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Abstract. Given a group Γ, we establish a connection between the unitarisability
of its uniformly bounded representations and the asymptotic behaviour of the isoperi-
metric constants of Cayley graphs of Γ for increasingly large generating sets.

The connection hinges on an analytic invariant Lit(Γ) ∈ [0,∞] which we call
the Littlewood exponent. Finiteness, amenability, unitarisability and the existence
of free subgroups are related respectively to the thresholds 0, 1, 2 and ∞ for Lit(Γ).
Using graphical small cancellation theory, we prove that there exist groups Γ for which
1 < Lit(Γ) < ∞. Further applications, examples and problems are discussed.
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1. Introduction

A linear representation π of a group Γ on a Hilbert space is called unitarisable if
π is conjugated to a unitary representation by a bounded operator. This implies that
π is uniformly bounded, that is, supg∈Γ ‖π(g)‖ is finite. Extending a classical result
of Sz.-Nagy [35] for Γ = Z, it was shown by several authors [9,10,26] in 1950 that the
converse holds when Γ is amenable. That is, amenable groups are unitarisable. It has
been open ever since whether this characterises the unitarisability of a group:

Question (Dixmier [10]). Are all unitarisable groups amenable?
1
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The first example of a non-unitarisable group was found by Ehrenpreis–Mautner [11],
who showed in 1951 that SL2(R) is not unitarisable; it can be deduced that non-abelian
free groups are not unitarisable either. In the 1980s, simple and explicit constructions
of non-unitarisable representations of free groups were provided, see e.g. [22, 23, 33].
Since unitarisability passes to subgroups, Dixmier’s question thus concerns non-amenable
groups without free subgroups. The fact that such groups can indeed be non-unitarisable
has been confirmed more recently [12,25,30].

The starting point of the present article is the connection established by Bożejko–
Fendler [5] and Wysoczański [40] between unitarisability, amenability and the space
T1(Γ) of Littlewood functions. The latter is the space of all functions f : Γ → C
admitting a decomposition

f(x−1y) = f1(x, y) + f2(x, y) ∀x, y ∈ Γ

with fi : Γ× Γ→ C such that both of the following are finite:

sup
x

∑
y

|f1(x, y)| and sup
y

∑
x

|f2(x, y)|.

The connection is as follows. First, Γ is amenable if and only if T1(Γ) ⊆ `1(Γ). Sec-
ondly, if Γ is unitarisable, then T1(Γ) ⊆ `2(Γ). Thirdly, if Γ contains a non-abelian free
subgroup, then T1(Γ) * `p(Γ) for all p <∞.

These results prompted us to define the Littlewood exponent Lit(Γ) ∈ [0,∞] of a
group Γ as follows:

Lit(Γ) = inf
{
p : T1(Γ) ⊆ `p(Γ)

}
.

It is straightforward that Lit(Γ) = 0 characterises finite groups and Wysoczański’s re-
sult [40] implies that amenable groups satisfy Lit(Γ) ≤ 1.

Our first result is the converse of the latter statement:

Theorem 1.1. For every non-amenable group Γ there exists p > 1 such that

T1(Γ) * `p(Γ).

The situation can therefore be summarised as follows (taking into account a further
connection that we shall establish with the rapid decay property of Jolissaint).

Corollary 1.2.

• Lit(Γ) = 0 if and only if Γ is finite.
• Lit(Γ) = 1 if and only if Γ is infinite amenable.
• Lit(Γ) ≤ 2 if Γ is unitarisable.
• Lit(Γ) is outside the interval (1, 2) if Γ has the rapid decay property.
• Lit(Γ) =∞ if Γ contains a non-abelian free subgroup.

A major question is to exhibit groups with 1 < Lit(Γ) < ∞, and particularly with
1 < Lit(Γ) ≤ 2. Concerning the last item of Corollary 1.2, we know that it is not a
characterisation; adapting [12,30], we show:

Theorem 1.3. There exist finitely generated torsion groups Γ with Lit(Γ) =∞.
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Our next result relates Lit(Γ) to the asymptotics of isoperimetric quantities attached
to Γ as follows. Given a finite symmetric subset S ⊆ Γ, consider the (possibly discon-
nected) Cayley graph Cay(Γ, S). Recall that the Cheeger constant h(Γ, S) is defined
by

h(Γ, S) = inf
F

|∂S(F )|
|F |

,

where the infimum runs over all non-empty finite subsets F ⊆ Γ. Define the relative
maximal average degree e(Γ, S) by

e(Γ, S) = 1− h(Γ, S)

|S|
.

Finally, our asymptotic invariant is

η(Γ) = − lim inf
S

ln e(Γ, S)

ln |S|
,

where the limes inferior is taken over all symmetric finite subsets S of Γ. By convention,
η(Γ) = −∞ if Γ is finite. Informally, the quantity η(Γ) captures the largest exponent

such that arbitrarily large sets S can be found with e(Γ, S) / |S|−η(Γ). If Γ is free, then
one can check that η(Γ) = 1, whereas η(Γ) = 0 if Γ is amenable.

Theorem 1.4. For any group Γ we have η(Γ) = 1− 1/Lit(Γ).

Thus we have a quantitative isoperimetric measure of non-amenability 0 < η(Γ) ≤ 1
for which unitarisability implies η(Γ) ≤ 1/2. We have currently no proof that η(Γ) can
take values within (0, 1/2]; this seems related to the fact that Dixmier’s question remains
open.

In a similar manner to η(Γ), we define

r(Γ) = − lim inf
S

ln ρ(Γ, S)

ln |S|
,

where ρ(Γ, S) ∈ (0, 1] is the spectral radius of the Markov operator associated to S. We
think of all these invariants as rough guides in the labyrinth of groups that are non-
amenable while not containing a non-abelian free subgroup. Combining Theorem 1.4
with Cheeger inequalities, we obtain the following.

Corollary 1.5. For any infinite group Γ we have

0 ≤ r(Γ) ≤ η(Γ) = 1− 1

Lit(Γ)
≤ 2r(Γ) ≤ 1.

The following result — a consequence of graphical small cancellation theory for
hyperbolic groups — shows that the invariant is indeed non-trivial in the sense that
there exist groups with Lit 6∈ {0, 1,∞}.

Theorem 1.6. There exists a group Λ with 1 < Lit(Λ) <∞.

Our construction provides a group Λ for which the Cayley graphs Cay(Λ, S) contain
images of a Ramanujan graphs of vertex-degree at least |S|ε for a fixed ε > 0. The
Ramanujan graphs thus provide large finite subsets of vertices containing many internal
edges and give upper bounds on h(Λ, S). Hence, they can be thought of as analogous to
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Følner sets, providing a certain quantitative degree of amenability in each of the Cayley
graphs. This strongly contrasts the way Ramanujan graphs have been utilized thus far
in graphical small cancellation constructions: until now, their spectral properties have
been used to provide groups satisfying strong negations of amenability, such as non-
coarse embeddability into Hilbert spaces [4,14] and fixed-point properties for actions on
Lp-spaces [27].

Unfortunately, the method employed for the proof cannot be used to establish
Lit(Λ) ≤ 2.

Using the connection between the spectral radius and the Littlewood exponent to-
gether with Adyan’s results [2], we can then estimate Lit(Γ) for Burnside groups of large
exponent.

Theorem 1.7. Let B(m, a) be the free Burnside group of exponent a on m generators,
where m ≥ 2, a ≥ 665 and a is odd. Then Lit(B(m, a)) ≥ 3/2.

The invariants introduced in this article also have applications to estimating the
chromatic number of (infinite) Cayley graphs. For convenience, we will say that a graph
is r-colourable for r ∈ R if it is brc-colourable in the usual sense, i.e. there exists
a colouring of the vertices using brc colours such that adjacent vertices get different
colours.

Corollary 1.8. Let Γ be a group and α < Lit(Γ). Then there exists arbitrarily

large finite symmetric sets S such that Cay(Γ, S) is α
√
|S|-colourable.

Another use of Lit(Γ) is related to the first `2-Betti number β
(2)
1 . Adapting the

method of [12], we obtain:

Corollary 1.9. Let Γ be a finitely generated group. If Γ is residually finite and

Lit(Γ) <∞, then β
(2)
1 (Γ) = 0.

One can formally deduce Theorem 1.3 above by applying Corollary 1.9 to the finitely
generated residually finite torsion groups with positive first `2-Betti number constructed
by Lück and Osin [20, Theorem 1.2]. The proof of Theorem 1.3 given below uses Osin’s
earlier group construction from [30].

