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Abstract. We study property (T ) and the fixed point property for actions
on Lp and other Banach spaces. We show that property (T ) holds when L2

is replaced by Lp (and even a subspace/quotient of Lp), and that in fact it
is independent of 1 ≤ p < ∞. We show that the fixed point property for Lp

follows from property (T ) when 1 < p < 2 + ε. For simple Lie groups and their
lattices, we prove that the fixed point property for Lp holds for any 1 < p <∞
if and only if the rank is at least two. Finally, we obtain a superrigidity result
for actions of irreducible lattices in products of general groups on superreflexive
spaces.

1. Introduction and the Main Results

1.a. Since its introduction by Kazhdan in [Ka], property (T ) became a funda-
mental concept in mathematics with a wide range of applications to such areas
as:
• The structure of infinite groups – finite generation and finite abelanization of
higher rank lattices [Ka], obstruction to free or amalgamated splittings [Wa], [A],
[M4] structure of normal subgroups [M2] etc.;
• Combinatorics – the first construction of expanders [M1] (see [Lu]);
• Operator algebras – factors of type II1 whose fundamental group is countable [C]
or even trivial [Po1]; rigidity theorems for the factors associated to Kazhdan
group [Po2];
• Ergodic theory – rigidity results related to Orbit Equivalence [Po3],[Hj]; the
Banach–Ruziewicz problem [M3],[Su];
• Smooth dynamics – local rigidity [FM1],[FM2]; actions on the circle [N1] (and [PS],[Rz]).

It has also been an important tool in providing interesting (counter) examples:
to Day’s “von Neumann conjecture” [Gr1, 5.6] and in the context of the Baum–
Connes conjecture [HLS] (related to [Gr2]).

Initially defined in terms of unitary representations, property (T ) turned out to
be equivalent to Serre’s property (FH) – a fixed point property for affine isomet-
ric actions on Hilbert spaces that can be rephrazed as cohomological vanishing.
(The equivalence holds for σ-compact groups, in particular all locally compact
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second countable groups, and was proved by Delorme [D] and Guichardet [Gu].
As pointed out by Y. de Cornulier [Cr], uncountable discrete groups that have
G. Bergman’s cofinality property [Bn] have (FH) but fail (T ).) Some of the above
applications use this latter characterization. Recently Shalom [Sh] described the
reduced 1-cohomology with unitary coefficients for irreducible lattices in products
of completely general locally compact groups. This led to a list of new rigidity
results and added such lattices to the list of “naturally rigid” groups. For further
details and more references on these topics, we suggest the monography [HV] and
the forthcoming [BHV].

1.b. Motivated by these broad themes: property (T ), property (FH), lattices in
semisimple groups and in general products, we study similar notions in the broader
framework of Banach spaces rather than Hilbert spaces. Some of the results below
apply to general superreflexive Banach spaces, whilst some are specific to the
subclass of Lp(µ)-spaces with 1 < p < ∞. (A Banach space is superreflexive if it
admits an equivalent uniformly convex norm, see Proposition 2.3 below.)

One of the motivations to consider such questions came from the work of Fisher
and Margulis [FM1], [FM2], in which an Lp analogue of property (T ) with p � 2
allowed them to weaken smoothness assumptions in their results.

The harder question of fixed point results for affine actions on Lp for p � 2
(see Theorem B below) has applications e.g. for actions on the circle [N2], [BHV].

1.c. Let G be a topological group and B a Banach space. By a linear isometric
G-representation on B, we shall mean a continuous homomorphism % : G → O(B)
where O(B) denotes the (“orthogonal”) group of all invertible linear isometries
B → B (see Lemma 2.4 for a clarification of the continuity assumption). We say
that such a representation almost has invariant vectors if

(1.i) ∀ compact subset K ⊆ G, inf
‖v‖=1

diam(%(K)v) = 0.

Denote by B%(G) the closed subspace of G-fixed vectors; the G-representation % de-
scends to a linear isometric G-representation %′ on B′ = B/B%(G) (see Remark 2.11
for more details in the case of superreflexive spaces). We shall use the following
as a Banach space analogue of Kazhdan’s property (T ):

Definition 1.1. Let B be a Banach space. A topological group G is said to have
property (TB) if for any continuous linear isometric G-representation % : G →
O(B) the quotient G-representation %′ : G → O(B/B%(G)) does not almost have
G-invariant vectors.

Note that if B is a Hilbert space, %′ is isomorphic to the restriction of % to
the orthogonal complement (B%(G))⊥ of the subspace of %(G)-invariants. Thus for
Hilbert spaces the above definition agrees with Kazhdan’s property (T ).

Let µ be a σ-finite measure on a standard Borel space (X,B). We are most
interested in the family Lp(µ), 1 < p < ∞, of Banach spaces, which are close
relatives of Hilbert spaces. They also possess a rich group of linear isometries
O(Lp(µ)).
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Theorem A. Let G be a locally compact second countable group. If G has Kazh-
dan’s property (T ) then G has property (TB) for Banach spaces B of the following
types:

(i) Lp(µ) for any σ-finite measure µ and any 1 ≤ p < ∞.
(ii) A closed subspace of Lp(µ) for any 1 < p < ∞, p 6= 4, 6, 8, . . ..
(iii) A quotient space of Lp(µ) for any 1 < p < ∞, p 6= 4

3 , 6
5 , 8

7 , . . ..
If G has (TLp([0,1])) for some 1 < p < ∞ then G has Kazhdan’s property (T ).

1.d. Next we consider group actions by isometries on Banach spaces. By the
Mazur–Ulam theorem, such actions are always affine with the linear part being
isometric as well (working with real Banach spaces).

Definition 1.2. We say that G has property (FB) if any continuous action of G
on B by affine isometries has a G-fixed point.

When B is a Hilbert space this is precisely Serre’s property (FH). Delorme [D]
and Guichardet [Gu] proved that properties (T) and (FH) are equivalent for σ-
compact groups. Below we summarize the relations between properties (T ) and
(FB) which hold for general groups.

Theorem 1.3. For a locally compact second countable group G we have
(1) (FB) implies (TB) for any Banach space B.
(2) (T ) implies (FB) for closed subspaces B of Lp(µ) where 1 < p ≤ 2.

Likewise for subspaces of L1 and of the pseudo-normed spaces Lp(µ),
0 < p < 1, except one obtains only bounded orbits instead of fixed points†.

(3) (T ) also implies (FB) for closed subspaces of Lp(µ) for 2 ≤ p < 2 + ε,
where ε = ε(G) > 0 might depend on the Kazhdan group G.

Remarks 1.4. (1) is essentially due to Guichardet [Gu] as his proof of (FH) ⇒
(T ) applies to all Banach spaces. We give two proofs for (2) reducing the problem,
in both, to one of the proofs of (T ) ⇒ (FH). We note that the particular case
of p = 1 in (2) is one of the results of [RS]. Statement (3) is due to Fisher
and Margulis (unpublished). With their kind permission we have included their
argument here (see Section 3.c).

