∗G-action πG on L∞(∗D,W).
Observe that the internal map (g, z) ↦ πΓ(γ) is internally measurable (and inter-
nally locally constant), and as for the internal (true) action of ∗G on L∞(∗D,W)
given by (g ⋅ f)(z) ∶= f(x), this is internally continuous, but with respect to the
internal L2-norm defined on f = {fn}U as follows:

∥f∥2
2 ∶= {∫

D
∥fn(x)∥2dx}

U

Lemma 5.3.1. The dual asymptotic Banach ∗G-module L∞(∗D,W) is internally
continuous with respect to the internal L2-norm on L∞(∗D,W).

We shall refer to internal continuity with respect to the L2-norm on L∞(∗D,W)
as internal L2-continuity. The main consequence of this property that we
shall use is the following: let g(1), g(2), . . . be a sequence of elements of ∗G (with

g(m) = {gn(m)}U) such that the internal limit lim
m→∞ g

(m) = { lim
m→∞ g

(m)
n }U = g ∈ ∗G.

Then for f ∈ L∞(∗D,W), lim
m→∞f(g

(m)) = f(g) (where the limit is now with re-

spect to the internal L2-norm). A particular instance of an internal limit we shall
use is given by contraction of elements.

Definition 5.3.2. Let g, h ∈ G. We say that h is contracted by g (or g contracts
h) if lim

m→∞ g
−mhgm = 1. Let g = {gn}U and h = {hn}U be elements of ∗G. We say h

is internally contracted by g (or g internally contracts h) if for every n ∈ U ,

lim
m→∞ g

−m
n hng

m
n = 1

In other words, g internally contracts h if the sequence g−mhgm has internal limit
being the identity in ∗G.

Definition 5.3.3. An internal subgroup of the ultrapower ∗G is called an inter-
nally amenable subgroup if it is of the form ∏U Hn where Hn ≤ G is a closed
amenable subgroup for every n ∈ N.

Remark 5.3.4. Suppose g, h ∈ G such that g contracts h. Then the closed sub-
group < g, h > generated by g and h is an amenable subgroup of G (refer Proposi-
tions 6.5 and 6.17 in [CDCMT15]). In particular, this implies that if g, h ∈ ∗G is
such that g internally contracts h, then the internal subgroup < g, h > generated
by g and h in ∗G is an internally amenable subgroup of ∗G.
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To use the full power of internal contraction and the internal L2-continuity
of the asymptotic ∗G-action πG, our first step is to “correct” the asymptotic
∗G-action πG to get a true action when restricted to an internally amenable
subgroup. Note that the imperfection is in the map π′G, so consider the map
α ∶ ∗G× ∗D →∏U U(kn) with α(g, z) ∶= πΓ(γ). Note that α is a measurable map,
and for every g1, g2 ∈ ∗Γ and z ∈ ∗D,

(5.6) ∥α(g1, z)α(g2, zg1) − α(g1g2, z)∥ ∈ ∗Rinf

Observe that this looks similar to the very classical question of Ulam stability,
but with a twist provided by the action of G on D. We consider the following
definitions which are analogues of uniform stability in the context of such twists:

Definition 5.3.5. Let G be a locally compact, second countable group, and X
be a non-singular G-space. A measurable map ψ ∶ G × X → U(n) is called a
twisted homomorphism of G (with respect to D) if for every g1, g2 ∈ G and almost
every z ∈X,

ψ(g1g2, z) = ψ(g1, z)ψ(g2, zg1)

For ε > 0 (the defect), a measurable map φ ∶ G ×X → U(n) is called a twisted ε-
homomorphism of G (with respect to D) if for almost every g1, g2 ∈ G and almost
every z ∈X

∥φ(g1, z)φ(g2, zg1) − φ(g1g2, z)∥ ≤ ε

The following claim essentially retraces the arguments used in §3 (where we
use the logarithm map to obtain an asymptotic cocycle, and use the vanishing of
cohomology to diminish defect).

Claim 5.3.6. There exists ε > 0 small enough, and a constant C such that for an
amenable subgroup H of G and any twisted ε-homomorphism α ∶ G ×D → U(n),
there exists a measurable map αH ∶H ×D → U(n) of H such that for every h ∈H
and almost every z ∈ D, ∥α(h, z) − αH(h, z)∥ ≤ Cε, and for every h1, h2 ∈ H and
z ∈D,

αH(h1, z)αH(h2, zh1) = αH(h1h2, z)

Proof. As in §3, consider a sequence {αn ∶H×D → U(kn)}n∈N and its ultraproduct
α, which is an asymptotic twisted homomorphism with defect ε ∈ ∗Rinf . Define
the internal map

ω ∶ ∗H × ∗H × ∗D →∏
U
u(kn)
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ω(h1, h2, z) = ε log (α(h1, z)α(h2, zh1)α(h1h2, z)−1)

As u(kn) = W, note that we can regard ω as an element of L∞b (∗H ×∗H ×∗D,W),
or equivalently, L∞b ((∗H)2,L∞(∗D,W)). Equipping L∞(∗D,W) with an asymp-
totic action ρα ∶ ∗H × L∞(∗D,W) → L∞(∗D,W) of ∗H given by ρα(h)(f)(z) ∶=
α(h, z)f(zh)α(h, z)−1, making it a dual asymptotic ∗H-module. One can check
that the map ω satisfies the condition to be an (inhomogenous) asymptotic 2-
cocycle in H2

a(H,L∞(∗D,W)). Now since H is amenable and L∞(∗D,W) is
a dual asymptotic Banach ∗H-module, we know (from Corollary 4.3.4) that
H2
a(H,L∞(∗D,W)) = 0, implying that there exists β ∈ L∞b (∗H,L∞(∗D,W)) such

that α ⋅ε expβ is an oU(ε)-twisted homomorphism (note that α ⋅ε expβ is measur-
able). Repeating this process (as in defect diminishing), we obtain a measurable
map α′H ∶ H ×D → U(n) such that for almost every h1, h2 ∈ H and almost every
z ∈D, we haveα′H(h1, z)α′H(h2, zh1) = α′H(h1h2, z). From Theorem B9 (p.200) in
[Zim13], we conclude that there exists αH as desired. �

Remark 5.3.7. The same argument also goes through for internally amenable
subgroups H by applying Claim 5.3.6 internally.

Lemma 5.3.8. Let H ≤ ∗G be an internally amenable subgroup of ∗G. Then
there exists an internal map πH ∶ H × L∞(∗D,W) → L∞(∗D,W) such that

● For every h1, h2 ∈ H, πH(h1h2) = πH(h1)πH(h2). In other words, πH is a
(true) internal action of H on L∞(∗D,W).

● For every f ∈ L∞b (∗D,W) and h ∈ H, πH(h)f − πG(h)f ∈ L∞inf(∗D,W).
● The internal action πH of H is internally 2-continuous.