2. Preliminaries

2.A. Spectral radius and isoperimetry. We denote by ‖a‖p→q the norm of an
operator a : `p(Γ)→ `q(Γ). We extend this notation to any element a of the group ring
C[Γ], considered as a left convolution operator. We further extend the notation to kernels
a : Γ × Γ → C whenever the associated operator given by v(x) 7→

∑
y∈Γ a(x, y)v(y) for

v ∈ `p(Γ) and x ∈ Γ is well-defined.
Given a finite symmetric subset S ⊆ Γ, we denote by MS = 1

|S|1S ∈ C[Γ] the

Markov operator. Since S is symmetric, the spectral radius ρ(Γ, S) of MS is realised
by ρ(Γ, S) = ‖MS‖2→2. We refer to [39] for more information on the spectral radius
and its relation to random walks on Γ.

We consider the Cayley graph Cay(Γ, S), which is connected iff S generates Γ. Given
a finite subset F ⊆ Γ, we denote by ES(F ) the set of edges of the subgraph of Cay(Γ, S)
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induced on F . The edge-boundary ∂SF of F is the set of those edges in Cay(Γ, S)
that connect F to its complement. The edge-isoperimetric constant or Cheeger
constant of Cay(Γ, S) is defined by

h(Γ, S) := inf
F

|∂SF |
|F |

,

where the infimum is taken over all non-empty finite subsets F ⊆ Γ. We recall the
following Cheeger inequalities.

Theorem 2.1 (Mohar [24]).

|S|(1− ρ(Γ, S)) ≤ h(Γ, S) ≤ |S|
√

1− ρ(Γ, S)2. �

The second inequality above is a special case of Theorem 2.1(a) in [24]. The first
one is easier; a stronger (and more general) statement is Theorem 3.1(a) in [24]. Al-
ternatively, one can deduce it directly from expanding ‖MS(1F )‖2 ≤ ρ(Γ, S)‖1F ‖2; we
make a slightly stronger computation below, see Remark 4.3.

Recall that we defined e(Γ, S) = 1− h(Γ, S)/|S|; with this notation, we observe:

Remark 2.2. The first inequality of Theorem 2.1 is equivalent to e(Γ, S) ≤ ρ(Γ, S)
whilst the second implies e(Γ, S) ≥ 1

2ρ(Γ, S)2.

2.B. Littlewood functions. We recall the definition introduced by Wysoczański [40],
extending an idea of Varopoulos [38]; see also [31, Ch. 2].

Definition 2.3. The space of Littlewood functions is the space T1(Γ) of all func-
tions f : Γ→ C that admit the following decomposition: there exist functions fi : Γ×Γ→
C (i = 1, 2) such that

(1) f(x−1y) = f1(x, y) + f2(x, y) ∀x, y ∈ Γ

with ‖f1‖∞→∞ <∞ and ‖f2‖1→1 <∞. For such f , one defines

(2) ‖f‖T1(Γ) = inf
{
‖f1‖∞→∞ + ‖f2‖1→1

}
,

where the infimum runs over all decompositions (1).

For concrete computations with (2), it is useful to recall that we have

(3) ‖f1‖∞→∞ = sup
x

∑
y

|f1(x, y)| and ‖f2‖1→1 = sup
y

∑
x

|f2(x, y)|.

Remarks 2.4. (i). One verifies that ‖f‖T1(Γ) is a norm and that moreover T1(Γ) is
complete for this norm. (ii). The definition in [40] considers max(‖f1‖∞→∞, ‖f2‖1→1)
instead of the sum in (2). We caution this defines a quasi-norm only. This is not of much
consequence because the two quantities differ at most by a multiplicative constant 2.
(iii). There is a norm-one embedding `1(Γ) ⊆ T1(Γ) because for f ∈ `1(Γ) we can set
f1(x, y) = f(x−1y) and f2 = 0.

There is another equivalent norm on the space T1(Γ), namely

(4) N(f) = sup
|A|=|B|

1

|A|
∑

a∈A,b∈B
|f(a−1b)|
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where A,B ⊆ Γ range over all finite non-empty subsets of equal size. Adjusting the
constants of Remark page 261 in [40] according to Remark 2.4(ii) above leads to the
following version of Varopoulos’ Lemma 5.1 in [38].

Proposition 2.5. For all f ∈ T1(Γ) we have 1
2N(f) ≤ ‖f‖T1(Γ) ≤ 2N(f). �

A fundamental property of the norm N is the following.

Proposition 2.6. For every f ≥ 0 we have N(f) ≤ ‖f‖2→2.

Proof. We do not change ‖f‖2→2 if we consider f as a right convolutor on `2(Γ).
For A,B as in (4) we have∑

a∈A,b∈B
f(a−1b) = 〈1A ∗ f,1B〉 ≤ ‖1A‖2 · ‖1B‖2 · ‖f‖2→2.

On the other hand, ‖1A‖2 = ‖1B‖2 = |A|1/2; the estimate follows. �

We shall use throughout the following principle.

Lemma 2.7. Let ‖ · ‖ one of the equivalent norms on T1(Γ) and let 1 ≤ p <∞.
Then T1(Γ) * `p(Γ) if and only if there is a sequence (fn) of non-zero elements of

C[Γ] with ‖fn‖/‖fn‖p → 0 as n→∞. Moreover, we can assume fn ≥ 0.

Proof. Suppose that T1(Γ) ⊆ `p(Γ) and observe that the inclusion map is contin-
uous in the topology of pointwise convergence. This implies that it has a closed graph
also in the product of the norm topologies. Therefore the closed graph theorem ensures
that it is norm-continuous and hence no sequence (fn) as above can exist.

Conversely, suppose T1(Γ) * `p(Γ). Since both N(f) and ‖f‖p depend only on |f |,
there is f ≥ 0 in T1(Γ) with ‖f‖p =∞. This implies that there is an increasing sequence
of finite subsets Fn ⊆ Γ with ‖f1Fn‖p → ∞. However, N(f1Fn) ≤ N(f); therefore,
f1Fn is a sequence with the desired properties. �

2.C. Limes inferior. We should clarify our use of liminf in the definition of η(Γ)
and of r(Γ). Since the collection of finite symmetric subsets S of Γ is directed under the
inclusion order, any real function f on this collection has the usual (possibly infinite)
limes inferior

lim inf
S

f(S) := lim
S

inf
S′⊇S

f(S′) = sup
S

inf
S′⊇S

f(S′).

However, in the proofs, we shall use the more ad hoc “size-wise lim inf” defined by

lim
n→∞

inf
|S|≥n

f(S) = sup
n→∞

inf
|S|≥n

f(S).

The latter is always bounded above by lim infS f(S) but this inequality can be strict in
general. For the particular functions f that we consider in this article, however, we will
always have

lim inf
S

f(S) = lim
n→∞

inf
|S|≥n

f(S).

Indeed, observe first that both quantities can be realised respectively as limn→∞ f(S′n)
and limn→∞ f(Sn) for suitable (but unrelated) sequences of finite sets S′n, Sn with |Sn| →
∞. In order to have the desired equality, it suffices to establish that, given the sequence
(S′n), one can choose the sequence (Sn) with the additional property that for each n
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there is m with Sk ⊇ S′n for all k ≥ m. To this end, it suffices by a diagonal argument
to show that given any γ ∈ Γ, we can replace the sequence Sn by Sn ∪ {γ, γ−1}.

Since we are in the special case where f(S) is− ln e(Γ, S)/ ln |S| or− ln ρ(Γ, S)/ ln |S|,
this statement follows from straightforward estimates for e(Γ, S) and for ρ(Γ, S) together
with the fact that |S| goes to infinity.

3. The Littlewood exponent

3.A. Finiteness and amenability. As noted in Remark 2.4(iii), we have `1(Γ) ⊆
T1(Γ) for every group Γ. One the other hand, if 0 < p < 1, then `p(Γ) is a proper
subspace of `1(Γ) unless Γ is finite. We can thus record the following.

Lemma 3.1. If Γ is infinite, then Lit(Γ) ≥ 1. If Γ is finite, then Lit(Γ) = 0. �

On the other hand, Wysoczański has characterised when the inclusion `1(Γ) ⊆ T1(Γ)
is proper.

Theorem 3.2 (Wysoczański [40, Thm. 1]). The group Γ is amenable if and only if
`1(Γ) = T1(Γ). �

In particular, Lit(Γ) ≤ 1 for amenable groups. We shall establish the converse; this
requires quantitative estimates for the T1-norm which we shall prove using the following
result of one of the authors [37].

Theorem 3.3 (Cor. 6 in [37]). For every non-amenable group Γ there is ε > 0 such
that there exist arbitrarily large finite symmetric subsets S with ρ(Γ, S) < |S|−ε. �

We can now prove the characterisation of amenability stated in Theorem 1.1.