The above results imply that any locally compact group G with Kazhdan’s
property (T ) has property (TLp) for all 1 < p < ∞, and has the fixed point
property (FLp) for 1 < p < 2 + ε(G). It turns out, however, that many Kazhdan
groups (e.g. hyperbolic ones) do not have property (FLp) for large values of p.

Indeed, in his study of Lp-cohomology, Pansu [Pa] proved that Spn,1(R) and
cocompact lattices in these groups have a non-trivial first Lp-cohomology LpH1

for all p > 4n + 2. This is equivalent to asserting that for p > 4n + 2 these
groups admit fixed-point-free affine isometric actions on Lp(G) with linear part
being the regular representation. Hence these groups do not have property (FLp)
for p > 4n + 2, whilst enjoying (T ).

†See Example 2.23 for an example without fixed point.
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More generally, LpH1(Γ) and hence H1(Γ, `pΓ) is non-zero for any non-elementary
hyperbolic group when p is large enough. Indeed, Bourdon and Pajot identify this
cohomology with a Besov space of functions on the boundary, which they prove to
be non-trivial as soon as p is larger than the Hausdorff dimension of an Ahlfors-
regular metric on the boundary, see Corollaire 6.2 in [BP]. Again, this contradicts
(FLp) for large p.

More recently, using Mineyev’s homological bicombings [Mi], Yu [Y] gave a very
short proof that any hyperbolic group Γ admits a proper action by affine isometries
on `p(Γ×Γ) if p is large enough. This is a strong negation of (FLp) for hyperbolic
groups and all their infinite subgroups. The corresponding strenghtening of the
above mentioned [Pa], [BP] for rank one Lie (or algebraic) groups G has been
established by Cornulier–Tessera–Valette in [CTV]: For any p > 1 larger than the
Hausdorff dimension of the boundary, there is a proper affine isometric action on
Lp(G) whose linear part is the regular representation. In particular, this holds for
Spn,1(R) when p > 4n + 2.

1.e. Our next goal is now, by contrast, to establish (FLp) for certain groups. It
is often remarked that property (T ) for (simple) higher rank Lie groups and their
lattices is more robust than property (T ) enjoyed by the rank one groups Spn,1(R)
and many other Gromov hyperbolic groups. In view of the preceding discussion
of hyperbolic groups and Spn,1(R), the following result might be viewed as yet
another evidence supporting this view.

Theorem B. Let G =
∏m

i=1 Gi(ki), where ki are local fields (of any character-
istic), Gi(ki) are ki-points of Zariski connected simple ki-algebraic groups Gi.
Assume that each simple factor Gi(ki) has ki-rank ≥ 2.

Then G and the lattices in G have property (FB) for all Lp(µ)-related spaces B
as in (i)–(iii) in Theorem A, assuming 1 < p < ∞.

1.f. A broader class of spaces in which we propose to study properties (TB) and
(FB) consists of superreflexive spaces, which can be defined as topological vector
spaces isomorphic to uniformly convex Banach spaces‡. In this context we consider
linear representations (resp. affine actions) which are uniformly equicontinuous;
more concretely, for any given norm compatible with the topology, the class of
all such linear representations (resp. affine actions) is that of uniformly bounded
linear representations (resp. uniformly Lipschitz affine actions). It turns out that
such representations (resp. actions) can always be viewed as isometric with respect
to some equivalent norm that is simultaneously uniformly convex and uniformly
smooth (Proposition 2.13).

Note that whether a given linear G-representation almost contains invariant
vectors or not, in the sense of (1.i), does not depend on a particular norm among
all mutually equivalent norms. Hence we can make the following

Definition 1.5. Let B be a superreflexive topological vector space and G a lo-
cally compact second countable group. We say that G has property (TB) if for

‡For spaces that are only strictly convex, the fixed point property always fails [BG],[HP].
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every uniformly equicontinuous linear representation % of G on B the quotient
G-representation on B/B%(G) does not almost have invariant vectors.

Likewise, G has (FB) if every uniformly equicontinuous affine G-action on B
has a fixed point.

Conjecture 1.6. Higher rank groups G =
∏

Gi(ki) as in Theorem B and their
lattices have property (FB), and hence (TB), for all superreflexive B.

Remark 1.7. To support this conjecture let us point out the following:
(1) Much of our proof of Theorem B is done in the broad context of uniformly

equicontinuous affine actions on general superreflexive spaces except for one ar-
gument – a version of relative property (TB), whose proof is special to Lp-related
spaces.

(2) V. Lafforgue proved [Lg] that the group PGL3(Qp) has property (TB) for
all superreflexive B (his result is actually stronger, in that he allows linear rep-
resentations with slowly growing, rather uniformly bounded Lipschitz norms, see
Theorem 3.2, Definition 0.2 and the discussion preceding it in [Lg]). Combined
with our proof of Theorem B it implies for example that SLn(Qp), n ≥ 4, has
property (FB).

(3) Y. Shalom has proved (unpublished) that for Hilbert spaces H higher rank
groups (and their lattices) have property (FH), and hence (TH), whilst rank one
groups have neither (FH) nor (TH).

1.g. One way to generalize the context of semisimple (non-simple) Lie/algebraic
groups is simply to consider general products G = G1×· · ·×Gn of n ≥ 2 arbitrary
topological groups. In the absence of any assumption on the factors Gi, one can
still establish splitting results for uniformly equicontinuous affine G-actions on
superreflexive spaces.

Theorem C. Let G = G1 × · · · × Gn be a product of topological groups with
a continuous action by uniformly equicontinuous affine maps on a superreflexive
topological vector space B without G-fixed point. Assume that the associated linear
G-representation % does not almost have non-zero invariant vectors.

Then there is a G-invariant closed complemented affine subspace B ⊆ B and
an affine equicontinuous G-equivariant isomorphism B ∼= B1 ⊕ · · · ⊕ Bn, where
each Bi is a superreflexive Banach space with an equicontinuous affine G-action
factoring through G → Gi.

Remarks 1.8. (1) If G has property (TB) then the assumption that % does not
almost have invariant vectors is redundant.

(2) In the particular case where B is a Hilbert space and G locally compact
acting by affine isometries, a stronger result was established by Shalom in [Sh]:
One assumes only that the affine G-action does not almost have fixed points. We
replace Shalom’s Hilbertian approach with an analogue of the geometric method
used in the splitting theorem of [Mo2].
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(3) This result can be reformulated in terms of the cohomology of the associated
linear G-representation % on B as

H1(G, B) ∼=
n⊕

i=1

H1(Gi, B
%(

Q
j 6=i Gj)).

It should be stressed that no such product formula holds in general. Not only does
it fail for more general Banach spaces (Example 2.27), but even for Hilbert space
one needs at least Shalom’s assumption mentioned above. Compare the similar
situation for the cohomological product formulas of [Sh] and [BMd].

1.h. When G is locally compact, we can as in the Lie case consider its lattices.
One then calls a lattice Γ < G irreducible if its projections to all Gi are dense. The
above Theorem C can be used to establish a superrigidity result for irreducible
lattices much in the way of [Sh]. (The general idea to use irreducibility in order to
transfer results from G1×· · ·×Gn to Γ was also illustrated in [BMz], [BMd],[MS];
it seems to originate from the work of Margulis and [BK]; lattices in products of
completely general locally compact groups were first studied by Shalom [Sh].)