Proof. Consider the internal map α ∶ ∗G × ∗D →∏U U(kn)

α(g, z) ∶= πΓ(γ)

where γx = zg for γ ∈ ∗Γ and x ∈ ∗D. Since α is an asymptotic twisted homo-
morphism of G, from Remark 5.3.7, there exists an internally measurable map
αH ∶ H × ∗D →∏U U(kn) as in Claim 5.3.6.
Define πH ∶ H × L∞(∗D,W) → L∞(∗D,W) by

πH(g)(f)(z) ∶= αH(g, z)f(x)

whereas always, x ∈ ∗D such that zg = γx for γ ∈ ∗Γ. Then πH is a (true)
internal action of H on L∞(∗D,W), and for every f ∈ L∞b (∗D,W) and h ∈ H,
πH(h)f − πG(h)f ∈ L∞inf(∗D,W). Since πH is an internal action of H that is
internally measurable, it is also internally 2-continuous. �
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Lemma 5.3.9. Let x, y ∈ ∗G such that x internally contracts y. Suppose f ∈
L∞b (∗D,W) is such that πG(x)f − f ∈ L∞inf(∗D,W) (in other words, x fixes f̃).

Then πG(y)f − f ∈ L∞inf(∗D,W), that is, y too fixes f̃ .

Proof. Let H be the closure of the subgroup generated by x and y. By Re-
mark 5.3.4, H is an internally amenable subgroup of ∗G. By Lemma 5.3.8, con-
sider the correction πH whose restriction to H is a (true) internally 2-continuous
action of H on L∞(∗D,W). Now πH(x)f − f ∈ L∞inf(∗D,W), and let fH ∈
L∞b (∗D,W) such that f − fH ∈ L∞inf(∗D,W) and πH(x)fH = fH.
Now we have

∥πH(y)fH − fH∥2 = ∥πH(y)πH(x−m)fH − πH(x−m)fH∥2

Since πH too acts unitarily,

∥πH(y)πH(x−m)fH − πH(x−m)fH∥2 = ∥πH(xm)πH(y)πH(x−m)fH − fH∥2

Since πH is a (true) internal action of H, πH(xm)πH(y)πH(x−m) = πH(xmyx−m),
and so

∥πH(xm)πH(y)πH(x−m)fH − fH∥2 = ∥πH(xmyx−m)fH − fH∥2

Since πH is internally 2-continuous and y is internally contracted by x, we con-
clude that πH(y)fH = fH, implying that πG(y)f − f ∈ L∞inf(∗D,W). �

We can apply the above results in a slightly more general setting, which we
shall develop into an internal Mautner’s Lemma in Subection §6.1.

Definition 5.3.10. Let T ≤ G be a closed subgroup and M > 0. The group
G is said to be M-boundedly generated by T -contracted elements if any element
g ∈ G, there exist s1, . . . , sm ∈ G with m ≤ M , such that g = s1s2 . . . sm, and
each si ∈ G is contracted by some element of T . More generally, for a family
T of closed subgroups of G, the group G is said to be boundedly generated
by T-contracted elements if there exists M > 0 such that G is M -boundedly
generated by T -contracted elements for every T ∈ T.

Remark 5.3.11. Suppose G is boundedly generated by T-contracted elements for
a family T of subgroups. Let T = ∏U Tn be an internal subgroup of ∗G, with
Tn ∈ T for every n ∈ N. Observe that there exists M > 0 such that any g ∈ ∗G can
be expressed as g = s1s2 . . . sm such that each si ∈ ∗G is internally contracted by
some element of T .

With this definition, Lemma 5.3.9 implies the following corollary:
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Corollary 5.3.12. Suppose G is boundedly generated by T-contracted elements,
and let T = ∏U Tn be an internal subgroup of ∗G, with Tn ∈ T for every n ∈ N.
Then if f ∈ L∞b (∗D,W)∼T , then f ∈ L∞b (∗D,W)∼∗G (that is, if f is asymptotically
fixed by all elements of T , then it is asymptotically ∗G-fixed).

Proof. Let f ∈ L∞b (∗D,W)∼T and g ∈ ∗G. Let g = s1s2 . . . sm as in Remark 5.3.11.
Since f is asymptotically fixed by every element of T , Lemma 5.3.9 implies that
it is asymptotically fixed by each si. In particular, f is asymptotically fixed by
g. Thus, f ∈ L∞b (∗D,W)∼∗G. �

6. Vanishing of H2
a(Γ,W)

In this section, we combine the results of the previous sections to prove our
main result about uniform stability of lattices in semisimple groups. In §6.1, we
build further tools specialized to G being semisimple groups, which in turn shall
be used in §6.2. We begin with some structure properties of semisimple groups
with regard to the notions of bounded generation by contracting elements, as
discussed in §5.3, and use it prove an asymptotic version of the Mautner property
and an asymptotic double ergodicity theorem with coefficients. In §6.2, we study
the Property-G(Q1,Q2), which is an assumption on G that would allow us to
build on the results of §6.1 to prove our main theorem, namely that H2

a(G,V) = 0.
We then conclude the section by studying Property-G(Q1,Q2) in more detail in
§6.3, and list out a large class of semisimple groups that satisfy it, thus making
our main result applicable to them.

6.1. Asymptotic Mautner Property and Ergodicity. In this subsection
and henceforth, we shall work with G being a semisimple group of the form
G = ∏k

i=1 Gi(Ki) where for 1 ≤ i ≤ k, Ki is a local field, and Gi is a connected,
simply connected, almost Ki-simple group. Our goal is to use the results devel-
oped in the previous sections to prove that H2

a(Γ,W) = H2
a(G,V) = 0 (recall that

W is the ultraproduct ∏U u(kn) which is an asymptotic Banach ∗Γ-module ob-
tained from the asymptotic homomorphism we start with, while V = L∞(∗D,W)
is the asymptotic Banach ∗G-module obtained by the induction procedure in Sec-
tion 5.2).
Recall Definition 5.3.10 of bounded generation by contracted elements. We shall
now see thatG is boundedly generated by T-contracted elements, for the subgroup
family T being the maximal tori of the radicals of proper parabolic subgroups of
G.
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Proposition 6.1.1. Let G = G(K) be a connected, simply connected, almost K-
simple K-isotropic group over local field K, and let T be the family of maximal tori
of the solvable radicals of proper parabolic subgroups of G. Then G is boundedly
generated by T-contracted elements.

Proof. Let T be a maximal torus contained in the solvable radical of a proper
parabolic subgroup Q of G. It is sufficient to show that for some M > 0, G
is M -boundedly generated by T -contracted elements. This is because the same
bound M works for conjugates of T , and upto conjugation, the group G has only
finitely many parabolic subgroups.
Let Q = L ⋅ Ru(Q) be the Levi decomposition of Q, where L is the Levi sub-
group and Ru(Q) is the unipotent radical of Q. Then every element of Ru(Q)
is contracted by some element of T . In fact, the same holds in the case of the
opposite parabolic Q−, that is, every element of Ru(Q−) too is contracted by
some element of T . Hence it is sufficient to show that G is boundedly generated
by ∆ ∶= Ru(Q)(K) ∪ Ru(Q−)(K), that is, to show that there exists ` > 0 such
that G = ∆`.
Firstly, note that G is indeed generated by ∆ ([Mar91, 1.5.4]), and so, there exists
k > 0 so that the product map ∆k → G is a dominant K-morphism. From [PR93,
Proposition 3.3], we conclude that Ω ∶= ∆` contains an open neighborhood of the
identity. Let T be a maximal K-split torus of G contained in Q ∩Q−. For any
K-defined unipotent subgroup U ⊂ G which is normalized by T , we have

U(K) = ⋃
t∈T (K)

t(U(K) ∩Ω)t−1

Since T (K) normalizes ∆ (and hence also Ω), we see that U(K) ⊆ Ω. In particu-
lar, for a K-defined minimal parabolic subgroup P ⊂ Q containing T , we conclude
that Ru(P )(K) ⊂ Ω.
Let D = T ⋅Ru(P ). Then there exists a compact subset E ⊂ G so that

G = E ⋅D(K) = E ⋅ T (K) ⋅Ru(P )(K)

Since Ω is open and generates G, there exists s > 0 such that E ⊂ Ωs. Hence it is
sufficient to show that there exists t > 0 such that T (K) ⊂ Ωt.
There exists N > 0 such that for any root α of T with coroot α∨ (recall that for
a root α ∶ T (K) → K, its dual α∨ ∶ K → T (K) is such that α∨(α) = 2), α∨(t) for
t ∈K× can be written as a product of N elements of ∆ (for instance, N = 6 when
G = SLn). In particular, this means that every element of T (K) can be written
as a product of Nn elements of ∆ (where n is the rank of G). This concludes the
proof. �
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In fact, Proposition 6.1.1 can be immediately extended to semisimple groups
as well, as long as we ensure that the projection of the tori to each factor is non-
trivial.