Proof of Theorem 1.1. Let ε > 0 be as provided by Theorem 3.3. Then any
p with 1 < p < 1/(1 − ε) will do. Suppose indeed for a contradiction that we have
T1(Γ) ⊆ `p(Γ). In view of Proposition 2.6 and Lemma 2.7, there is a constant c such
that

|S|
1
p = ‖1S‖p ≤ cN(1S) ≤ c‖1S‖2→2 = c|S|ρ(Γ, S)

holds for every finite symmetric subset S ⊆ Γ. Applying Theorem 3.3, we obtain that

|S|
1
p is bounded by c|S|1−ε for arbitrarily large sets S, which implies 1/p ≤ 1 − ε, a

contradiction. �

3.B. Subgroups, quotients and free groups. In view of Theorem 1.1, a value
Lit(Γ) > 1 is one of the ways to measure non-amenability quantitatively. Therefore, the
stability properties of Lit(Γ) are of interest.

Proposition 3.4. If Λ is a subgroup of Γ, then Lit(Λ) ≤ Lit(Γ).

Proof. Since for all p the space `p(Λ) coincides with the subspace of elements of
`p(Γ) supported on Λ, it suffices to justify that every f ∈ T1(Λ) yields an element of
T1(Γ) after extending it by zero outside Λ. This is straightforward if we use the norm N .
If we use the T1-norm, we just need to extend the two functions fi(x, y) by restricting
to the case where x−1 and y belong to the same coset Λ in Γ (as done in the proof of
Lemma 2.7 of [31]). �

Proposition 3.5. If Λ is a quotient group of Γ, then Lit(Λ) ≤ Lit(Γ).
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Proof. Given f ∈ T1(Λ) and p > Lit(Γ), we shall produce an element f̃ ∈ T1(Γ)

with ‖f̃‖p = ‖f‖p; this implies the statement. Let R ⊆ Γ be a set of representatives for

the quotient map π : Γ→ Λ. We define f̃(x) = f(π(x)) if x ∈ R and f̃(x) = 0 otherwise.

The relation ‖f̃‖p = ‖f‖p holds and we need to prove that f̃ belongs to T1(Γ).

Define thus f̃i(x, y) = fi(π(x), π(y)) if x−1y ∈ R and 0 otherwise, for i = 1, 2. Then

f̃i provides a decomposition as in (1) for f̃ . We now check the finiteness of ‖f̃1‖∞→∞
using the formula (3):

sup
x∈Γ

∑
y∈Γ

|f̃1(x, y)| = sup
x∈Γ

∑
y∈xR

|f1(π(x), π(y))|.

The right hand side is exactly ‖f1‖∞→∞ because each xR is itself a set of representatives

for π. The computation for ‖f̃2‖1→1 is similar but uses the fact that yR−1 is a set of
representatives. �

Proposition 3.6. If Λ is a finite index subgroup of Γ, then Lit(Λ) = Lit(Γ).

Proof. In view of Proposition 3.4, what we need to prove is that for any p > Lit(Λ)
and any f ∈ T1(Γ), the norm ‖f‖p is finite. Let R ⊆ Γ be a set of representatives of
Λ-cosets and define f r : Λ → C by f r(x) = f(xr) for each r ∈ R. If f1, f2 provide a
decomposition as in (1), we define f ri : Λ×Λ→ C by f ri (x, y) = fi(x, yr). This witnesses
that ‖f r‖T1(Λ) ≤ ‖f‖T1(Γ) and hence each f r is in `p(Λ). Viewing f as a sum of translates
of the various f r to the corresponding cosets Λr ⊆ Γ, we conclude that f ∈ `p(Γ) since
R is finite. �

Theorem 3.7. If Γ contains a non-abelian free subgroup, then Lit(Γ) =∞.

Proof. Any non-abelian free group contains a free group F∞ of countable rank.
Therefore, by Proposition 3.4, it suffices to recall that Lit(F∞) = ∞, which goes back
to Wysoczański [40]. For convenience, we recall the argument. Let T be a basis of F∞
and set S = T ∪ T−1. Then 1S does not belong to any `p with p <∞. We decompose

1S(x−1y) = f1(x, y) + f2(x, y)

as follows. Set f1(x, y) = 1 if x−1y ∈ S with y shorter than x in the S-word-length
(and 0 otherwise). Then x determines y and hence supx

∑
y |f1(x, y)| = 1. We have a

similar bound for f2(x, y) = f1(y, x) and thus ‖1S‖T1(Γ)) ≤ 2. �

4. Asymptotic isoperimetry and the Littlewood exponent

4.A. Another norm on T1. We modify the norm N on T1(Γ) as follows:

(5) N ′(f) = sup
F

1

|F |
∑
a,b∈F

|f(a−1b)|

where F ⊆ Γ ranges over all non-empty finite subsets.

Lemma 4.1. The norm N ′ is equivalent to N and hence to ‖ · ‖T1(Γ); specifically:

1

2
N(f) ≤ N ′(f) ≤ N(f).
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Proof. The first equality follow by setting F := A∪B for A,B as in the definition
of N(f). For the second, set A = B := F . �

For characteristic functions, the norm N ′ has the following geometric interpretation.

Proposition 4.2. We have N ′(1S) = e(Γ, S)|S| for every finite symmetric S ⊆ Γ.

Remark 4.3. If we combine this identity with the second inequality of Lemma 4.1
and the inequality N(1S) ≤ ‖1S‖2→2 of Proposition 2.6, we conclude that e(Γ, S)|S| ≤
‖1S‖2→2 = ρ(Γ, S)|S|. This is equivalent to the first Cheeger inequality in Theorem 2.1.

For the proof, we record the following identity, which results from counting all edges
adjacent to any element of F .

Lemma 4.4. For any finite subsets F and S = S−1 of the group Γ, we have

|F ||S| = |∂SF |+ 2|ES(F )| − |LS(F )|,
where LS(F ) denotes the set of loops in ES(F ). In particular, it follows that

e(Γ, S) = sup
F

2|ES(F )| − |LS(F )|
|F ||S|

.

The second statement of the lemma explains why we called e(Γ, S) the relative max-
imal average degree (loops are given half-weight for vertex-degree).

Proof of Proposition 4.2. The sum
∑

a,b∈F 1S(a−1b) counts the elements of ES(F )

twice, except that loops are counted once. Therefore, its value is |F ||S| − |∂SF | by
Lemma 4.4. It follows that N ′(1S) = |S| − h(Γ, S), as desired. �

Remark 4.5. Lemma 4.4 together with the first Cheeger inequality in Theorem 2.1
also gives

|ES(F )| − 1

2
|LS(F )| ≤ 1

2
|F ||S|ρ(Γ, S).

Note that the availability of this kind of bound crucially depends on the fact that we
are working on a regular graph.

4.B. Proof of Theorem 1.4. We will say that a function is a box-function if is
is a multiple of a characteristic function. We need the following “box trick”.

Lemma 4.6. Let 0 < q < p. For every f ≥ 0 in `p(Γ) there is a box function f� with
0 ≤ f� ≤ f and satisfying

‖f�‖q ≥ ζ(p/q)
− 1
p ‖f‖p.

(The constant is optimal: consider n 7→ n−1/q in the proof below.)

Proof. Since f has countable support and since the statement is invariant under
any permutation of the support, it suffices to give a proof for the case of a non-increasing
function f : N∗ → R+. For such f , there is n such that

(6) f(n) ≥ ζ(p/q)
− 1
p ‖f‖p n−

1
q

because otherwise we obtain a contradiction by summing over all n the p-powers of
both sides in (6). We now define f�(m) = f(n) for m ≤ n and f�(m) = 0 otherwise.

Then ‖f�‖q = f(n)n1/q and hence ‖f�‖q satisfies the statement of the lemma thanks
to (6). �



10 M. GERASIMOVA, D. GRUBER, N. MONOD, AND A. THOM

Proof of Theorem 1.4. Fix any 0 < q < p < Lit(Γ). By Lemma 2.7, there is a
sequence fn ≥ 0 in C[Γ] with N ′(fn)/‖f‖p → 0. Thus Lemma 4.6 provides us with a
sequence of finite sets Sn such that N ′(1Sn)/‖1Sn‖q tends to zero; we used here that
0 ≤ f� ≤ f implies N ′(f�) ≤ N ′(f). We can assume Sn symmetric by replacing it with
Sn ∪ S−1

n since this introduces at most a factor 2 in the norm. We have in particular

lim
m→∞

inf
|S|≥m

lnN ′(1S)

ln ‖1S‖q
≤ lim sup

n→∞

lnN ′(1Sn)

ln ‖1Sn‖q
≤ 1.

By Proposition 4.2, the numerator of the left fraction is ln e(Γ, S) + ln |S|. The denomi-
nator is 1

q ln |S|. Therefore

ln e(Γ, S)

ln |S|
≤ 1

q
− 1

for sets S of arbitrarily large size. Since q can be taken arbitrarily close to Lit(Γ), we
conclude η(Γ) ≤ 1− 1/Lit(Γ).