Theorem D. Let Γ be an irreducible uniform lattice in a locally compact σ-
compact group G = G1× · · · ×Gn. Let B be a superreflexive space with uniformly
equicontinuous affine Γ-action. Assume that the associated linear Γ-representation
does not almost have invariant vectors.

Then there is a Γ-closed complemented affine subspace of B on which the Γ-
action is a sum of actions extending continuously to G and factoring through
G → Gi.

Remark 1.9. More precisely, the conclusion means that there are superreflex-
ive spaces Ei endowed each with a continuous uniformly equicontinuous affine
G-action factoring through G → Gi and a Γ-equivariant affine continuous map⊕n

i=1 Ei → B. Equivalently, the cocycle b : Γ → B of the original Γ-action is co-
homologous to a sum b1 + · · ·+ bn of cocycles bi ranging in a subspace Bi ⊆ B on
which the linear Γ-representation extends continuously to a G-representation fac-
toring through Gi and such that bi extends continuously to a cocycle G → Gi → Bi

(with respect to the corresponding linear G-representation). Moreover, Bi
∼= Ei

as G-spaces.
If one disregards a component of B where the linear Γ-representation ranges in

a compact group of operators, this sum of actions is actually just a direct sum⊕
Bi ⊆ B (see Remark 8.10).

Remark 1.10. A uniform lattice (in a locally compact group) is just a discrete
cocompact subgroup; the theorem however also holds for certain non-uniform
lattices, see Section 8 (Theorem 8.3). Similar arguments allow us to generalise
slightly Shalom’s superrigidity for characters, see Theorem 8.4.

Organization of the Paper. In Section 2 we collect preliminary facts and lem-
mas on uniformly convex/smooth and superreflexive Banach spaces, linear rep-
resentations and affine isometric on such spaces, special properties of Lp-spaces,
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and some general remarks and basic counter-examples. In Section 3 Theorem 1.3
is proved. Equivalence of properties (T ) and (TLp) (Theorem A) is proved in
Section 4. In Section 5 we discuss higher rank groups and prove Theorem B. Sec-
tion 6 studies minimal convex sets. Section 7 addresses product groups and proves
the splitting theorem (Theorem C); it also proposes a proof of Theorem B that
provides some evidence for Conjecture 1.6. In Section 8, we prove Theorem D.
Appendix 9 describes Shalom’s proof of a generalized Howe–Moore theorem.

Acknowledgments. We would like to thank D. Fisher and G.A. Margulis for
their interest in this work and for letting us include their argument for 2 < p < 2+ε
in Section 3.c. We are indepted to A. Naor for several helpful conversations and to
A. Nevo for his remarks on the first manuscript. We are grateful to Y. Shalom for
letting us give his proof of a ucus version of Howe–Moore (Theorem 9.1). We thank
Alain Valette and Uffe Haagerup for useful suggestions improving the exposition.

2. Preliminaries

This section contains basic definitions, background facts and some preliminary
lemmas to be used in the proofs of our main results.

2.a. Banach Spaces. Let V be a Banach space; unless otherwise specified, we
take the reals as scalar field. We denote by S(V ) = {v ∈ V : ‖v‖ = 1} its unit
sphere. For v ∈ B and r > 0 we denote by B(v, r) and B(v, r) the open, respec-
tively closed, ball of radius r around v.

A Banach space B is said to be strictly convex if its unit sphere does not contain
straight segments, or equivalently if ‖(u + v)/2‖ < 1 whenever u 6= v ∈ S(V ). A
Banach space V is called uniformly convex if the convexity modulus function

(2.i) δ(ε) = inf {1− ‖u + v‖/2 : ‖u‖, ‖v‖ ≤ 1, ‖u− v‖ ≥ ε}

is positive δ(ε) > 0 whenever ε > 0.
We shall also use the notion of uniform smoothness of Banach spaces, which is

easiest to define as the uniform convexity of the dual space V ∗ (see [BL, App. A]).
Hence a Banach space V is uniformly convex and uniformly smooth (hereafter
abbreviated ucus) if both V and its dual V ∗ are uniformly convex.

Facts 2.1. We refer to [BL] for the following:
(1) The function δ(ε) is non-decreasing and tends to 0 when ε tends to 0. If

V is uniformly convex then δ(ε) → 0 ⇐⇒ ε → 0.
(2) Uniformly convex Banach spaces are reflexive. Hence the class of ucus

Banach spaces is closed under taking duals. This class is also closed under
the operations of taking closed subspaces and quotients.

(3) If V ∗ is strictly convex, in particular if V is uniformly smooth, then every
v ∈ S(V ) has a unique supporting functional v∗ ∈ S(V ∗), i.e. a unit
functional with 〈v, v∗〉 = 1.

(4) If V is ucus then the duality map ∗ : S(V ) → S(V ∗), x 7→ x∗, is a uniformly
continuous homeomorphism with a uniformly continuous inverse.
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(5) To any non empty bounded subset E ⊆ V of a reflexive strictly convex
Banach space V , one can associate a unique point C(E) ∈ V , the circum-
centre of E (a.k.a. the Chebyshev centre), defined as the unique v ∈ V
minimizing inf{r > 0 : E ⊆ B(v, r)}.

The existence of x = C(E) in (5) follows from weak compactness of closed
bounded convex sets (i.e. from reflexivity), whilst the uniqueness follows from
uniform convexity. Note that somewhat contrary to the intuition, it was shown
by V. Klee [Kl] that if dim(V ) ≥ 3 and V is not a Hilbert space, then there exist a
bounded subset E ⊆ V for which C(E) does not belong to the closed convex hull
of E. The notion of circumcentre is also used in CAT(0) geometry. For CAT(0)
spaces, the circumcentre C(E) always lies in the closed convex hull of E§.

The following can be found e.g. in [BL, A.6, A.8]:

Theorem 2.2. The following conditions on a topological vector space V are equiv-
alent:

(1) V is isomorphic to a uniformly convex Banach space.
(2) V is isomorphic to a uniformly smooth Banach space.
(3) V is isomorphic to a ucus Banach space.

The space V is called superreflexive if these equivalent condition hold. The
class of superreflexive spaces is closed under taking duals, closed subspaces and
quotients of topological vector spaces.

2.b. Linear Representations. Let V be a topological vector space. We denote
by GL(V ) the group of invertible linear transformations of V which are continuous
together with their inverses.

Following the standard terminology [B1, Def. 2 of §2 no 1], a group G of trans-
formations of V is uniformly equicontinuous (with respect to the uniform structure
deduced from the topological vector space structure) if for any neighbourhood U
of 0 ∈ V there exists a neighbourhood W of 0 such that

(2.ii) x− y ∈ W =⇒ ∀ g ∈ G : g(x)− g(y) ∈ U.

This definition will be applied to both linear groups, or affine groups.