Corollary 6.1.2. Let G be a semisimple group of the form G = ∏k
i=1 Gi(Ki)

where for 1 ≤ i ≤ k, Ki is a local field, and Gi is a connected, simply connected,
almost Ki-simple Ki-isotropic group, and let T be the family of maximal tori
of the radicals of parabolic subgroups of G of the form Q = ∏k

i=1Qi, where each
Qi is a proper parabolic subgroup of Gi(Ki). Then G is boundedly generated by
T-contracted elements.

Combining Corollary 5.3.12 with Corollary 6.1.2, we immediately get the
following:

Corollary 6.1.3 (Asymptotic Mautner Property). Let G and a parabolic sub-
group Q ≤ G be as in Corollary 6.1.2, and let N ≤ G be the radical of Q. Then
V∼∗Nb = V∼∗Gb .

Corollary 5.3.12 and Corollary 6.1.2 can also be used to get an internal
analogue of ergodicity (and double ergodicity) with coefficients as in [Mon01].
We recall the following classical definitions for comparison:

Definition 6.1.4. For a locally compact second countable group G and a regular
G-space S, the G-action on S is said to be ergodic if any measurable G-invariant
function f ∶ S →R is essentially constant. The G-action on S is said to be doubly
ergodic if the diagonal G-action on S × S is ergodic.

There is no difference if R above is replaced by any dual separable Banach
space: the G-action on S is ergodic (resp., double ergodic) iff for any dual sepa-
rable Banach space E, any weak-* measurable G-invariant map f ∶ S → E (resp,
f ∶ S ×S → E) is essentially constant. Indeed the underlying Borel structures are
isomorphic. Even if E is not separable, it suffices that it admits a weak-* measur-
able (for instance dual linear) injection into a separable dual, since we can then
apply ergodicity in the latter space. Here is an illustration of this phenomenon:

Claim 6.1.5. Let f ∶G→ L∞w∗(D,u(kn)) be a G-invariant weak-* measurable map.
Then f is essentially constant.

Proof. The G-action on itself is ergodic, so that this follows from the previous
discussion after noticing that L∞w∗(D,u(kn)) admits a dual linear injection into
L2(D,u(kn)), which is dual and separable. This injection is the dual of the
natural map from L2(D,u(kn)) to L1(D,u(kn)), which is defined because D has
finite measure. �
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Note that Claim 6.1.5 immediately implies the following (wherein no G-
structure is considered on V):

Claim 6.1.6. Let F ∈ L∞b (∗G,V) be ∗G-invariant (that is, for every x ∈ ∗G and
almost every g ∈ ∗G, F (xg) = F (g)). Then F is essentially constant. �

A classical example of a doubly ergodic action for a semisimple group G
(as in Corollary 6.1.2) is its action on G/P for P being a minimal parabolic
subgroup of G (which implies that the action of G on G/Q is doubly ergodic for
any parabolic subgroup Q of G).

We shall now use Corollary 5.3.12 with Corollary 6.1.2 to get a much
stronger double ergodicity result for asymptotically ∗G-equivariant maps. Clas-
sically, this is referred to as double ergodicity with coefficients ([Mon01, Chapter
4.11]):

A G-action on a regular G-space S is said to be ergodic with coefficients in
a Banach G-module E if any weak-∗ measurable G-equivariant map f ∶ S → E is
essentially constant. Note that this is a much stronger condition than ergodicity;
it does not even hold for the transitive action of G on itself. The action is called
doubly ergodic with coefficients if the corresponding condition holds for the diag-
onal G-action on S × S.

In our setting, the goal is to show that for f ∈ L∞b (∗(G/P )2,V)∼
∗G

, there

exists F ∈ Vb so that f − F ∈ L∞inf (∗(G/P )2,V). In other words, we would like to
prove an asymptotic version of double ergodicity of the action of G on G/P with
coefficients being the asymptotic Banach ∗G-module V. The crucial difference
with Claim 6.1.5 is that we involve the G-structure on V this time.

Remark 6.1.7. We caution the reader that no (non-trivial) action whatsoever
can be ergodic with arbitrary coefficients. Therefore, the nature of the asymptotic
G-module V intervenes in the result. Specifically, the fact that it involves a fi-
nite G-invariant measure on D is used and it enters the proof through our appeal
to the asymptotic Mautner’s lemma (Corollary 6.1.3), which ultimately relies on
the L2-topology used in Lemma 5.3.9. That L2-continuity argument, introduced
in §5.3, is not available in the absence of a finite invariant measure (and indeed
the statements can fail in that absence).

We begin with a series of short claims that shall be used in the proof
of Theorem 6.1.11. The first of these states that it is sufficient to work with
f ∈ L∞b (∗(G/A),V)∼

∗G for A = P ∩wPw−1 for some w ∈ G.
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Claim 6.1.8. There exists w ∈ G such that for A = P ∩wPw−1, the map

G/A→ G/P ×G/P

gA↦ (gP, gwP )

is a measure space isomorphism respecting the action of G.

Proof. The result is a consequence of [BT65, Theorem 3.13 and Corollary 3.15].
�

The next claim is a special case of the asymptotic Mautner’s lemma Corol-
lary 6.1.3 for A.

Claim 6.1.9. Let A be as in Claim 6.1.8. Then V∼∗Ab = V∼∗Gb .

Proof. This is again a consequence of Corollary 6.1.2 and Corollary 5.3.12, since
A contains a maximal torus of G. �

Now we obtain a correction of asymptotically ∗G-invariant maps to truly
∗G-invariant maps:

Claim 6.1.10. Suppose f ∈ L∞b (∗G,V) is such that for every x ∈ ∗G and almost
every g ∈ ∗G, f(xg) − f(g) ∈ Vinf . Then there exists F ∈ L∞b (∗G,V) such that
F −f ∈ L∞inf (∗G,V) and for every x ∈ ∗G and almost every g ∈ ∗G, F (xg) = F (g).

Proof. The proof is the same as in Lemma 5.1.1, but now using the fact that
L∞ (∗G,V) is the ultraproduct of relatively injective BanachG-modules L∞w∗(G,L∞w∗(D,u(kn))).

�

With the above statement at hand, we now prove that:

Theorem 6.1.11 (Double Ergodicity with coefficients). Let G be as in Corol-

lary 6.1.2. For f ∈ L∞b (∗(G/P )2,V)∼
∗G

, there exists v ∈ V∼∗Gb so that f − v ∈
L∞inf (∗(G/P )2,V).