Suppose for a contradiction that the inequality is strict. We can then choose p > q >
Lit(Γ) with η(Γ) > 1−1/p. By definition of η(Γ), there is a sequence of finite symmetric
sets Sn in Γ with |Sn| → ∞ and ln e(Γ, Sn)/ ln |Sn| bounded by 1− 1/p for all n. Using

again Proposition 4.2, this bound is equivalent to N ′(1Sn) ≤ |Sn|1/p. Since |Sn| → ∞
and p > q it follows that N ′(1Sn)/|Sn|1/q → 0. On the other hand, |Sn|1/q = ‖1Sn‖q is
bounded by a constant times N ′(1Sn) since q > Lit(Γ); this is a contradiction. �

5. An example of a group Λ with 1 < Lit(Λ) <∞

The aim of this section is to prove Theorem 1.6 as an application of graphical small
cancellation theory for hyperbolic groups — by now a common source of exotic groups.
Indeed, we construct a monster group with the property that we can control the isoperi-
metric behaviour for every symmetric subset. The key step in the inductive construction
is the following theorem.

Theorem 5.1. There exists ε > 0 with the following property. Suppose Γ is a non-
elementary torsion-free hyperbolic group, S,K ⊆ Γ finite symmetric subsets. Then, there
exists a non-elementary torsion-free hyperbolic quotient π : Γ→ Λ such that π is injective
on K and e(Λ, π(S)) ≥ 1

2 |π(S)|−1+ε.

It is now immediate to prove the main result of this section.

Proof of Theorem 1.6. Consider a non-elementary torsion-free hyperbolic Kazh-
dan group Γ = Γ0 and enumerate all finite symmetric subsets of Γ in form of a se-
quence (Σn)n≥1. Set K0 = ∅. For each natural number n ≥ 1, we construct a quo-
tient πn : Γn−1 → Γn and a finite subset Kn ⊆ Γn as follows: Consider the image
Sn of Σn in Γn−1 and take Kn−1 ⊆ Γn−1 as constructed by induction. By the pre-
ceding theorem, there exists a torsion-free hyperbolic quotient πn : Γn−1 → Γn, such
e(Γn, πn(Sn)) ≥ 1

2 |πn(Sn)|−1+ε witnessed, using Lemma 4.4, by a finite set Fn ⊆ Γn with

|Eπn(Sn)(Fn)|
|Fn|

≥ 1

5
|πn(Sn)|ε
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and πn is injective on Kn−1. We set Kn := πn(Kn−1 ∪ Sn) ∪ Fn ∪ F−1
n . Consider

now the inductive limit Λ := limn→∞ Γn along the maps πn : Γn−1 → Γn. For every
finite symmetric subset S ⊆ Λ, it easily follows, again using Lemma 4.4, that we have
e(Λ, S) ≥ 1

5 |S|
−1+ε and thus η(Λ) ≤ 1− ε < 1 or equivalently Lit(Λ) ≤ 1/ε <∞.

Now, Λ is an infinite Kazhdan group and hence non-amenable. We conclude from
Theorem 1.1 that Lit(Λ) > 1. �

We now proceed with the proof of Theorem 5.1. We invoke the following two propo-
sitions from small cancellation theory:

Proposition 5.2. Let Γ be a non-elementary torsion-free hyperbolic group and S a
symmetric finite subset such that the subgroup generated by S is non-elementary. Let
K be a finite subset of Γ. Then there exists a non-elementary torsion-free hyperbolic
quotient π : Γ→ Λ such that π(S) generates Λ, and π is injective on K.

Proof. This is a direct consequence of [29, Theorem 1]. �

The next proposition is a consequence of the inductive step of Gromov’s construction
of random groups that contain (in a certain sense) expander graphs [14]. To make the
dependencies of the involved constants clear, we shall follow the detailed account of
Gromov’s result given by Arzhantseva–Delzant [4]. We will use Coulon’s explanation [8]
of the small cancellation theorem involved in the construction.

We begin by explaining the setup. Given a graph Θ whose edges are oriented and
a finite symmetric subset S of a group Γ, a labelling of Θ by S is a map ` : E(Θ)→ S.
We shall identify two S-labelled graphs Θ and Θ′ if Θ′ can be obtained from Θ by a
collection of moves of the form: flip the orientation of an edge and replace its label s ∈ S
by s−1 ∈ S. Notice that the Cayley graph Cay(Γ, S) carries a natural labelling by S.

Given an S-labelled graph Θ and an S′-labelled graph Θ′ together with a map S →
S′, there is an obvious notion of label-preserving graph homomorphism Θ→ Θ′. When
we say label-preserving graph isomorphism, we shall also require that S → S′ is a
bijection. If p is a path in Θ then we can write p = (eε11 , e

ε2
2 , . . . , e

εk
k ), where each ei is

an oriented edge and εi ∈ {±1}. The label of p is defined as

`(p) = `(e1)ε1`(e2)ε2 . . . `(ek)
εk .

Denote by Γ/Θ the quotient of Γ by the normal closure of the image in Γ of all labels
of closed paths in Θ. Then, for each connected component of Θ, the labelling induces a
label-preserving graph homomorphism to Cay(Γ/Θ, π(S)).

The uniform random labelling of Θ by S is the probability distribution on the set
of labellings of Θ obtained as the product distribution from the uniform distribution on
S for each edge. In other words, given an edge e, for each s ∈ S we label e by s with
probability 1/|S|, and labels of distinct edges are independent. As S is symmetric (and
considering the identification discussed above), this distribution does not depend on the
orientation of Θ. Thus, if Θ was not a priori not oriented, we can simply endow it with
any fixed orientation.

The girth of a graph is the length of a shortest homotopically non-trivial closed path
if such a path exists and∞ otherwise. We denote the diameter of a space Θ by diam(Θ).



12 M. GERASIMOVA, D. GRUBER, N. MONOD, AND A. THOM

Proposition 5.3. Let δ > 0 and A > 0. Then there exist ν > 0 and ε > 0 with the
following property. Suppose Γ is a non-elementary torsion-free hyperbolic group and S
is a finite symmetric generating subset such that ρ(Γ, S) ≤ |S|−δ. Let d ≤ |S|2ε and let
(Θn)n∈N be a sequence of finite connected graphs of vertex degree at most d such that,
for all n, we have

diam(Θn) ≤ A girth(Θn)

and such that |V (Θn)| → ∞. Then, with probability tending to 1 as n → ∞, for the
uniform random edge-labelling of Θn by S, the following hold.

(i) The group Γ/Θn is non-elementary torsion-free hyperbolic.
(ii) The map π : Γ→ Γ/Θn is injective on a ball of radius ν girth(Θn) w.r.t. S.
(iii) The map π1(Θn)→ Γ induced by the labelling is injective.

(iv) Let Tn be an image of the universal cover Θ̃n of Θn in Cay(Γ, S) and Hn a
corresponding conjugate of π1(Θn) in Γ. Then, for any label-preserving graph
homomorphism f : Θn → Cay(Γ/Θn, π(S)), we have f(Θn) ∼= Hn\Tn as labelled
graphs.

The proof following [4] consists of two ingredients: the first ingredient is the study
of geometry of the image of the random words read on Θn in Γ [4, Section 5]. Notice
here that the symmetric measure µ on Γ considered in [4] does not exactly correspond
to our definition in the case that e ∈ S. However, the computations in [4] also apply
(replacing their 2k by our |S|) since, in our situation, the measures on S we use to define
the Markov operator (which gives the spectral radius) and to define the random labelling
coincide with each other. The only adjustment from [4] is that Kesten’s lower bound on
ρ(Γ, S) used below looks slightly different in our case.

The second ingredient is an application of results of geometric small cancellation
theory. For this, we chose to use Coulon’s version [8, Theorem 7.10] of [4, Theorem 3.10].
See [8, page 325] for a remark on the compatibility of the approaches in [4] and in [8].

Proof of Proposition 5.3. Let ρ0 the constant of [8, Theorem 7.10], and let δ2

and ∆2 be the values obtained from that theorem for k = max{8/δ, 1} and ρ = ρ0.
Thus, δ2 and ∆2 only depend on δ. We denote λ := max{8/δ, 1} and by δΓ the
hyperbolicity constant of Cay(Γ, S). By [7, Chapter 3], see also [4, Theorem 3.7]
and [8, Proposition 7.9], there exist constants Cloc(λ), CQC(λ) > 0 depending only
on λ and constants Dloc(λ, δΓ), DQC(λ, δΓ) > 0 depending only on λ and δΓ such
that any (Dloc(λ, δΓ) + Cloc(λ)η)-local (λ, η)-quasi-geodesic in a δΓ-hyperbolic geodesic
space is a global (2λ, η)-quasi-geodesic whose image is (DQC(λ, δΓ) + CQC(λ)η)-quasi-
convex. See [8, Definition 7.8] for the definition of local quasi-geodesic we use. Set

ξ0 := min{ 1
4Cloc(λ) ,

1
4λ ,

δ2
4λCQC(λ) ,

∆2
1000λ} and A′ := max{1, A}. We prove the claim of the

proposition for

ν :=
ρ

80πλ sinh(ρ)
and ε :=

δξ0

4(A′ + ξ0)
.