For a topological vector space V , we denote by N(V ) the (a priori possibly
empty) set of norms on V defining the given topology. Elements of N(V ) will be
called compatible norms and are pairwise equivalent.

The following key proposition is an equivariant version of Theorem 2.2. It en-
ables us to reduce questions about uniformly equicontinuous linear representations
on superreflexive spaces to isometric linear representations on ucus Banach spaces.

§Note that Hilbert spaces are, in a sense, the most convex Banach spaces – they have the
largest possible modulus of continuity δ(ε) among Banach spaces. On the other hand, Hilbert
spaces have the smallest possible modulus of continuity among CAT(0) spaces. Thus, in a sense,
CAT(0) spaces are more convex then (non-Hilbertian) Banach spaces
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Proposition 2.3 (Invariant ucus norm). For a superreflexive topological vector
space V and a group of linear transformations G of V , the following conditions
are equivalent:

(1) G is a uniformly equicontinuous group of linear transformations of V .
(2) G acts by uniformly bounded linear transformations with respect to any/all

compatible norm on V .
(3) G acts by linear isometries with respect to some uniformly convex compat-

ible norm on V .
(4) G acts by linear isometries with respect to some uniformly smooth com-

patible norm on V .
(5) G acts by linear isometries with respect to some uniformly convex and

uniformly smooth compatible norm on V .

Proof. The main part of the proof is the implication “[(3) and (4)]⇒(5)”; we begin
by establishing this.

Let N(V ) denote the set of all compatible norms on V equipped with the metric

d(‖ · ‖1, ‖ · ‖2) = sup
x 6=0

∣∣∣ log
‖x‖1

‖x‖2

∣∣∣.
This is a complete metric space. Let N(V )G stand for the closed subspace of G-
invariant norms in N(V ). Denoting by δ‖·‖ the convexity modulus of ‖·‖ ∈ N(V )G,
the subset Nuc(V )G of uniformly convex G-invariant norms on V is given by the
countable intersection

Nuc(V )G =
∞⋂

n=1

On, where On =
{
‖ · ‖ ∈ N(V )G : δ‖·‖(1/n) > 0

}
.

Observe that the sets On are open. If ‖ · ‖0 is some fixed G-invariant compatible
uniformly convex norm (given in (3)) then any ‖ · ‖ ∈ N(V )G can be viewed as a
limit of uniformly convex norms ‖ · ‖+ ε‖ · ‖0 as ε ↘ 0. Hence Nuc(V )G is a dense
Gδ set in N(V )G.

By duality between Nuc(V ∗)G and the set Nus(V )G of uniformly smooth norms
in N(V )G, the latter is also a dense Gδ set in the Baire space N(V )G. In particular
Nuc(V )G ∩Nus(V )G is not empty, as claimed.

Now we observe that “(1)⇔(2)” follows from the definitions and that “(5)⇒[(3)
and (4)]” as well as “[(3) or (4) or (5)]⇒(2)” are trivial. Moreover, proving
“(2)⇒(3)” will also yield “(2)⇒(4)” by duality, using the fact that the dual to a su-
perreflexive space is superreflexive. Therefore it remains only to justify “(2)⇒(3)”:

Let ‖ · ‖ be a compatible uniformly convex norm on V . The corresponding
operator norms ‖g‖ = supx 6=0 ‖gx‖/‖x‖ are uniformly bounded by some C < ∞.
Hence

‖x‖′ = sup
g∈G

‖gx‖

defines a norm, equivalent to ‖ · ‖, and G-invariant. It is also uniformly convex.
Indeed, if ‖x‖′ = ‖y‖′ = 1 and ‖(x + y)/2‖′ > 1− α then for some g ∈ G

‖(gx + gy)/2‖ > 1− α whilst ‖gx‖ ≤ ‖x‖′ = 1, ‖gy‖ ≤ ‖y‖′ = 1.
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Thus α ≥ δ‖·‖(‖gx− gy‖) ≥ δ‖·‖(‖x− y‖′/C). Hence the convexity moduli satisfy

δ‖·‖′(ε) ≥ δ‖·‖(ε/C) > 0 for all ε > 0.

�

If G is a topological group, one should impose a continuity assumption on linear
G-representations on V , that is on homomorphisms % : G → GL(V ). GL(V ) is
naturally equipped with the operator norm (which is too strong for representation
theory), and with the weak and the strong operator topologies. For uniformly
equicontinuous representations the latter two topologies impose the same conti-
nuity assumption:

Lemma 2.4. Let G be a topological group, V a superreflexive topological vector
space, and % : G → GL(V ) a homomorphism. Then the following are equivalent.

(1) % is weakly continuous.
(2) % is strongly continuous.
(3) The orbit maps g 7→ %(g)u are continuous.
(4) The action map G× V → V is jointly continuous.

Since there is an invariant complete norm on V , this is a special case of a well-
known fact holding for all Banach spaces, see [Mo1, 3.3.4] for references. We give
an elementary proof in the present case.

Proof. Clearly it is enough to prove (1) ⇒ (4). Let ‖ · ‖ be a %(G)-invariant ucus
norm on V . Assume gn → e ∈ G and un → u ∈ S(V ). Then

|〈%(gn)un, u∗〉 − 1| ≤ |〈%(gn)un, u∗〉 − 〈%(gn)u, u∗〉|+ |〈%(gn)u, u∗〉 − 1|
≤ ‖un − u‖+ |〈%(gn)u, u∗〉 − 1| → 0

It follows that %(gn)un → u because

〈%(gn)u + u

2
, u∗〉 ≤ ‖%(gn)u + u

2
‖ ≤ 1− δ(‖%(gn)u− u‖)

and the left hand side tends to 1. �

2.c. Invariant complements. One of the convenient properties of Hilbert spaces
is the existence of a canonical complement M⊥ to any closed subspace M . Re-
call that a closed subspace X of a Banach space V is called complemented if
there is another closed subspace Y ≤ V such that V = X ⊕ Y algebraically and
topologically. This is equivalent to each of the following:

• There is a continuous linear projection from V to X.
• There is a closed subspace Y and a continuous linear projection p : V → Y

with ker(p) = X.
A classical theorem of Lindenstrauss and Tzafriri says that every infinite dimen-
sional Banach space which is not isomorphic to a Hilbert space, admits a non-
complemented closed subspace [LT2]. However, for any uniformly equicontinuous
linear representation % of a group G on a superreflexive space V , the subspace of
invariant vectors V %(G) admits a canonical complement, described below.
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In view of Proposition 2.3 we may assume that the representation is linear
isometric with respect to a ucus norm on V , which allows to use the duality map
of the unit spheres ∗ : S(V ) → S(V ∗).

Given any linear representation % : G → GL(V ) there is an associated dual (or
contragradient) linear G-representation %∗ : G → GL(V ∗) defined by

〈x, %∗(g)y〉 = 〈%(g−1)x, y〉 (g ∈ G, x ∈ V, y ∈ V ∗).

If V is a Banach space and % : G → O(V ) is a linear isometric representation,
then so is its dual %∗ : G → O(V ∗), where V ∗ is equipped with the dual norm.
Hence the dual to a uniformly equicontinuous representation on a superreflexive
space is also of the same type.