Proof. From Claim 6.1.8, we know that this is equivalent to proving that for

f ∈ L∞b (∗(G/A),V)∼
∗G, there exists v ∈ Vb so that f − v ∈ L∞inf (∗(G/A),V).

Define f ′ ∈ L∞b (∗G,V) as f ′(g) ∶= πG(g)−1f(g ∗A). Since πG is an asymptotic
∗G-action and f is asymptotically ∗G-equivariant, for every x ∈ ∗G and almost
every g ∈ ∗G,

f ′(xg) − f ′(g) ∈ Vinf
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In other words, f ′, by construction, is asymptotically ∗G-invariant. From Claim 6.1.10,
there exists F ∈ L∞b (∗G,V) such that F − f ∈ L∞inf (∗G,V) and for every x ∈ ∗G
and almost every g ∈ ∗G, F (xg) = F (g). Now from Claim 6.1.6, F is essen-
tially constant, and hence there exists v ∈ Vb such that for almost every g ∈ ∗G,
f ′(g) − v ∈ Vinf . Thus, for almost every g ∈ ∗G,

f(g∗A) − πG(g)v ∈ Vinf

We now claim that v ∈ V∼∗Ab . Then, by Claim 6.1.9, we have v ∈ V∼∗Gb , allowing
us to conclude that for almost every g ∈ ∗G, f(g∗A) − v ∈ Vinf . Hence it is left to

prove that v ∈ V∼∗Ab .

Define the pullback f̂ ∈ L∞b (∗G,V) by f̂(g) ∶= f(g∗A), and fix a measurable
section s ∶ G/A→ G to define a measure isomorphism

G/A ×A→ G

(gA, a) ↦ s(gA)a
The above isomorphism can be defined internally to get an internal measure
isomorphism ∗(G/A)×∗A→ ∗G (with the internal section map which we continue
denoting s for simplicity), and we have that for almost every g∗A ∈ ∗(G/A) and
almost every a ∈ ∗A,

f̂(s(g∗A)a) − πG(s(g∗A)a)v ∈ Vinf

Since f̂(s(g∗A)a) = f̂(s(g∗A)), the above simplifies to the following: for almost
every g∗A ∈ ∗(G/A) and almost every a ∈ ∗A

π(s(g∗A))v − πG(s(g∗A)a)v ∈ Vinf

Now we fix some g∗A ∈ ∗(G/A) so that for this g∗A, we have that for almost
every a ∈ ∗A,

πG(s(g∗A))v − πG(s(g∗A)a)v ∈ Vinf
Since πG is an asymptotic action of ∗G, πG(s(g∗A)a)v−πG(s(g∗A))πG(a)v ∈ Vinf .
And so, we conclude that, for almost every a ∈ ∗A,

v − πG(a)v ∈ Vinf

This means that there exists an internal subset A = {A′
n}U of ∗A with A′

n being
a conull subset of A for n ∈ U , such that v ∈ V∼Ab . But note that A ⋅A = ∗A (since
if A′

n is a co-null subset of the locally compact group A, then A′
nA

′
n = A). Hence

v ∈ V∼∗Ab as claimed. �
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Theorem 6.1.11 tells us that for any f ∈ L∞b (∗(G/P )2,V)∼
∗G

the induced

map f̃ ∈ L̃∞ (∗(G/P )2,V)
∗G

is essentially constant. This is the asymptotic ana-
logue of the classical result that the G-action on G/P is doubly ergodic with
coefficients in a suitable G-module.
We conclude this subsection by showing that H2

a(Q,V) = 0 for a proper parabolic
subgroup Q of G as in Corollary 6.1.2 such that H2

b(Q,R) = 0 and H3
b(Q,R)

is Hausdorff. We begin with the following proposition that is an application of
Corollary 6.1.3:

Proposition 6.1.12. Let G and a parabolic subgroup Q ≤ G be as in Corol-
lary 6.1.2. Let ω ∈ L∞b ((∗Q)3,V)∼∗Q be an asymptotic 2-cocycle for Q with coeffi-
cients in V. Then there exists an asymptotic 2-cocycle ω′ ∈ L∞b ((∗Q)3,V)∼∗Q for
Q that takes values in V∼∗Gb such that

ω̃ − ω̃′ = d̃1α̃1

where α1 ∈ L∞b ((∗Q)2,V)∼∗Q.

Proof. Let N be the unipotent radical of Q, which is a normal amenable closed
subgroup of Q. Since N is amenable, Theorem 4.3.3 tells us that H●

a(Q,V) can be
computed as the asymptotic cohomology of the asymptotic ∗Q-cochain complex

0 L∞(∗(Q/N),V) L∞((∗(Q/N))2,V) L∞((∗(Q/N))3,V) . . .d0 d1 d2 d3

Let k● ∶ L∞((∗Q)●,V) → L∞((∗(Q/N))●,V) and j● ∶ L∞((∗(Q/N))●,V) → L∞((∗Q)●,V)
be the asymptotic ∗Q-homotopy equivalences. Consider k2ω ∈ L∞b ((∗(Q/N))3,V)∼∗Q.
Since N is normal in Q, Im(k2ω) ⊆ V∼∗Nb . By Corollary 6.1.3, since V∼∗Nb =
V∼∗Gb , this implies that Im(k2ω) ⊆ V∼∗Gb . The conclusion then follows from
(Eq. (4.4)). �

Thus, the obstacle to the asymptotic 2-cocycle ω ∈ L∞b ((∗Q)3,V)∼∗Q being
an asymptotic 2-coboundary is the asymptotic 2-cocycle ω′ ∈ L∞b ((∗Q)3,V)∼∗Q
that takes values in V∼∗Gb . We shall now see how to handle this using assumptions
on Q.
Consider the asymptotic 2-cocycle ω′ ∈ L∞b ((∗Q)3,V)∼∗Q for Q that takes values
in V∼∗G. The first step is to correct ω′ to an element ω′′ ∈ L∞b ((∗Q)3,W)∗Q with
Im(ω′′) ⊆ W∼∗Γ

b . Recall the internal map θ ∶ L∞(∗G,W) → L∞(∗D,W) as defined
in Eq. (5.1).
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Lemma 6.1.13. Given ω′ ∈ L∞b ((∗Q)3,V)∼∗Q with Im(ω′) ⊆ V∼∗G, there exists

ω′′ ∈ L∞b ((∗Q)3,L∞(∗G,W))
∗Q

with Im(ω′′) ⊆ (L∞(∗G,W)∼∗Γ)
∗G = W∼∗Γ

b such that ω′ − θ ⋅ ω′′ ∈ L∞inf((∗Q)3,V).

Proof. This follows from Remark 5.2.4 and Proposition 5.1.6. �

Now consider ω′′ ∈ L∞b ((∗Q)3,W)∗Q with Im(ω′′) ⊆ W∼∗Γ
b , and observe that

d3ω′′ ∈ L∞inf ((∗Q)4,W)

That is, ω′′ can be thought of as an almost 2-cocycle for Q with coefficients in
W (with a trivial action of ∗Q). The underlying idea is that we are now within
the domain of classical bounded cohomology of Q with coefficients in a trivial
Q-module, and can apply the results of Corollary 4.2.14.

Lemma 6.1.14. Suppose H2
b(Q,R) = 0 and H3

b(Q,R) is Hausdorff. Then there

exists α′ ∈ L∞b ((∗Q)2,W)
∗Q

with Im(α′) ⊆ W∼∗Γ
b and d2α′−ω′′ ∈ L∞inf ((∗Q)3,W).