Suppose d ≤ |S|2ε. Let b := −3
4 ln(ρ(Γ, S)). We claim: (Θn)n∈N is (b, ξ0)-thin in the

sense of [4, Definition 5.3]. (Notice that the definition of “b-thin” in [4] carries an implied
constant ξ0.) For this, it is sufficient to verify, denoting ρn := girth(Θn): for each n ∈ N
and each ξ ∈ [ξ0, 1/2), the number of simple paths in Θn of length ξρn, denoted bn(ξρn),
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satisfies 1
dbn(ξρn) ≤ exp(bξ0ρn). Observe that (A′ + ξ)/(A′ + ξ0) < 3/2. As desired:

1

d
bn(ξρn) ≤ d(A′+ξ)ρn ≤ |S|

A′+ξ
A′+ξ0

δξ0ρn
2 < |S|

3
4
δξ0ρn ≤ ρ(Γ, S)−

3
4
ξ0ρn = exp(bξ0ρn).

As shown in [4, Lemma 5.7], with probability going to 1 as n → ∞, the uniform ran-

dom labelling of Θn by S satisfies that the map Θ̃n → Cay(Γ, S) is a (ρn/2)-local
(λ0, (2/λ0)ξ0ρn)-quasi-isometric embedding, where

λ0 := − 2 ln(|S| − 1)

b+ ln(ρ(Γ, S))
= −8 ln(|S| − 1)

ln(ρ(Γ, S))
≤ 8 ln(|S| − 1)

δ ln |S|
<

8

δ
≤ λ.

Here we use that |S| ≥ 4 since Γ is non-elementary and has no element of order two.

We also have λ0 ≥ 2 by the standard bound (|S| − 1)1/2/|S| ≤ ρ(Γ, S) of Kesten [16] for
any finite symmetric subset of a group. Thus, the map is a (ρn/2)-local (λ, ξ0ρn)-quasi-
isometric embedding.

By our choice of ξ0, we have Cloc(λ)ξ0ρn ≤ ρn/4. Hence, by the aforementioned
result of [7, Chapter 3], if ρn/4 ≥ Dloc(λ, δΓ) (i.e. if n and hence ρn is large enough), the

map Θ̃n → Cay(Γ, S) is a (2λ, ξ0ρn)-quasi-isometric embedding and thus, by our choice
of ξ0, it is a (2λ, ρn/(4λ))-quasi-isometric embedding. Therefore, the shortest length in
Γ of an element represented by the label of a homotopically non-trivial closed path in
Θn is at least ρn/(4λ) > 0, showing that (iii) holds. In the notation of [8, Theorem 7.10]
we have T (Q) ≥ ρn/(4λ). In particular, if ρn is large enough, then δΓ/T (Q) ≤ δ2.

We also deduce that the image of Θ̃n is (DQC(λ, δΓ) + CQC(λ)ξ0ρn)-quasi-convex,
and we have CQC(λ)ξ0ρn ≤ δ2ρn/(4λ). Thus, if ρn is large enough, we have (denoting
the quasi-convexity constant by α as in [8, Theorem 7.10]) α/T (Q) ≤ 2δ2 < 10δ2.

Furthermore, as shown in the proof of [4, Lemma 5.8] (using ξ0 < (∆2/(4λ))/200),
with probability going to 1 as n → ∞, in the notation of [8, Theorem 7.10], we have
∆′(Q) ≤ (∆2/(4λ))ρn and thus ∆′(Q)/T (Q) ≤ ∆2. (Note that the metric estimates on
[[4], page 21] indeed provide an upper bound for ∆′(Q) as defined on [8, page 324].)
Hence, with probability going to 1 as n→∞, all assumptions of [8, Theorem 7.10] are
fulfilled, and we deduce that (i) and (ii) are also satisfied.

Finally, (iv) is a consequence of the proof of [8, Theorem 6.11], which applies here

as explained in the proof of [8, Theorem 7.10]. Let Tn be the image of Θ̃n in Cay(Γ, S)
obtained by sending an element of the fiber of a base vertex v in Θn to e ∈ Γ and
Hn the image of π1(Θn, v) in Γ defined by the labelling. Then Hn acts on Tn by left-

multiplication. In the proof of [8, Theorem 6.11], Coulon constructs a space Ẋ by
rescaling Cay(Γ, S) and attaching topological cones of radius ρ (endowed with a certain
hyperbolic metric) to each Γ-translate of an appropriate neighbourhood Zn of Tn. If R
denotes the set {(gHng

−1, gc) : g ∈ Γ}, where c denotes the apex of the cone over Zn,

then R is a 2ρ-rotation family for the isometric action of Γ on Ẋ.
Consider Kn the normal closure of Hn in Γ and suppose, for some g ∈ Kn and x, y

vertices of Tn, we have gx = y. For 0 < r < ρ, consider the points x′ and y′ above x and
y, respectively, in the cone over Zn ⊇ Tn at distance r from c. Then, since gx′ = y′, we
have d(c, gc) ≤ d(c, y′) + d(gx′, gc) = 2r < 2ρ. This implies that c = gc because, as R is
a 2ρ-rotation family, the translates of c are 2ρ-separated. Hence, g is in the stabilizer of c
in Kn, which is Hn by [8, Corollary 3.13]. Thus, on the level of vertex sets, the quotient
of Tn given by the map π : Γ → Kn\Γ is indeed Hn\Tn. (Recall that Kn\Γ = Γ/Θn.)
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On the level of labelled graphs, our claim follows with the additional observation that
if the injectivity radius obtained in (ii) is greater than 2, then π restricted to S is a
bijection onto π(S). This holds if ρn is large enough. �

Proof of Theorem 5.1. We derive our Theorem 5.1 from the two propositions.
Let 0 < δ < 1/2 be arbitrary. By [18, Theorem 7.3.12], there exists a universal constant
A > 0 such that for every odd prime p, there exists a sequence of (p+ 1)-regular graphs
(Θn)n∈N satisfying the conditions of Proposition 5.3. We show that if ε is obtained from
Proposition 5.3 for these values of δ and A, then ε′ = min{1 − 2δ, ε} satisfies the claim
of Theorem 5.1.

Let Γ be a torsion-free non-elementary hyperbolic group, K a finite subset and S a
finite symmetric subset. If S generates an elementary subgroup, then this subgroup is
in particular amenable, and we have ρ(Γ, S) = 1, i.e. we have e(Γ, S) = 1 and there is
nothing to prove taking Λ = Γ. Thus, assume S generates a non-elementary subgroup.
If S does not generate Γ, then we apply Proposition 5.2 to obtain a quotient π0 : Γ→ Λ0

that is injective on K, such that Λ0 is non-elementary torsion-free hyperbolic and π0(S)
generates Λ0. It is then sufficient to prove the claim of the theorem for Λ0, π0(S), and
π0(K). Thus, we henceforth assume that Γ is generated by S.

If ρ(Γ, S) ≥ |S|−δ, then e(Γ, S) ≥ 1
2ρ(Γ, S)2 ≥ 1

2 |S|
−2δ ≥ 1

2 |S|
−1+ε′ and we are

done taking Λ = Γ. Observe from Lemma 4.4 that, whenever F ⊂ Λ is finite, then

e(Γ, S) ≥ |ES(F )|
|F ||S| . If |S|ε ≤ 2, then, since any Cayley graph contains either a cycle or

an infinite line, e(Γ, S) ≥ 1/|S| ≥ 1
2 |S|

−1+ε ≥ 1
2 |S|

−1+ε′ . Thus, we henceforth assume

ρ(Γ, S) < |S|−δ and |S|ε > 2.
Since |S|ε > 2, using Bertrand’s Postulate [36, p. 382], we find an odd prime p with

b|S|εc < p < 2b|S|εc. Then |S|ε < p + 1 ≤ 2|S|ε < |S|2ε. Set d := p + 1. Then, by
the aforementioned result of [18], we may choose a sequence of d-regular graphs as in
Proposition 5.3, with A as above. Let ν be as obtained from the proposition.

By Proposition 5.3, there exist arbitrarily large n for which there exist labellings of
Θn by S satisfying the conclusions (i)–(iv). We choose one such labelling of a Θn for
which ν girth(Θn) is large enough such that a ball of radius ν girth(Θn) in Γ contains
K ∪ S. We show that Λ := Γ/Θn satisfies the conclusion of Theorem 5.1. Following
Proposition 5.3 (i) and (ii), all that remains to argue is that Λ contains a subset F such

that |Eπ(S)(F )| ≥ 1
2 |F ||π(S)|ε so that we get e(Λ, π(S)) ≥ 1

2 |S|
−1+ε′ as required.