Observation 2.5. If V is a ucus Banach space and % : G → O(V ), then the
duality map ∗ : S(V ) → S(V ∗) between the unit spheres intertwines the actions
of %(G) and %∗(G). In particular it maps the set of %(G)-fixed unit vectors to the
set of %∗(G)-fixed unit vectors.

Proposition 2.6. Let % be a uniformly equicontinuous linear representation of G
on a superreflexive space V , let V %(G) denote the subspace of %(G)-fixed vectors in
V , and let V ′ = V ′(%) be the annihilator of (V ∗)%∗(G) in V . Then

V = V %(G) ⊕ V ′(%).

Furthermore, the decomposition is canonical in the following sense: If we denote
by p(%) and p′(%) the associated projections, then for every morphism of uniformly
equicontinuous linear representations φ : (V1, %1) → (V2, %2), the following dia-
grams are commutative:

(2.iii)

V1
φ−−−−→ V2

p(%1)

y p(%2)

y
V1

φ−−−−→ V2

V1
φ−−−−→ V2yp′(%1)

yp′(%2)

V1
φ−−−−→ V2

Remark 2.7. The conclusion fails if we drop the superreflexivity assumption, see
Example 2.29.

Proof of the proposition. Choose a G-invariant uniformly convex and uniformly
smooth norm on V , and the dual one on V ∗ (Proposition 2.3). For any unit vector
x ∈ V %(G) and arbitrary y ∈ V ′

1 = 〈x, x∗〉 = 〈x− y, x∗〉 ≤ ‖x− y‖ · ‖x∗‖ = ‖x− y‖.

Thus V %(G) ∩ V ′ = {0} and V %(G) ⊕ V ′ is a closed subspace in V . It is also dense
in V . Indeed if λ ∈ V ∗ is a unit vector vanishing on V ′ it cannot vanish on B%(G),
because λ ∈ (V ∗)%∗(G) by the Hahn–Banach theorem, and hence λ∗ ∈ V %(G) and
〈λ∗, λ〉 = 1. Thus V %(G) ⊕ V ′ = V .

The last assertion follows from the fact that φ(V %1
1 ) ⊆ V %2

2 , and φ∗((V ∗
2 )%2) ⊆

(V ∗
1 )%1 yields φ(V ′

2) ⊆ V ′
1 . �
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Corollary 2.8. The decomposition V = V %(G)⊕V ′ is preserved by the normalizer
of %(G) in GL(V ).

Corollary 2.9. Let G = G1 × G2 be any product of two groups and B a super-
reflexive space with a uniformly equicontinuous linear G-representation %. Then
there is a canonical G-invariant decomposition

V = V %(G) ⊕ V0 ⊕ V1 ⊕ V2

such that V %(Gi) = V %(G) ⊕ Vi for i = 1, 2.

Proposition 2.10. Let % be a uniformly equicontinuous linear G-representation
on a superreflexive space V . Then

(1) V %(G) is isomorphic to V/V ′ as topological vector spaces.
(2) V ′ is isomorphic to V/V %(G) as G-representations.
(3) (V %(G))∗ is isomorphic to V ∗/(V ∗)′ as topological vector spaces.
(4) (V ′)∗ is isomorphic to (V ∗)′ as G-representations.
(5) V ′ almost has invariants if and only if (V ∗)′ almost has invariants.
(6) If 0 → U → V → W → 0 is an exact sequence of uniformly equicontinu-

ous linear G-representations on superreflexive spaces, then V ′ almost has
invariant vectors if and only if U ′ or W ′ do.

If V is equipped with a compatible uniformly convex and uniformly smooth G-
invariant norm, then the natural isomorphisms in (1) and (3) are isometric.

Proof. Equip V with a G-invariant ucus norm (Proposition 2.3).
By the open mapping theorem the maps p : V → V %(G) and p′ : V → V ′ induce

isomorphisms of topological vector spaces

(1) p̃ : V/V ′ → V %(G), (2) p̃′ : V/V %(G) → V ′.

By 2.5 (V %(G))∗ is (V ∗)%∗(G) and the latter is isomorphic to V ∗/(V ∗)′. This proves
(3).

To see that (1) and (3) are isometric (with respect to the norms corresponding
to any ucus G-invariant norm on V ) we note that the isomorphisms above satisfy
‖p̃−1‖, ‖p̃′−1‖ ≤ 1 by the definition of the norm on a quotient space. Furthermore,
for v ∈ S(V %(G)), we have v∗ ∈ S((V ∗)%∗(G)), hence

‖p̃−1(v)‖V/V ′ = inf
{
‖v + v′‖V : v′ ∈ V ′}

≥ inf
{
〈v + v′, v∗〉 : v′ ∈ V ′} = 〈v, v∗〉 = 1.

Hence p̃ is an isometry V/V ′ ∼= V %(G). Similarly, (V %(G))∗ = (V ∗)%∗(G) ∼= V ∗/(V ∗)′.
In general Banach spaces the dual E∗ of a subspace E < F is isometric to the

quotient F ∗/E⊥ by the annihilator E⊥ < F ∗ of E. Thus with respect to a ucus
norm on V and the above spaces, (V ′)∗ is isometric to V ∗/(V ∗)%∗(G) as Banach
spaces, while the latter is isomorphic to (V ∗)′ as a topological vector space by (2).
Whence (4).

(5) Assume that there exist xn ∈ S(V ′) with diam(%(K) · xn) → 0. The uni-
formly continuous map ∗ : S(V ) → S(V ∗) takes vectors xn ∈ S(V ′) to vectors
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x∗n ∈ S(V ∗) with diam(%∗(K) · x∗n) → 0. Since {x∗n} are uniformly separated from
(V ∗)%∗(G) their normalized projection y∗n to (V ∗)′ still satisfy diam(%∗(K)·y∗n) → 0.

(6) As U ′ maps into V ′, if U ′ almost has invariants, then so does V ′. If W ′

almost has invariants, then so does (W ∗)′, hence (V ∗)′, hence V ′. On the other
hand, assume V ′ almost has invariant unit vectors vn. Assume for simplicity that
U = U ′, V = V ′ and W = W ′. Note that W is isomorphic to V/U , and denote
by π : V → W the projection. Then either π(vn) converges to 0 ∈ W , then there
exist un such that vn−un converges to 0 ∈ V , and the normalized sequence ( un

‖un‖)
is almost invariant in U , or there exist a subsequence vnk

with infk ‖π(vnk
)‖ > 0,

and then the normalized sequence ( π(vnk
)

‖π(vnk
)‖) is almost invariant in W . �

Remark 2.11. For ucus Banach space V , Definition 1.1 of property (TV ) can
be rephrased as follows: For any representation % : G → O(V ), the restriction
%′ : G → O(V ′) of % to the invariant subspace V ′ complement to V %(G) does not
almost have invariant vectors, i.e. for some compact K ⊆ G and ε > 0

∀ v ∈ S(V ′) ∃ g ∈ K s.t. ‖%(g)v − v‖ ≥ ε.