Proof. From Corollary 4.2.14, we know that there exists α′ ∈ L∞b ((∗Q)2,W)
∗Q

such that d2α′−ω′′ ∈ L∞inf ((∗Q)3,W). We only need to show that Im(α′) ⊆ W∼∗Γ
b .

That is, we want to show that for an internal cochain α′ ∈ L∞b ((∗Q)2,W)
∗Q

, if

Im(d2α′) ⊆ W∼∗Γ
b , then Im(α′) ⊆ W∼∗Γ

b .
Equivalently, consider the inhomogenous cochain (refer Remark 4.2.7) corre-
sponding to α′, namely f ∈ L∞b (∗Q,W) defined as follows: for g ∈ ∗Q, f(g) is
the essential value α′(x,xg). Clearly, Im(d2α′) = Im(δ1f) and Im(α′) = Im(f).
Hence it is sufficient to show that if f ∈ L∞b (∗Q,W) such that Im(δ1f) ⊆ W∼∗Γ

b ,
then Im(f) ⊆ W∼∗Γ

b . Note that W̃∗Γ is a closed subspace of the real Banach

space W̃, hence f̃ ∈ L̃∞(∗Q,W̃) is such that δ̃1f̃ is 0 in the quotient Banach
space W̃/W̃∗Γ. We would like to show that f̃ is 0 in W̃/W̃∗Γ.
Consider the image, denoted S, of Im(f) ⊆ Wb in the quotient W̃/W̃∗Γ with the
natural map Wb → W̃/W̃∗Γ denoted w ↦ w̃′. Let C = sup{∥v∥ ∶ v ∈ S}. Since
f ∈ L∞b (∗Q,W), we know that C ∈ R. Let w ∈ Im(f) be such that ∥w̃′∥ ≥ 0.9C,
and consider the ball B0.1C(w̃′) of radius 0.1C around w̃′, and let Y = {Yn}U ⊆ ∗Q
be an internal subset of ∗Q of positive (internal) measure such that the image

of f̃(Y ) is in B0.1C(w̃′) (such an internal subset Y of positive measure exists
because the image in W̃/W̃∗Γ of the internal ball B0.1C(w) ⊆ Wb is contained in
B0.1C(w̃′), and f−1(B0.1C(w)) is of positive measure).
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Since δ̃1f̃ is 0 in the quotient Banach space W̃/W̃∗Γ, we know that there exists
an internal subset A = {An}U ⊆ ∗Q × ∗Q, where An is co-null in Q ×Q for n ∈ U ,
such that for (g, h) ∈ A, f̃(g)+ f̃(h)− f̃(gh) ∈ W̃∗Γ. Note that A∩Y ×Y , denoted
D, is an internal subset of positive (internal) measure in ∗Q × ∗Q, and so is the
product D ⋅D ∶= {xy ∶ (x, y) ∈ D} ⊆ ∗Q. It follows that the image v ∈ W̃/W̃∗Γ of
f̃(g) has norm ∥v∥ ≥ 1.6C, for g ∈ D ⋅D. This implies that C = 0, allowing us to
conclude that S ⊆ W̃∗Γ and hence f̃ is 0 in W̃/W̃∗Γ. �

We now combine the results above to conclude that H2
a(Q,V) = 0.

Theorem 6.1.15. Let G and a parabolic subgroup Q ≤ G be as in Corollary 6.1.2,
and suppose H3

b(Q,R) is Hausdorff and H2
b(Q,R) = 0. Then H2

a(Q,V) = 0.

Proof. From Proposition 6.1.12, we know that exists an asymptotic 2-cocycle
ω1 ∈ L∞b ((∗Q)3,V)∼∗Q for Q that takes values in V∼∗G such that ω̃−ω̃′ = d̃1α̃1 where
α1 ∈ L∞b ((∗Q)2,V)∼∗Q. From Lemma 6.1.13 and Lemma 6.1.14, we conclude that

there exists α′1 ∈ L∞b ((∗Q)2,V)∼∗Q such that ω̃′ = d̃1α̃′1. We now set α = α1+α′1. �

6.2. Property-G(Q1,Q2) and the Main Theorem. Recall that the results of
§6.1 assumed the existence of a parabolic subgroup Q = ∏k

i=1Qi (where each Qi is
a proper parabolic subgroup of Gi(Ki)), satisfying the conditions that H3

b(Q,R)
is Hausdorff and H2

b(Q,R) = 0. This allowed us to prove that H2
a(Q,V) vanishes.

This motivates the following definition:

Definition 6.2.1. A locally compact group G has the 2½-property if H2
b(G,R)

vanishes and H3
b(G,R) is Hausdorff.

In order to demystify this definition, we should consider that it is a natural
strengthening of the vanishing of H2

b(G,R). Indeed, recall that H1
b(G,R) always

vanishes and that the Hausdorff condition on H3
b(G,R) means that the differential

map on two-cochains is an open map. Thus the 2½-property states that the
augmented differential complex computing bounded cohomology starts of as an
exact sequence up to degree two and retains a weaker consequence of exactness
in degree three, namely that the differential is open (see [MM85] for a detailed
discussion of the openness of differentials in chain complexes of Banach spaces).

Proposition 6.2.2. The 2½-property is preserved under extensions, and hence in
particular, under finite direct products.

Proof. This follows from the Hochschild-Serre spectral sequence as set up in [Mon01,
§12]. Specifically, the Hausdorff assumption allows us to apply Proposition 12.2.2
in [Mon01, §12]. �
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Furthermore, the results on Hochschild-Serre spectral sequences in [Mon01,
§12] imply that a direct product of groups has the 2½-property iff each factor has
the 2½-property.
We recall that elementary properties of bounded cohomology allow us to disregard
“amenable pieces” when it comes to the 2½-property:

Lemma 6.2.3. (1) Suppose that G̃ is an extension of G by an amenable ker-
nel, for instance a central extension of G. Then G̃ has the 2½-property if
and only if G does.

(2) Suppose that G1 < G is a closed co-amenable subgroup of G, for instance a
closed normal subgroup with amenable quotient. If G1 has the 2½-property,
then so does G.

Proof. The first point follows from the fact that the inflation map H●
b(G,R) →

H●
b(G̃,R) is an isometric isomorphism, see e.g. [Mon01, 8.5.2]. For the second

point, we recall that the restriction map H●
b(G,R) → H●

b(G1,R) is isometrically
injective, see e.g. [Mon01, 8.6.6]. �

So in Eq. (4.4), we considered a semisimple group G = ∏k
i=1 Gi(Ki) (where

for 1 ≤ i ≤ k, Ki is a local field, and Gi is a connected, simply connected,
almost Ki-simple group) and showed that H2

a(Q,V) = 0 for a parabolic subgroup
Q = ∏k

i=1Qi (where each Qi is a proper parabolic subgroup of Gi(Ki)) assuming
Q has the 2½-property. To use this to prove that H2

a(G,V) = 0, we need the
existence of two such parabolic subgroups Q1 and Q2 both containing P and
boundedly generating G. This is described in the following definition:

Definition 6.2.4. Let G = ∏k
i=1 Gi(Ki) be a semisimple group (where for 1 ≤ i ≤

k, Ki is a local field, and Gi is a connected almost Ki-simple group), and let P
be a minimal parabolic subgroup. Then G is said to have Property-G(Q1,Q2)
if there exist two parabolic subgroups Q1 and Q2 of G satisfying the following
properties:

● Both Q1 and Q2 are of the form Q1 = ∏k
i=1Q1,i and Q2 = ∏k

i=1Q2,i with
Q1,i and Q2,i being proper parabolic subgroups of Gi(Ki) for 1 ≤ i ≤ k.