Lemma 5.4. Let f(Θn) be one of the images of Θn in Cay(Γ/Θn, π(S)). Then

|E(f(Θn))|
|V (f(Θn))|

≥ |E(Θn)|
|V (Θn)|

.

This lemma only requires conclusions (iii) and (iv) of Proposition 5.3. It applies
to any group Γ, any subset S and any finite S-labelled graph Θn for which these two
conclusions as well as |E(Θn)| ≥ |V (Θn)| hold.

Proof. In the notation of Proposition 5.3 (iv), let Hn\Tn =: Ω. For ease of notation,
set Θ := Θn, T := Tn, and H := Hn. Recall from Proposition 5.3 (iv) that Ω ∼= f(Θ).

If T is obtained by mapping Θ̃ to Cay(Γ, S) by sending an element of the fiber F of
a base vertex v in Θ to the identity in Γ, then H ≤ Γ is the set of elements of Γ in
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the image of F . Thus V (T ) contains H and, since T is connected, H is the subset of
Γ represented by the set W of words read on paths in T that connect elements of H.
W is also the set of words read on closed paths in H\T based at the trivial coset H.
Thus, the image of π1(Ω, H) in Γ by the homomorphism induced by the labelling is H.
By Proposition 5.3 (iii), H is an isomorphic copy of π1(Θ, v). Since π1(Ω, H) surjects
onto H, we have rank(π1(Ω, H)) ≥ rank(π1(Θ, v)). Now we may express the rank of the
fundamental group of a graph in terms of numbers of edges and vertices, thus obtaining:
|E(Ω)| − |V (Ω)|+ 1 ≥ |E(Θ)| − |V (Θ)|+ 1. Since |V (Ω)| ≤ |V (Θ)| and |E(Θ)| ≥ |V (Θ)|
by construction, this yields:

|E(Ω)|
|V (Ω)|

=
|E(Ω)| − |V (Ω)|

|V (Ω)|
+ 1 ≥ |E(Θ)| − |V (Θ)|

|V (Ω)|
+ 1 ≥ |E(Θ)| − |V (Θ)|

|V (Θ)|
+ 1 =

|E(Θ)|
|V (Θ)|

.

Thus, the proof is finished in view of the isomorphism Ω ∼= f(Θ) = f(Θn). �

We are now ready to conclude the proof of Theorem 5.1: if F := V (f(Θn)), using
the fact that Θn is d-regular and that π is injective on S, we have using Lemma 5.4:

|Eπ(S)(F )|
|F |

≥ |E(f(Θn))|
|V (f(Θn))|

≥ |E(Θn)|
|V (Θn)|

=
d

2
≥ 1

2
|S|ε =

1

2
|π(S)|ε

and hence e(Λ, π(S)) ≥ 1
2 |π(S)|−1+ε ≥ 1

2 |π(S)|−1+ε′ as required. This finishes the proof
of Theorem 5.1. �

6. Forests, `2-invariants and the proof of Theorem 1.3

Recall that a forest on a group Γ is a subset F ⊆ Γ × Γ such that the resulting
graph (Γ, F ) has no cycles. The collection FΓ of all forests on Γ is a closed Γ-invariant
subspace of the compact Γ-space of all subsets of Γ × Γ with respect to usual product
topology. A random forest is a Γ-invariant Borel probability measure µ on FΓ. The
expected degree of a vertex in a random forest does not depend on the vertex; it is thus
called the expected degree of the forest, denoted by deg(µ). We further recall that
the width of µ is the number width(µ) ≥ deg(µ) of vertices that neighbour a given
vertex with positive probability.

The following is recorded in Proposition 2.3 of [12] when p = 2.

Proposition 6.1. Let µ be a random forest of finite width on Γ. Then

‖fµ‖T1(Γ) ≤ 2 and ‖fµ‖p ≥ deg(µ)
(
width(µ)

)− p−1
p .

Proof. The first inequality is unchanged from [12], and the second comes from
replacing Cauchy–Schwarz by Hölder. The countability assumption in [12] is not needed
here. �

This change from 2 to p gives the following version of Theorem 1.5 of [12]. We denote

by β
(2)
1 (Λ) the first `2-Betti number of a group Λ and by rk(Γ) the minimal number of

generators.

Theorem 6.2. Let Γ be a group and ε > η(Γ). Then

sup
Λ

β
(2)
1 (Λ)

rk(Λ)ε
<∞,
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where the supremum runs over all finitely generated subgroups Λ of Γ.

Proof. Suppose that T1(Γ) ⊆ `p(Γ). Then Theorem 1.3 of [12], after replacing 2
by p in its proof using Proposition 6.1 above, states that

deg(µ)
p
p−1

width(µ)

remains bounded as µ ranges over all random forests of finite width defined on all
countable subgroups Λ of Γ. The rest of the proof is unchanged from [12], as follows.
There is a particular random forest on Λ, the free uniform spanning forest, which is

known to have width at most 2 rk(Λ) and degree at least 2β
(2)
1 (Λ). The statement now

follows since we can take p such that (p− 1)/p = ε by Theorem 1.4. �

Proof of Corollary 1.9. We argue exactly as in [12]: for any finite index sub-
group Λ < Γ, one has

β
(2)
1 (Λ) = [Γ : Λ]β

(2)
1 (Γ) and rk(Λ) ≤ [Γ : Λ] rk(Γ).

The equality above is a basic property of `2-Betti numbers [19, 1.35(9)]; the inequality
is an elementary consequence of the Reidemeister–Schreier algorithm [21, Prop. 4.1].

Therefore, Theorem 6.2 shows that η(Γ) = 0 if 0 < β
(2)
1 (Γ) <∞ and if Γ has subgroups

of arbitrarily large finite index, which is the case for residually finite groups. �

Proof of Theorem 1.3. This result is proved using Theorem 6.2 exactly as Osin
used Theorem 1.5 of [12] for his torsion non-unitarisable group in [30]. First, Theo-

rem 2.3 in [30] gives a sequence Γn of n-generated torsion groups such that β
(2)
1 (Γn) ≥

n− 2. Next, by a result of Ol′shanskĭı [28], there is a simple 2-generated torsion group
Γ containing

⊕
n Γn and hence each Γn. If now we had Lit(Γ) < ∞, then we would

contradict Theorem 6.2 by choosing ε = (p− 1)/p for p with Lit(Γ) < p <∞. �

7. Asymptotics of the spectral radius

7.A. Relation with η(Γ). Considering the definitions of r(Γ) and of η(Γ), the
Cheeger inequalities in the form of Remark 2.2 imply the following.

Proposition 7.1. For any infinite group Γ we have r(Γ) ≤ η(Γ) ≤ 2r(Γ). �

Thus we see in hindsight that the proof of Theorem 1.1 for η(Γ) was really a statement
about r(Γ). We shall therefore investigate the latter invariant a bit further.

Here is the summary of what we know so far about r(Γ).

Proposition 7.2. Let Γ be any infinite group.

(1) If Γ is amenable, then r(Γ) = 0.
(2) If Γ is non-amenable, then r(Γ) > 0.
(3) For any group Γ we have r(Γ) ≤ 1/2.
(4) If Γ contains a non-abelian free subgroup, then r(Γ) = 1/2 and η(Γ) = 1.

Proof. Combining Theorem 1.1 and Theorem 1.4, we have η(Γ) = 0 if and only if
Γ is amenable. Thus (1) and (2) follow from Proposition 7.1.
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Next, we recall that ρ(Γ, S) ≥ (|S|−1)1/2/|S| holds any symmetric finite set S in any
group Γ (this goes back to Kesten [16]). This implies (3) since |S| → ∞. Finally, for (4),
we recall from Theorem 1.4 that η(Γ) = 1 if Γ contains a non-abelian free subgroup;
thus r(Γ) ≥ 1/2 in that case, by Proposition 7.1. �

Remark 7.3. Let us note that r(Γ) = 1/2 does not characterise the existence of
free subgroup. For example, if we again consider the group constructed by Osin in [30],
we will have the following: we know that Lit(Γ) = ∞ and hence η(Γ) = 1. So we have
1 = η(Γ) ≤ 2r(Γ) or equivalently r(Γ) ≥ 1/2. Therefore r(Γ) = 1/2 holds in view of
point (3) in Proposition 7.2.

7.B. Behaviour under quotients. The definition of r implies r(Λ) ≤ r(Γ) when
Λ is a subgroup of Γ. Just like for Lit (or equivalently η), we also have monotonicity for
quotients:

Lemma 7.4. If π : Γ→ Λ is an epimorphism, then r(Γ) ≥ r(Λ) holds.

Proof. Given a finite symmetric set Σ ⊆ Λ, any symmetric set S ⊆ Γ that is
mapped 1-to-1 onto Σ by π satisfies ρ(Γ, S) ≤ ρ(Λ,Σ). This implies the statement in
the case where we can always find such a set S. However a potential obstruction to the
symmetry of S arises in case π creates new 2-torsion.