Hence item (4) gives:

Corollary 2.12. Let V be a ucus Banach space, and G be a locally compact group.
Then G has property (TV ) iff it has (TV ∗).

2.d. Affine Actions. The affine group Aff(V ) of a real affine space V (a vector
space who forgot its origin) consists of invertible maps satisfying:

T (t · x + (1− t) · y) = t · T (x) + (1− t) · T (y), (t ∈ R, x, y ∈ V )

The group Aff(V ) is a semi-direct product Aff(V ) = GL(V )nV , i.e. an invertible
affine map T has the form T (x) = Lx + b where L ∈ GL(V ) is linear invertible.

An affine action of a group G on V , i.e. a homomorphism G → Aff(V ), has the
form

g · x = %(g)x + c(g),
where % : G → GL(V ) is a linear G-representation (we call it the linear part of
the action) and c : G → B is a %-cocycle, namely an element of the Abelian group

(2.iv) Z1(%) = {c : G → V : c(gh) = %(g)c(h) + c(g), ∀ g, h ∈ G} .

The group Z1(%) of %-cocycles contains the subgroup of %-coboundaries

(2.v) B1(%) = {c(g) = v − %(g)v : v ∈ V } .

Z1(%) describes all affine G-actions on V with linear part %, and B1(%) corresponds
to those affine actions which have a G-fixed point (namely v in (2.v)). This
description involves the choice of reference point – the origin – in the space. Two
cocycles differing by a coboundary can be though of defining the same affine
action viewed from different reference points. The first cohomology of G with
%-coefficients is the Abelian group

H1(G, %) = Z1(%)/B1(%).
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It describes different types of actions in the above sense. H1(G, %) = 0 iff any
affine G-action on V with linear part % has a fixed point.

For a Banach space V denote by Isom(V ) the group of isometries of V as a
metric space. It is a classical theorem of Mazur–Ulam that any surjective isometry
T of a (real) Banach space V is necessarily affine T (x) = Lx + c with linear part
L ∈ O(V ) being isometric. (This theorem is elementary when V is strictly convex;
comopare Lemma 6.1). Hence Isom(V ) = O(V ) n V .

Now suppose that V is a superreflexive topological vector space. Recall that
a group G of affine self maps is uniformly equicontinuous if it satisfies (2.ii).
This condition is equivalent to uniform equicontinuity of the linear part % : G →
GL(V ).

Proposition 2.13. For a superreflexive topological vector space V and a group of
transformations G of V the following conditions are equivalent:

(1) G is uniformly equicontinuous group of affine transformations of V .
(2) G acts by uniformly Lipschitz affine transformations with respect to any/all

compatible norms on V .
(3) G acts by affine isometries with respect to some compatible norm on V .
(4) G acts by affine isometries with respect to some uniformly convex and

uniformly smooth compatible norm on V .

Proof. Apply Proposition 2.3 to the linear part of the affine action, using Mazur–
Ulam to deduce in (3) that the action is affine. �

If G is a topological group acting by affine transformations on a topological
vector space V , continuity of the action

G× V → V, g · x = %(g)x + c(g)

is equivalent to continuity of the linear part G×V → V and the continuity of the
cocycle c : G → V . Indeed c(g) = g · 0, and %(g)x = g · x− c(g).

Hence in the context of topological groups, affine actions should be assumed
continuous, and Z1(G, %) will include only continuous cocycles c : G → V (we
assume that the linear part % is continuous as well). If G is a locally compact σ-
compact group, then Z1(%) has a natural structure of a Fréchet space with respect
to the family of semi-norms

‖c‖K = sup
g∈K

‖c(g)‖V

where K ⊆ G runs over a countable family of compact subsets which cover G and
‖·‖V is a norm inducing the topology of V . Moreover, if G is compactly generated
(e.g. if G has property (T )) say by K0, then ‖c‖K0 is a norm on Z1(%) (note that
any cocycle c ∈ Z1(%) is completely determined by its values on a generating set),
and Z1(%) is a Banach space with respect to this norm. We remark that in general
B1(%) is not closed in Z1(%) (this is the idea behind the (FV ) ⇒ (TV ) argument
of Guichardet – see Section 3).
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Lemma 2.14. For a uniform equicontinuous affine action of a group G on a
superreflexive space V , the following are equivalent:

(1) There exists a bounded G-orbit.
(2) All G-orbits are bounded
(3) G fixes a point in V .
(4) G preserves a (Borel regular) probability measure on V .

Note that the notion of a subset E ⊆ V being bounded, means that for any
open neighbourhood U of 0 ∈ V there is some t ∈ R so that E ⊆ t ·U . This notion
agrees with the notion of being bounded with respect to any compatible norm on
V .

Proof. Introduce a G-invariant uniformly convex norm on V (Proposition 2.13).
The only non-trivial implications are (4) ⇒ (1) ⇒ (3). For the first, let µ be a
G-invariant probability on V . Since V is a countable union of closed bounded
sets, there is a closed bounded set A ⊆ V with µ(A) > 1/2. For all g ∈ G we have
µ(gA) > 1/2 hence gA ∩A 6= ∅. It follows that the G-orbit of every point of A is
bounded.

The latter implication follows by considering the circumcentre (compare Sec-
tion 2.a) of the given bounded G-orbit. �

Proposition 2.15. Let V be a ucus Banach space. Then
(1) Any finite (or compact) group has properties (TV ) and (FV ).
(2) Properties (TV ) and (FV ) pass to quotient groups.
(3) If G = G1 × · · · × Gn is a finite product of topological groups then G has

property (TV ) (resp. (FV )) iff all Gi have this property.

Proof. (1) and (2) are straightforward, (3) follows from Corollary 2.9. �

2.e. Special Properties of Lp(µ)-Spaces. In this section we collect some spe-
cial properties of the Banach spaces Lp(µ) which will be used in the proofs.

By an Lp(µ), or Lp(X, µ) space we mean the usual space of equivalence classes
(modulo null sets) of measurable p-integrable functions f : X → R, where µ is a
positive σ-finite measure defined on a standard Borel space (X,B). If 1 < p < ∞
then Lp(µ) is ucus, whilst L1(µ) and L∞(µ) are not (they are not even strictly
convex). For 1 ≤ p < ∞ the dual to Lp(µ) is Lq(µ) where 1 < q ≤ ∞ is determined
by q = p/(p− 1).

The space Lp([0, 1],Lebesgue) is usually denoted by Lp. Any Lp(µ)-space with
non-atomic finite or σ-finite measure µ is isometrically isomorphic to Lp. Indeed
let ϕ ∈ L1(µ) be a strictly positive measurable function with integral one and let
µ1 be given by dµ1 = ϕ dµ. Then

f ∈ Lp(µ) 7→ f · ϕ−1/p ∈ Lp(µ1)

is a surjective isometry. Since any non-atomic standard probability spaces is iso-
morphic to [0, 1] as a measure space, Lp(µ1) ∼= Lp. If µ is purely atomic then a
similar argument gives an isomorphism of Lp(µ) with finite or infinite dimensional
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`p space. A general Lp(µ) space is therefore isometrically isomorphic to a direct
sum of Lp and `p components.