● Both Q1 and Q2 have the 2½-property.
● The intersection Q1∩Q2 is a parabolic subgroup that contains the minimal

parabolic subgroup P of G.
● The group G is boundedly generated by the union of Q1 and Q2.

Observe that the existence of two distinct proper parabolic subgroups im-
mediately implies that if G has Property-G(Q1,Q2), then each of its simple
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factors has rank at least 2. We shall see explicit examples of groups with the
2½-property and Property-G(Q1,Q2) in §6.2.

Theorem 6.2.5. Let Γ be a lattice in a semisimple group G = ∏k
i=1 Gi(Ki) (where

for 1 ≤ i ≤ k, Ki is a local field, and Gi is a connected, simply connected, almost
Ki-simple group) that has Property-G(Q1,Q2). Then H2

a(Γ,W) = 0.

Proof. By Theorem 5.2.6, H2
a(Γ,W) = H2

a(G,V). Consider an asymptotic 2-
cocycle

ω ∈ L∞b ((∗(G/P ))2,V)∼
∗G

By Theorem 6.1.15, there exist α1 ∈ L∞b ((∗(G/P ))2,V)∼∗Q1 and α2 ∈ L∞b ((∗(G/P ))2,V)∼∗Q2

such that

ω̃ = d̃2α̃1 = d̃2α̃2

Since P ⊆ Q1 ∩ Q2, note that α1 − α2 ∈ L∞b ((∗(G/P ))2,V)∼∗P is an asymp-
totic 1-cocyle for P . As P is amenable, H1

a(P,V) = 0, and so there exists
β ∈ L∞b (∗(G/P ),V)∼∗P such that

α̃1 − α̃2 = d̃1β̃

We now use β to define the internal map

β1 ∶ (∗(G/P ))2 → V

β1(g∗P,h∗P ) ∶= πG(g)β(g−1h∗P )

Note that β1 ∈ L∞b ((∗(G/P ))2,V)∼∗G, and by Theorem 6.1.11, there exists F ∈
V∼∗Gb so that β1 − F ∈ L∞inf((∗(G/P ))2,V). In particular, the same holds for β as
well: β − F ∈ L∞inf(∗(G/P ),V), implying that

d̃1β̃ = 0

This means that α̃1 = α̃2. Setting α ∶= α1, note that α is both asymptotically ∗Q1-
equivariant and asymptotically ∗Q2-equivariant. Since G is boundedly generated
by elements of Q1 and Q2, this implies that α ∈ L∞b ((∗(G/P ))2,V)∼∗G. �

While the above theorem assumes that Γ is a lattice in a semisimple group
G that is simply connected, we can extend this as follows:
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Theorem 6.2.6. Let Γ be a lattice in a semisimple group G = ∏k
i=1 Gi(Ki) (where

for 1 ≤ i ≤ k, Ki is a local field, and Gi is a connected almost Ki-simple group)
that has Property-G(Q1,Q2). Then Γ is uniformly U-stable with a linear estimate.

Proof. Let Ĝ be the universal cover of G, which is a semisimple simply connected
group, and let Γ̂ be the preimage of Γ in Ĝ. Note that Γ and Γ̂ are commensurable,
hence Remark 3.0.3 tells us that it is sufficient to prove that Γ̂ is is uniformly
U-stable with a linear estimate. Note that since the fundamental group of G is
abelian, from Lemma 6.2.3 it follows that Ĝ has Property-G(Q1,Q2). Hence we

can now apply Theorem 6.2.5 to Γ̂ ≤ Ĝ to conclude that H2
a(Γ̂,W) = 0, implying

that Γ̂ is uniformly U-stable with a linear estimate. �

6.3. Groups with Property-G(Q1,Q2). In this subsection, we shall list classes
of groups that satisfy Property-G(Q1,Q2) used in the hypothesis of Theorem 6.2.5.
Since Property-G(Q1,Q2) involves the existence of two proper parabolic sub-
groups with the 2½-property, we first list classes of groups known to have this
property.

Simple Groups with the 2½-property. We shall collect below the necessary state-
ment from the existing literature, and complement them by an additional argu-
ment in the non-Archimedan case, to establish that a number of natural semisim-
ple groups have the 2½-property.
Let us first consider simple groups over a non-archimedean field. Here, the van-
ishing of H2

b(G,R) was established in [BM99]. More precisely, this reference
establishes the injectivity of the comparison map (and we recall that the case of
trivial coefficients R for the semisimple group G was actually the easy part of this
result). On the other hand, the vanishing of the usual cohomology is well-known
in this setting, see e.g. [BW00].
Therefore, what we need to justify is the condition on H3

b(G,R). It turns out
that this vanishes: this result is established by the inductive method introduced
in [Mon10], the basis of the induction being provided by [BM19].

Theorem 6.3.1. For G = G(K), where K is a non-Archimedean local field and
G is a connected, simply connected, semisimple K-group, the bounded cohomology
H3
b(G,R) vanishes (and is therefore Hausdorff).

Proof. The proof is by induction on the K-rank of G. The case of rank zero
corresponds to G = G(K) being compact, and thus having trivial bounded coho-
mology in all degrees. The induction really starts with rank one. In that case,
G is an automorphism group of a Bruhat–Tits tree satisfying the assumptions of

85



the main result of [BM19], which states that Hn
b (G,R) vanishes for all n > 0.

We now perform the induction step for G of K-rank r ≥ 2. We use (a minor
variation of) the spectral sequence introduced in [Mon10, §6.A] as follows. We
consider the Tits building T of G over K and denote by T (d) its set of d-simplices.
Thus T (d) is defined for all d ≤ r − 1 and is topologized by identifying it with the
union of homogeneous spaces G/PI , where PI ranges over standard parabolic
subgroups of semisimple rank r − 1 − d (see [Mon10] for more details). By con-
vention, we take the augmented simplicial complex, namely we also consider the
one-point space of negative simplices T (−1) = G/G. In this set-up, an appropriate
version of the Solomon-Tits theorem implies that the following sequence of spaces
of continuous functions is exact:

0→ C(T (−1)) → C(T (0)) → ⋯ → C(T (r−1))

see Theorems 2.7 and 3.9 in [Mon10]. We denote by StG the cokernel of the last
map above, which is one version of the Steinberg representation of G. Finally, the
spectral sequence that we consider is the first quadrant hypercohomology spectral
sequence obtained by computing the bounded cohomology of G with coefficients
in the following complex of Banach G-modules

(6.1) 0→ C(T (−1)) → C(T (0)) → ⋯ → C(T (r−1)) → StG → 0

Concretely, the first page of the spectral sequence is by definition Ep,q
1 = Hq

b (G,C(T (p−1)))
when p ≤ r, for p = r + 1 it is Er+1,q

1 = Hq
b(G,StG), and for p > r + 1 it is zero. The

only difference with [Mon10, §6.A] is that the complex was truncated at T (r−1)

there, not completing it with StG. A crucial point to allow this definition is that
StG is Hausdorff, which follows from an alternative description of the Steinberg
representation given by Borel–Serre, see Remark 2.8 in [Mon10].