In the general case, we can assume ker(π) non-trivial and hence we can always find
a symmetric set S ⊆ Γ that is mapped 2-to-1 onto Σ. We have again ρ(Γ, S) ≤ ρ(Λ,Σ)
and now

− ln ρ(Γ, S)

ln |S|
≥ − ln ρ(Γ,Σ)

ln 2 + ln |Σ|
implies the statement since the size of Σ goes to infinity. �

Using a classical result of Kesten [16] and a result from [37], we shall establish
equality for amenable kernels.

Proposition 7.5. If the kernel of the epimorphism π : Γ → Λ is amenable, then
r(Γ) = r(Λ) holds.

Contrary to the case of Kesten’s statement, we do not see why the above proposition
should admit a converse.

Proof of Proposition 7.5. Fix S ⊆ Γ a finite symmetric subset. Consider the
multiplicity function a : Λ → N defined by a(g) = |{h ∈ S : π(h) = g}|. Applying
Corollary 4 of [37] on Λ, there exists an integer k ≥ 1 and a symmetric finite set Σ ⊆ Λ
such that a(g) ≥ k for all g ∈ Σ and satisfying

(7) k|Σ| ≥ |S|
4 ln |S|

.

We can thus choose a subset of S which is mapped k-to-1 onto Σ by π. We want,
however, a symmetric set; the issue is the same as in the proof of Lemma 7.4 but with
the additional constraint that we will need a subset of S. We can indeed choose a
symmetric S′ ⊆ S if we only require that π maps S′ onto Σ with each fibre containing
either k or k + 1 elements. We write Σ = Σ0 t Σ1 for the corresponding partition of
Σ, noting that both Σi can be chosen symmetric since we determine them according to
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2-torsion properties. Since ker(π) is amenable, Corollary 2 in [16] states that ρ(Γ, S′)
coincides with the spectral radius of the Markov operator π(MS′) on Λ. Explicitly, we
have

π(MS′) = c
(
k1Σ0 + (k + 1)1Σ1

)
,

where c is the normalization constant ensuring c(k|Σ0| + (k + 1)|Σ1|) = 1. Therefore
MΣ ≤ k+1

k π(MS′) ≤ 2π(MS′) pointwise and hence, using the monotonicity of the spectral
radius, we deduce ρ(Λ,Σ) ≤ 2ρ(Γ, S′). Moreover, ρ(Γ, S′) ≤ ρ(Γ, S) · |S|/|S′| holds also
by monotonicity because S′ ⊆ S. On the other hand, combining k|Σ| ≤ |S′| with the
estimate (7) above, we have |S|/|S′| ≤ 4 ln |S|. In summary, we have

ρ(Λ,Σ) ≤ 8 ln |S| · ρ(Γ, S).

Together with the trivial estimate |Σ| ≤ |S|, we can conclude

− ln ρ(Λ,Σ)

ln |Σ|
≥ − ln ρ(Γ, S)− ln ln |S| − ln 8

ln |S|
,

which yields r(Λ) ≥ r(Γ) since |S| goes to infinity. This completes the proof in view of
Lemma 7.4. �

7.C. An alternative expression for r(Γ). Finally, we record that we can replace
the limes inferior by an infimum in the definition of r(Γ).

Theorem 7.6. For any group Γ we have r(Γ) = − inf
S

ln ρ(Γ, S)

ln |S|
.

This statement is a formal consequence of the following result of one of the authors:

Theorem 7.7 ([37]). Let Σ be a finite symmetric subset of a group Γ. For any

0 < ε < − ln ρ(Γ,Σ)
ln |Σ| there exists a sequence (Sk) of finite symmetric subsets Sk ⊆ Γ whose

size tends to infinity and such that ρ(Γ, Sk) ≤ |Sk|−ε holds for all k.

Proof. Note that the statement is empty unless Σ generates a non-amenable group.
The proof of Corollary 6 in [37] gives a sequence (Sk) such that the desired inequality

holds for all large k when ε = 1
2(− ln ρ(Γ,Σ)

ln |Σ| ). But this proof never used more than

ε < − ln ρ(Γ,Σ)
ln |Σ| ; varying ε will only change the first index k beyond which the estimate

holds, and hence change how to truncate the sequence if we want the estimate for all
k. �

8. Applications and open problems

8.A. Rapid decay property. Let 1 ≤ p < ∞. Recall that a group Γ has the p-
rapid decay property RDp if there exists a length function L on Γ and a polynomial
P such that

(8) ‖a‖p→p ≤ P (d) ‖a‖p
is satisfied for every a ∈ C[Γ] and d ≥ 0 such that a is supported in an L-ball of radius d.
Note that when Γ is finitely generated, it is equivalent to require (8) for some (or any)
word-length L. We refer to [17] for background and recall the following:
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• For p = 2, RD2 is the classical rapid decay property RD introduced by Jolis-
saint [15].
• RD1 always holds and RDp is equivalent to polynomial growth if p > 2.
• RDp implies RDq if p > q.

In other words, as p decreases from 2 to 1, property RDp is weakening of RD until
no restriction is left.

Proposition 8.1. Let Γ be a non-amenable group.
If Γ has property RDp for p ∈ [1, 2], then r(Γ) ≥ 1− 1/p.
In particular, if Γ has property RD, then r(Γ) = 1/2.

In view of Corollary 1.5, Proposition 8.1 implies the following.

Corollary 8.2. Let Γ be a non-amenable group with property RDp for p ∈ [1, 2].
Then Lit(Γ) ≥ p. �

Proof of Proposition 8.1. Fix a length L on Γ satisfying the inequality (8) and
consider any symmetric finite set S ⊆ Γ. Then the Markov operator MS on `p(Γ) has
norm at most

‖MS‖p→p ≤ P (d) ‖MS‖p = P (d) |S|
1−p
p ,

where d is the radius of a ball containing S. Let q be the conjugate exponent of p. Since
S is symmetric, the adjoint on `q(Γ) of the Markov operator MS on `p(Γ) is also given

by MS . It follows that ‖MS‖q→q ≤ P (d) |S|(1−p)/p. Since 2 is the harmonic mean of p

and q, the Riesz–Thorin theorem yields ‖MS‖2→2 ≤ P (d) |S|(1−p)/p.
Since Γ is non-amenable, it contains a finitely generated subgroup of exponential

growth. That is, there is S1 ⊆ Γ finite symmetric and ω > 1 with

ωd ≤ |Sd1 | ≤ |S1|d ∀ d.
Upon adjusting L (and hence P ) by a constant, Sd1 lies in an L-ball of radius d for each
d ∈ N. Now we have

ρ(Γ, Sd1) = ‖MSd1
‖2→2 ≤ P (d) |S1|d

1−p
p

and we can conclude

− ln ρ(Γ, Sd1)

ln |Sd1 |
≥
d p−1

p ln |S1|
d ln |S1|

− lnP (d)

d lnω
=
p− 1

p
− lnP (d)

1
d

lnω
.

Since P is a polynomial, the limit as d→∞ of the right hand side is (p−1)/p = 1−1/p,
as required. The additional statement follows since we always have r(Γ) ≤ 1/2. �

8.B. Burnside groups. We first recall the definition of the cogrowth α associated
to a finitely generated group Γ endowed with a choice of m generators. This choice
corresponds to an epimorphism π : Fm → Γ from the free group Fm of rank m, which
we endow with the word-length L associated to the chosen basis. Then the definition is

α = lim sup
k→∞

∣∣{w ∈ kerπ : L(w) = k}
∣∣ 1k .

We assume that π is not the identity; one then has

(9)
√

2m− 1 ≤ α ≤ 2m− 1.
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The first inequality is proved in Statement 3.1 of [13] and the second holds by definition.
Let now S ⊆ Γ be the set consisting of the chosen generators together with their inverses.
Then Theorem 4.1 in [13] states

ρ(Γ, S) =

√
2m− 1

2m

(√
2m− 1

α
+

α√
2m− 1

)
,

which, with the lower bound of (9) for α, implies

(10) ρ(Γ, S) ≤ α/m.
We now turn to the free Burnside group B(m, a) of exponent a on m generators. As
explained in [6, §60] (see also Remark 8.4 below), Adyan proved in [2] that there is
δ < 2/3 such that the estimate

α ≤ (2m− 1)δ

holds for m ≥ 2 and a ≥ 665 odd. Therefore, using (10), we have for the corresponding
symmetric set S the estimate

(11) ρ(B(m, a), S) ≤ (2m− 1)−
1
3

for all m large enough. We are now ready to deduce the following.

Theorem 8.3. Let B(m, a) be the free Burnside group of exponent a on m generators,
where m ≥ 2 and a ≥ 665 odd.

Then r(B(m, a)) ≥ 1/3 and hence Lit(B(m, a)) ≥ 3/2.