More generally, for another Banach space B, one defines the spaces Lp(µ,B) of
B-valued function classes by means of the Bochner integral. We refer the reader
to [DU] for details; we recall here that the dual of Lp(µ,B) is Lq(µ,B∗) through
the natural pairing for all 1 ≤ p < ∞, but only when B has the Radon–Nikodým
property – this includes all ucus spaces (see again [DU]). These spaces will be
used in Section 8.b in order to induce isometric (linear or affine) actions.

Banach [Ba] and Lamperti [Li] (see also [FJ, Theorem 3.25]) classified the linear
isometries of Lp(µ) as follows.

Theorem 2.16 (Banach, Lamperti). For any 1 < p < ∞ where p 6= 2, any linear
isometry U of Lp(X,B, µ) has the form

Uf(x) = f(T (x))h(x)
(

dT∗µ

dµ
(x)

) 1
p

where T is a measurable, measure class preserving map of (X, µ), and h is a
measurable function with |h(x)| = 1 a.e.

Let µ = µa +µc be the decomposition of µ into its atomic and continuous parts
(µa = µ|A where A ⊆ X is the (at most countable) set of atoms of µ). Then

Lp(µ) = Lp(µc)⊕ Lp(µa) ∼= Lp ⊕ `p(A) or just `p(A),

the latter case occurs if µ = µa is a purely atomic measure. Note that it follows
from Banach–Lamperti theorem that this decomposition is preserved by any lin-
ear isometry of Lp(µ). As `p(A) has a much smaller group of linear (or affine)
isometries than Lp we could restrict our attention only to the latter. However we
shall not make use of this “simplification“.

Another useful tool in the study of Lp-spaces is the Mazur map.

Theorem 2.17 ( [BL, Theorem 9.1] ). Let µ be a σ-finite measure. For any
1 ≤ p, q < ∞ the Mazur map Mp,q : Lp(µ) → Lq(µ) defined by

Mp,q(f) = sign(f) · |f |
p
q

is a (non-linear) map which induces a uniformly continuous homeomorphism be-
tween the unit spheres Mp,q : S(Lp(µ)) → S(Lq(µ)).

(Note that if p, q 6= 1 and p−1 + q−1 = 1 then the restriction of Mp,q to the unit
spheres is just the duality map ∗ : S(Lp(µ)) → S(Lp(µ)∗)).

In the proofs of Theorems A and B, the results for subspaces and quotients
are deduced from the Lp(µ) case using the following theorem of Hardin about
extension of isometries defined on subspaces of Lp(µ). The formulation we give
here is not quite identical to the original, but it easily follows from it and from its
proof (see [Ha, Theorem 4.2] or [FJ, Theorem 3.3.14]).

Theorem 2.18 (Hardin). Let (X,B, µ) be a measure space. For every closed
subspace F ⊆ Lp(X, µ), there is a canonical extension F ⊆ F̃ ⊆ Lp(µ) which is
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isometric to Lp(X ′, µ′) for some other measure space (X ′, µ′). Furthermore, if
1 < p /∈ 2Z, then every linear isometry U : F → Lp(Y, ν) extends uniquely to a
surjective linear isometry Ũ : F̃ → ŨF ⊆ Lp(Y, ν).

Remark 2.19. If B′ ≤ B is the minimal sub σ-algebra with respect to which all
the functions in F are measurable, then F̃ = Lp(X,B′, µ).

A straightforward consequence is the following:

Corollary 2.20. Let 1 < p /∈ 2Z, and let F ⊆ Lp(X, µ) be a closed subspace. Let
% be a linear isometric representation of the group G on F . Then there is some
linear isometric G-representation %′ of G on some other space Lp(X ′, µ′), and a
linear G-equivariant isometric embedding F ↪→ Lp(X ′, µ′).

Another important fact about Lp(µ)-spaces, this time for p ∈ (0, 2], is that
B = Lp(µ) has an embedding j : B → H into the unit sphere of a Hilbert space
so that 〈j(x), j(y)〉 = ‖x− y‖p. Having such an embedding is equivalent (via the
classical result of I.J. Schoenberg, see [BHV]) to the following:

Proposition 2.21. For 0 < p < 2 and any s > 0 the function f 7→ e−s‖f‖p
is

positive definite on Lp(µ), i.e. for any finite collection fi ∈ Lp(µ) and any λi ∈ C∑
i,j

e−s‖fi−fj‖p
λiλj ≥ 0.

In fact, more is known: It was shown by Bretagnolle, Dacunha-Castelle and
Krivine [BDCK] (c.f. [WW, 5.1]) that, for 1 ≤ p ≤ 2, a Banach space X is
isometric to a closed subspace of Lp(µ) iff e−s‖·‖p

is a positive definite function on
X for any s > 0.

2.f. Some Easy Counterexamples and Remarks.

Example 2.22 ((TB) 6⇒ (FB)). Let B be a Banach space with O(B) ∼= Z/2Z,
i.e. a space where the only linear isometries are the identity and the antipodal
map x 7→ −x. A trivial example of such a space is the line B = R, but it is not
hard to construct such spaces of arbitrary dimensions even within the class of ucus
Banach spaces (by considering e.g. sufficiently asymetric convex sets in Hilbert
space and choosing the corresponding norm). Clearly for such a space any group
has property (TB). However the groups Z or R or any group G with sufficiently
large Abelianization G/[G, G] would fail to have property (FB) for it would admit
an isometric action by translations: n ·x := x+nx0 where 0 6= x0 ∈ B is arbitrary.
However groups with trivial Abelianization would also have property (FB) on such
an asymmetric Banach space B.

Example 2.23 ((T ) 6⇒ (FB)). Suppose G is locally compact non-compact (e.g.
G = SL3(R) or G = SL3(Z)). Fix a Haar measure on G and let

B = L1
0(G) =

{
f ∈ L1(G) :

∫
f dg = 0

}
be the codimension one subspace of functions with 0 mean. Then B is isometric
to the affine subspace

{
f ∈ L1(G) :

∫
f = 1

}
on which G acts isometrically by
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translations without fixed points. Hence G does not have property (FB). This
Banach space is not ucus. Notice that in this example all orbits are bounded
regardless of G.

Remark 2.24. Haagerup and Przybyszewska [HP] showed that any locally com-
pact group G admits a proper isometric action on the strictly convex space

⊕∞
n=1 L2n(G).

Example 2.25 ((T ) 6⇒ (TB)). Let G be as in Example 2.23. Consider the space
B = C0(G) of continuous real valued functions on G which tend to 0 at ∞ with
the sup (L∞-) norm. The action of G on B by translations is a linear isometric
action. A function f ∈ B which decays very slowly forms an “almost invariant
vector”. On the other hand there are no non-zero invariant vectors. Hence G does
not have property (TB).

Remark 2.26. Since any separable Banach space is a quotient of `1, Example 2.25
shows that case (iii) of Theorem A cannot be extended to p = 1.