This spectral sequence abuts to zero since the above complex is exact. By
cohomological induction, we have as in Theorem 6.1 of [Mon10] the identifications

(6.2) Ep,q
1 = Hq

b (G,C(T (p−1))) ≅⊕Hq
b(GI ,R) (∀p ≤ r,∀q)

where GI is the semisimple part of the parabolic subgroup PI and the sum is
taken over all such subgroups of semisimple rank r − p. Notice that the rank is
indeed r − p and not r − 1 − p since we started with T (−1) corresponding to p = 0.

Our goal is to prove E0,3
1 = 0 since this is H3

b(G,R). We have E0,3
1 = E0,3

2

since the right hand side is the kernel of the map E0,3
1 → E1,3

1 which vanishes by
Eq. (6.2) and the inductive hypothesis. Next, E0,3

2 = E0,3
3 because the right hand
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side is the kernel of the map E0,3
2 → E2,2

2 and already E2,2
1 vanishes by Eq. (6.2)

and the general vanishing of H2
b mentioned earlier.

The next differential to consider is E0,3
3 → E3,1

3 . If r ≥ 3, we can still apply
Eq. (6.2) and the general vanishing of H1

b to conclude E0,3
3 = E0,3

4 . If however r = 2,
then we reach the same conclusion provided we justify that H1

b(G,StG) vanishes.
To this end, we first observe that the comparison map to ordinary cohomology is
always injective in degree one. On the other hand, the ordinary first cohomology
of G with values in the Steinberg representation is known to vanish if (and only
if!) the rank of G is not one, see e.g. Theorem 4.12 p. 205 in [BW00]. Thus, in
either case we have established E0,3

3 = E0,3
4 .

The final differential is E0,3
4 → E4,0

4 . But we have already second page
vanishing of all Ep,0

2 . Indeed, by Eq. (6.2) this statement amounts to the acyclicity
of the subcomplex of G-invariants of Eq. (6.1). Ignoring the last term (StG)G
at first, this comes from the fact that the G-orbits in the Tits building form by
definition a full simplex of dimension r − 1 (augmented in dimension −1), which
is hence acyclic. It remains to argue acyclicity of the last term

C(T (r−1))G → (StG)G → 0

which amounts to showing that (StG)G vanishes. This follows e.g. by realizing
the Steinberg representation as a space of L2 harmonic maps on the Bruhat–Tits
building, see [Kli04] for a concrete description of this isomorphism (also due to
Borel–Serre).

In conclusion, we have shown that E0,3
1 = E0,3

4 = E0,3
∞ holds. Since the

spectral sequence converges to zero, this establishes as desired the vanishing of
E0,3

1 = H3
b(G,R). �

Next, let us consider simple groups over R or C. Regarding H2
b(G,R), the

injectivity of the comparison map was established for all connected semisimple
Lie groups G in [BM99]. Therefore, the corresponding vanishing holds in all cases
where the usual second bounded cohomology vansihes, which is always the case
for G = SLn(C) and is the case for G = SLn(R) if and only if n ≠ 2. It therefore
remains to collect the following results from the existing literature:

Theorem 6.3.2. Let n ≥ 2.

(1) For G = SLn(R), the bounded cohomology H3
b(G,R) vanishes (and is

therefore Hausdorff).
(2) For G = SLn(C), the bounded cohomology H3

b(G,R) is one-dimensional
and Hausdorff.
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Proof. The case of SLn(R) was established for n = 2 in Theorem 1.5 of [BM02]
and for general n in Theorem 1.2 of [Mon04].

Regarding G = SLn(C), these two references established that the com-
parison map is an isomorphism from H3

b(G,R) to H3(G,R), the latter being
classically known to be one-dimensional (see [BM02, Theorem 1.2] and [Mon04,
Remark 3.5]). In our context, the only relevant point (and the hard one any-
way) is that the comparison map is injective. Indeed, it is a general fact for any
group and any degree d that the injectivity of the comparison map Hd

b →Hd im-
plies that Hd

b is Hausdorff. This can be seen by combining Theorems 2.3 and 2.8
in [MM85]. �

We now summarize the above results with the following list of simple groups
that we know to have the 2½-property:

Theorem 6.3.3. The following groups G have the 2½-property:

(1) G = G(k), where k is a non-Archimedean local field and G is a connected
semisimple k-group.

(2) G = SLn(R) for any n ≠ 2.
(3) G = SLn(C) for any n.

From the 2½-property to Property-G(Q1,Q2). We can now list out simple groups
having Property-G(Q1,Q2) using the results discussed earlier in this section.
Again, we begin with simple groups, and then extend the results to semisimple
groups using Proposition 6.2.2.
Let us first consider the case of a simple group G over a non-archimedean field,
and Q ≤ G be a parabolic subgroup. Note that, using Theorem 6.3.3, Lemma 6.2.3
and Proposition 6.2.2, we can conclude that Q has the 2½-property (since, modulo
its amenable radical, it is a semisimple group). Thus, since G has rank at least 2,
we can always find two proper parabolic subgroups, both having the 2½-property,
generating G. Hence,

Proposition 6.3.4. The group G = G(k), where k is a non-Archimedean local
field and G is a connected, simply connected, semisimple k-group of rank at least
2, has Property-G(Q1,Q2).

In the complex case, since we know that SLn(C) has the 2½-property for
every n, we can use Dynkin diagrams to explicitly construct proper parabolic
subgroups (which, modulo their amenable radical, would correspond to SLn(C)
that we know has the 2½-property) that together generate the group, to conclude
that the simple group has Property-G(Q1,Q2).
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Proposition 6.3.5. Let G be a simple, simply connected, complex Lie group of
rank n ≥ 2. Then G has Property-G(Q1,Q2).

Proof. Recall that simple, simply connected Lie groups over C split, and hence
are classified by Dynkin diagrams, so let X be the Dynkin diagram of G. Any
subdiagram Y of X corresponds to a parabolic subgroup Q ≤ G containing a
fixed minimal parabolic subgroup P ≤ G, such that Q modulo its amenable
radical is a semisimple group corresponding to the subdiagram Y . Furthermore,
if the subdiagram Y is of type An (for n ≥ 1), then the parabolic subgroup
Q corresponding to Y , modulo its amenable radical, is SLn+1(C), and so, by
Theorem 6.3.3 and Lemma 6.2.3, Q has the 2½-property.
So constructing two proper parabolic subgroups Q1 and Q2, that both contain
P and generate G, is equivalent to choosing two proper subdiagrams Y1 and
Y2 of X that the union of the vertex sets of Y1 and Y2 is the vertex set of X.
Furthermore, if we can ensure both these diagrams are of type An, then this
gives us two proper parabolic subgroups with the 2½-property, ensuring that G
has Property-G(Q1,Q2). We claim that for any connected Dynkin diagram X
corresponding to a simple complex Lie algebra of rank at least 2, we can find two
such subdiagrams Y1 and Y2 both of type An (for n ≥ 1). This can be seen by
considering each case separately, and is illustrated in the figure below. Observe
that for the Dynkin diagram of type F4, we construct subdiagrams Y1 and Y2

both of type A2, while for a Dynkin diagram of any other type, we can always
choose Y1 and Y2 to be of type A1 and Am−1 (where m is the rank of the group
G). �

We next consider the case of connected, simply connected groups over the reals,
where the situation is more involved. Firstly, note that even SL3(R) (which,
by Theorem 6.3.3, has the 2½-property) does not have Property-G(Q1,Q2) even
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though it has rank 2, because any proper parabolic subgroup of SL3(R), modulo
its amenable radical, is SL2(R) for which H2

b(SL2(R),R) ≠ 0. However, since
SLn(R) has the 2½-property for n ≥ 3, we can apply the proof technique of
Proposition 6.3.5 in the case of certain split simple real Lie groups to show that:

Proposition 6.3.6. Let G be a split simple real Lie group of type An, Dn (for
n ≥ 3), F4, E6, E7 or E8.Then G has Property-G(Q1,Q2).