Proof. The second statement follows from the first by Corollary 1.5. For the first
statement, it is sufficient to establish the case m = 2. Indeed, the universal property
implies that B(2, a) is a quotient of B(m, a) and therefore we can apply Lemma 7.4 to
reduce ourselves to B(2, a).

We shall nonetheless use the groupsB(m, a), as follows. It was proved by Širvanjan [34]
that B(m, a) embeds into B(2, a) (still under the assumption a ≥ 665 odd). Therefore,
we obtain a sequence (Sm) of symmetric sets Sm ⊆ B(2, a) for which the estimate (11)
implies

ρ(B(2, a), Sm) ≤ (2m− 1)−
1
3 .

We deduce

r(B(2, a)) ≥ lim sup
m→∞

− ln ρ(B(2, a), Sm)

ln |Sm|
≥ 1

3
lim sup
m→∞

ln(2m− 1)

ln 2m
=

1

3
,

as desired. �

Remark 8.4. Given m ≥ 2, Adyan [2] provides upper bounds for α that converge to

(2m − 1)1/2+2/q as the odd exponent a goes to infinity. More precisely, these estimates
follow from Theorem 3 in [2] (there is a misprint in this translation, the exact formula
is in the corresponding theorem in the original [1]). In the notation of that formula, we
have γR → 1 and δR →∞ as a→∞ (odd), and the claim follows.

Here q = 90 is a fixed parameter from [3]. It is mentioned in [3, VI.2.16 (page
254)] that the value of q can be increased at the cost of increasing also the exponent a.
Hence, increasing the parameter q and a accordingly, the proof of Theorem 8.3 would
show that there are free Burnside groups B(m, a) with r(B(m, a)) bounded below by
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values arbitrarily close to 1/2 and, consequently, Lit(B(m, a)) bounded below by values
arbitrarily close to 2.

It was proven by Ozawa and one of the authors [25] that the groups Γ = B(m,na)
are non-unitarisable for m,n ≥ 2, a ≥ 665, n, a odd. This may seem to indicate that
Lit(Γ) ≥ 2. In view of the loss of a factor of two in the comparison between η(Γ) and
r(Γ), one might even speculate that Lit(Γ) ≥ 3.

8.C. Colourings. We define the maximal average degree of a graph G by

mad(G) = sup
F

2|E(F )| − |L(F )|
|F |

,

where F runs through all finite subsets of vertices. In the case of Cayley graph Cay(Γ, S),
we have

(12) mad(Cay(Γ, S)) = |S| e(Γ, S)

by Lemma 4.4. On the other hand, there is a well-known relation between mad(G) and
colourings:

Proposition 8.5. Let G be any locally finite graph without loops. If mad(G) ≤ k,
then G is (k + 1)-colourable.

Proof. By a compactness argument, it is enough to prove the claim for finite graphs.
Suppose by induction that we have proved the statement for any graph with n vertices
and let G be a graph with n+ 1 vertices. Since mad(G) ≤ k, we can find a vertex v of
degree ≤ k. Now, the graph G \ {v} is (k + 1)-colourable by induction and there is one
colour left for v. �

We can now deduce the

Proof of Corollary 1.8. In view of Theorem 1.4, it is equivalent to prove that
for every η′ < η(Γ) there are arbitrarily large finite symmetric sets S for which Cay(Γ, S)

is |S|1−η′-colourable. Choose η′ < η′′ < η(Γ). By definition of η(Γ), there are arbitrarily

large S with e(Γ, S) < |S|−η′′ . Since |S| goes to infinity, there is no loss of generality in
possibly removing the identity from S to avoid loops. By (12), we have mad(Cay(Γ, S)) <

|S|1−η′′ and hence Proposition 8.5 implies that Cay(Γ, S) is (|S|1−η′′ + 1)-colourable.

Since |S| goes to infinity and η′ < η′′, we can assume that |S|1−η′′ + 1 is less than

|S|1−η′ − 1 and the proof is complete. �

8.D. Open problems. It would be very desirable to find more examples of groups
Γ with 1 < Lit(Γ) <∞. Perhaps this would give some insight into the following:

Question 8.6. Is there any restriction on the value of the Littlewood exponent?

Of particular interest is the following specification of Question 8.6.

Question 8.7. Is the interval (1, 2] a forbidden range for the Littlewood exponent?

Recall that unitarisable groups satisfy Lit(Γ) ≤ 2. Therefore, in view of Theorem 1.1,
Dixmier’s problem is equivalent to the conjunction of Question 8.7 with the following.
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Question 8.8. Does the condition Lit(Γ) ≤ 2, or equivalently η(Γ) ≤ 1/2, charac-
terise unitarisability?

In other words, Dixmier’s problem is decomposed into two apparently independent
open problems: Question 8.7 and Question 8.8.

There is however a form of overlap between these two questions, as can be shown
using the main result of [25], as follows.

Corollary 8.9. If Lit(Γ) ≤ 2 characterises unitarisability, then (1, 4/3] is a for-
bidden range for the Littlewood exponent.

Proof. In view of Theorem 1.4, we need to prove that η(Γ) ≤ 1/4 implies that Γ
is amenable. By Corollary 1.5, we have r(Γ) ≤ 1/4. Proposition 7.5 implies that the
wreath product Z o Γ also satisfies r(Z o Γ) ≤ 1/4. Appealing again to Corollary 1.5,
we have η(Z o Γ) ≤ 1/2. Our assumption now implies that Z o Γ is unitarisable. It was
proved in [25] that this implies that Γ is amenable. �

Question 8.10. Let B(m, a) be the free Burnside group of exponent a on m genera-
tors, where m ≥ 2 and a ≥ 665 odd. Can one give more precise bounds for Lit(B(m, a))?
Do we have Lit(B(m, a)) =∞?

It is unknown whether unitarisability is preserved under direct products of groups.
It is easily seen to be preserved under extensions with amenable quotients, but unlikely
to be preserved under extensions with amenable kernels due to the main result of [25]
cited above.

Question 8.11. How does the Littlewood exponent behave with respect to direct prod-
ucts of groups? How about extensions with amenable quotients or amenable kernels?

If Lit, or equivalently η, were preserved under extensions with amenable kernels in
analogy to Proposition 7.5, then the same argument as in Corollary 8.9 above would
show that Question 8.8 implies Question 8.7 and hence becomes equivalent to Dixmier’s
problem.

Finally, we recall that significant progress on the Dixmier problem was obtained
by Pisier [32], who introduced an exponent measuring the cost of unitarising a given
representation. Using the theory of operator spaces, Pisier proved that his exponent
takes only half-integer values and that the lowest value characterises amenability.

Question 8.12. Is there a relation between Pisier’s exponent and the Littlewood
exponent?
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We are grateful to Rémi Coulon for suggesting that better bounds on Lit(B(m, a))
should be available when a goes to infinity, and we thank Denis Osin for two helpful
comments on the first version.

This research was supported in part by the ERC Consolidator Grant No. 681207.
The results presented in this paper are part of the PhD project of the first author.



CHEEGER CONSTANTS AND UNITARISABILITY OF GROUPS 23

References

[1] Sergei I. Adyan, Random walks on free periodic groups, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982),
no. 6, 1139–1149 (Russian).

[2] , Random walks on free periodic groups, Mathematics of the USSR-Izvestiya 21 (1983), no. 3,
425–434.

[3] , The Burnside problem and identities in groups, Ergebnisse der Mathematik und ihrer Gren-
zgebiete, vol. 95, Springer-Verlag, Berlin-New York, 1979. Translated from Russian by John Lennox
and James Wiegold.

[4] Goulnara Arzhantseva and Thomas Delzant, Examples of random groups (2008), preprint.
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[28] Alexander Yu. Ol′shanskĭı, Embedding of countable periodic groups in simple 2-generator periodic
groups, Ukrain. Mat. Zh. 43 (1991), no. 7-8, 980–986 (Russian, with Ukrainian summary); English
transl., Ukrainian Math. J. 43 (1991), no. 7-8, 914–919 (1992).

[29] , On residualing homomorphisms and G-subgroups of hyperbolic groups, Internat. J. Algebra
Comput. 3 (1993), no. 4, 365–409.

[30] Denis V. Osin, L2-Betti numbers and non-unitarizable groups without free subgroups, International
Mathematics Research Notices 2009 (2009), no. 22, 4220–4231.

[31] Gilles Pisier, Similarity problems and completely bounded maps, Lecture Notes in Mathematics,
vol. 1618, Springer-Verlag, Berlin, 1996.

[32] , The similarity degree of an operator algebra, Rossĭıskaya Akademiya Nauk. Algebra i Analis
10 (1998), no. 1, 132–186.

[33] Tadeusz Pytlik and Ryszard Szwarc, An analytic family of uniformly bounded representations of
free groups, Acta Math. 157 (1986), no. 3-4, 287–309.
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