Proof. As in the proof of Proposition 6.3.5, we construct two subdiagrams Y1

and Y2 of the Satake diagram X of the split simple real group G, such that the
subdiagrams whose vertex sets together cover the vertex set of X, such that the
simple real Lie groups corresponding to the subdiagrams are both SLn(R) for
some n ≥ 3. This is illustrated in the figure below, where the subdiagrams are
encircled in grey. �

Note that our method will not work for the split simple real Lie groups of type
Cn or G2. In the case of Cn, for any two two proper subdiagrams covering the
vertices of the Satake diagram, at least one of them must either itself be of type
Cm, which corresponds to the simple group Sp(2m,R) which does not have the
2½-property (as H2

b(Sp2m(R),R) ≠ 0), or of type A1, which corresponds to the
simple group SL2(R). In the case of G2, any proper parabolic subgroup is of type
A1. Thus, split simple real Lie groups of type Cn or G2 do not have Property-
G(Q1,Q2).

7. Conclusions and Discussion

The current paper presents many questions and directions for futher re-
search. We highlight a few of them now.
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● Prove a complete Ulam-stability result for higher rank lattices
in semisimple Lie groups.
One could hope to extend our main results (specifically Theorem 6.2.5) by
considering a larger family of groups for which the Property-G(Q1,Q2) is
known. However, this has its limitations since there are groups for which
Property-G(Q1,Q2) is simply not true. An important example of such a
group is SL3(R), where for a maximal parabolic subgroup Q ≤ SL3(R),
H2
b(Q,R) = H2

b(SL2(R),R) ≠ 0. We can ask if Property-G(Q1,Q2) for
the ambient group is even necessary for Ulam stability, or if it just hap-
pens to be an artifact of our proof technique.

● Surjectivity/Injectivity of a comparison map H2
a(Γ,W) ↦ H2

b(Γ,W̃).
There exists a natural forgetful map H2

a(Γ,W) ↦ H2
b(Γ,W̃) (analogous to

the comparison map c ∶ H2
b(Γ,W ) → H2(Γ,W ) for a Γ-module W ). It

is not immediate if this map is either surjective or injective. Suppose it
were injective, then we could truly reduce the question of uniform stabil-
ity with a linear estimate to the study of the second bounded cohomol-
ogy group H2

b(Γ, W̃ ) which is a well-studied notion. For instance, it is
known ([BM99]) that for a lattice Γ in a higher rank simple Lie group G,
H2
b(Γ,W ) = 0 for every dual separable Banach Γ-module W (note, how-

ever, that the Banach space ultraproduct W̃ is not separable unless it is
finite dimensional).

● Uniform versus non-uniform stability
All along in this paper, we have dealt with the question of uniform sta-
bility as opposed to non-uniform, or pointwise, stability. The connection
between pointwise stability and vanishing second cohomology is studied
in [DCGLT20], [LO20]. We stress that such stability results in the non-
uniform setting is far from being known for most lattices. So far such
results are known for many lattices in p-adic Lie groups (with respect
to the Frobenius or p-Schatten norms for p < ∞), but almost nothing is
known for lattices in real (or complex) Lie groups (see [BLSW22]). More-
over, when the family Mn(C) is endowed with the operator norm (i.e. the
p-Schatten norm for p = ∞) then it is known that the stability result is not
true for most hgh rank lattices. This follows from the results in [Dad21]
[CGM90] that show that if H2j(Γ,R) ≠ 0 for some positive integer j, then
Γ is not pointwise stable for the operator norm. Note that in our setting
of uniform stability, the case of p = ∞ and p < ∞ are treated together
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without any problem.

● Stability with respect to the (normalized) Hilbert-Schmidt norm.
In [BL20] it is shown that a lattice Γ that has Property (T) is not point-
wise stable for the (normalized) Hilbert-Schmidt norm. In [AD22] it is
shown that if a residually finite group is uniformly stable with respect
to the (normalized) Hilbert-Schmidt norm, then it is virtually abelian.
In particular, this means that no lattice in a non-compact semisimple
Lie group is uniformly stable with respect to the (normalized) Hilbert-
Schmidt norm.
In both cases, the results still leave the possibility that higher rank lattices
are flexibly stable (pointwise or uniform) with respect to the (normalized)
Hilbert-Schmidt norm. For more on flexible stability, refer [BC20] and
[BL20].

● Uniform stability with non-linear estimate.
Our machinery, whenever it can be applied, works to prove uniform sta-
bility with a linear estimate. We do not know of examples of groups that
are uniformly stable, but without a linear estimate. It is interesting to
compare this with [BM21] where it is shown that Z2 exhibits pointwise
stability (with respect to Hamming metric on Sym(n)) but with a non-
linear estimate. However, in the case of uniform stability in our setting,
Z2 (being amenable) is uniformly stable for any submultiplicative norm
on U(n). The quantitative aspects of stability are an active line of current
research.

● Stability with respect to non-archimedean metrics.
A recent monograph of [FF21] studies stability with respect to p-adic
groups. An interesting feature in this non-archimedean setting is that
the ultrametric (strong triangle inequality) forces an equivalence between
uniform and pointwise stability (for finitely presented groups). One can
ask if further stability results in this setting too can be proved using the
framework of asymptotic cohomology.
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École Polytechnique Fédérale de Lausanne (EPFL), CH–1015 Lau-
sanne, Switzerland
E-mail address: nicolas.monod@epfl.ch

94



Bharatram Rangarajan
Einstein Institute of Mathematics, Hebrew University of Jerusalem,
Israel
E-mail address: bharatrm.rangarajan@mail.huji.ac.il

95


	Introduction
	Uniform Stability of Groups

	Main Results and Methods
	Outline of the Paper
	Acknowledgements

	1. U(1)-Stability of Groups
	2. Preliminaries and Basic Constructions
	2.1. Uniform Stability and Asymptotic Homomorphisms
	2.2. Ultraproducts and Internal Maps
	2.3. Internal Liftings and Defect Diminishing

	3. A Cohomological Interpretation of Stability
	3.1. Lifting with an Abelian Kernel
	3.2. Linearization and the Lie Algebra
	3.3. Uniform Stability of Amenable groups

	4. Asymptotic Cohomology of Groups
	4.1. Basic Definitions and Some Cohomological Algebra
	4.2. The L-cohomology and Ha(G,V)
	4.3. Amenable Actions and Cohomology of Subgroups

	5. The Induction Module
	5.1. The *G-action on Lb(*G,W)*
	5.2. L(*D,W) and the Eckmann-Shapiro Induction
	5.3. Internal Contraction and Fixed Points

	6. Vanishing of Ha2(,W)
	6.1. Asymptotic Mautner Property and Ergodicity
	6.2. Property-G(Q1,Q2) and the Main Theorem
	6.3. Groups with Property-G(Q1,Q2)

	7. Conclusions and Discussion
	References