Example 2.27 (Remarks 1.8(2)). Let G = G1 × G2 be any product of non-
compact locally compact groups (e.g. G = Z × Z). Let B = L1

0(G) as in Ex-
ample 2.23. Then H1(G, B) 6= 0, but there are no non-zero Gi-fixed vectors in
the associated linear representation. Thus the product formula of Remarks 1.8(2)
cannot hold for B.

Let us make some remarks about Kazhdan’s property (T ) and property (TB) as
in 1.1 and 2.11. Given a unitary representation (%,H) of a locally compact group
G, a compact subset K ⊆ G and ε > 0, one says that a vector 0 6= v ∈ H is
(K, ε)- almost invariant if

sup
g∈K

‖%(g)v − v‖ < ε · ‖v‖.

A locally compact group G has Kazhdan’s property (T ) if and only if it satisfies
the following equivalent conditions:

(1) For any unitary G-representation (%,H) there exists a compact K ⊆ G

and an ε > 0 so that the G-representation %′ on (H%(G))⊥ ∼= H/H%(G) has
no (K, ε)-almost invariant vectors.

(2) There exist a compact K ⊆ G and an ε > 0 so that all non-trivial irre-
ducible unitary G-representations (%,H) have no (K, ε)-almost invariant
vectors.

(3) There exist a compact K ⊆ G and an ε > 0 so that for all unitary G-
representations (%,H) the G-representation %′ on (H%(G))⊥ ∼= H/H%(G)

has no (K, ε)-almost invariant vectors.
In the above, (3) clearly implies both (1) and (2). In showing (1)⇒(3) one uses the
fact that the category of Hilbert spaces and unitary representations is closed under
`2 sums and L2-integration. The fact that any unitary representation decomposes
as an L2-integral of irreducible ones gives (2)⇒(3).

Remark 2.28. Definition 1.1 (Remark 2.11) of property (TB) is modeled on (1)
above. There does not seem to be any reasonable theory of irreducible representa-
tions (and decomposition into irreducibles) for Banach spaces other than Hilbert



PROPERTY (T ) FOR ACTIONS ON BANACH SPACES 19

ones. Hence form (2) of property (T ) does not seem to have a Banach space
generalization. As for (3), for any given 1 < p < ∞ the class of Lp(µ)-spaces is
closed under taking `p-sums (and Lp-integrals) and hence for groups with prop-
erty (TLp) an analogue of (3) holds, namely there exist K ⊆ G and ε > 0 which
are good for all % : G → O(Lp). Also, if a group G has property (TB) for all ucus
Banach spaces B (conjecturally all higher rank groups and their lattices) then for
every ucus Banach space B there is (K, ε) which is good for all linear isometric
representations G → O(B). This uses the fact that L2(µ,B) is a ucus if B is (see
Lemma 8.6 below).

Finally, we justify Remark 2.7:

Example 2.29. Let G be a discrete group and consider the Banach space B =
`∞(G) with the (linear isometric) regular G-representation %. Then one shows that
the space B%(G) (which consists of the constant functions) admits a G-invariant
complement (if and) only if G is amenable. Indeed, the Riesz space (or Banach
lattice) structure of B allows to take the “absolute value” of any linear functional
on B; renormalizing the absolute value of any non-zero invariant functional would
yield an invariant mean on G. Alternatively, one can argue similarly on the Banach
space of continuous functions on any compact topological G-space.

We point out that nevertheless the space B′ is well-defined for any topological
vector G-space B; in the case at hand, we have B′ = B which shows why it cannot
be a complement for B%(G) 6= 0.

3. Proof of Theorem 1.3

3.a. Guichardet: (FB) =⇒ (TB).

Proof. Assume G does not have (TE), where E is a Banach space, and let % : G →
O(E) be a representation such that E/E%(G) admits almost invariant vectors. In
order to show that H1(G, %) 6= {0} it suffices to prove that B1(G, %) ⊆ Z1(G, %)
is not closed.

As was mentioned in Section 2 the space of %-cocycles Z1(G, %) is always a
Fréchet space (and even a Banach space if G is compactly generated). Note that
B1(G, %) is the image of the bounded linear map

τ : E → Z1(G, %), (τ(v)) (g) = v − %′(g)v.

If τ(E) were closed, and hence a Fréchet space, the open mapping theorem would
imply that τ−1 : B1(G, %) → E/E%(G) is a bounded map. That would mean that
for some M < ∞ and a compact K ⊆ G

‖v‖ ≤ M · ‖τ(v)‖K = M · sup
g∈K

‖%(g)v − v‖, v ∈ E/E%(G)

contrary to the assumption that % almost contains invariant vectors. �
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3.b. (T ) =⇒ (FLp), 0 < p ≤ 2.

Proof. Let G be a locally compact group with Kazhdan’s property (T ) acting
by affine isometries on a closed subspace B ⊆ Lp(µ) with 0 < p ≤ 2. Using
Proposition 2.21 and a slight modification of a Delorme–Guichardet argument for
(T ) ⇒ (FH) we shall prove that such an action has bounded orbits. For 1 < p ≤ 2
uniform convexity of B ⊆ Lp(µ) yields a G-fixed point using Lemma 2.14.

Proposition 2.21 allows to define a family, indexed by s > 0, of Hilbert space
Hs, embeddings Us : B → S(Hs) and unitary representations πs : G → O(Hs)
with the following properties:

(1) The image Us(B) spans a dense subspace of Hs;
(2) 〈Us(x), Us(y)〉 = e−s·‖x−y‖p

for all x, y ∈ B;
(3) Us(gx) = πs(g)Us(x) for all x ∈ B, g ∈ G.

Indeed, one constructsHs as the completion of the pre-Hilbert space whose vectors
are finite linear combinations

∑
aixi of points xi ∈ B, and the inner product is

given by

〈
∑

aixi,
∑

bjyj〉 =
∑
i,j

aibje
−s·‖xi−yj‖p

.

The representation πs can be constructed (and is uniquely determined) by prop-
erty (3).

Since G is assumed to have Kazhdan’s property (T ), for some compact subset
K ⊆ G and ε > 0, any unitary G-representation with (K, ε)-almost invariant
vectors has a non-trivial invariant vector.

Let x0 ∈ B be fixed. The isometric G-action is continuous, so Kx0 is a compact
and hence bounded subset of B, hence:

R0 = sup
g∈K

‖gx0 − x0‖ < ∞.

For the unit vectors us = Us(x0) ∈ S(Hs) we have

min
g∈K

|〈πs(g)us, us〉| ≥ e−sRp
0 → 1 as s → 0.

In particular for a sufficiently small s > 0, maxg∈K ‖πs(g)us − us‖ < ε. Let us
fix such an s, and rely on property (T ) to deduce that πs has an invariant vector
v ∈ S(Hs).

We claim that G must have bounded orbits for its affine isometric action on B.
Indeed, otherwise there would exist a sequence gn ∈ G so that

‖gnx− y‖ → ∞ and hence 〈πs(gn)Us(x), Us(y)〉 → 0

for all x, y ∈ B. This implies that 〈πs(gn)w, u〉 → 0 for any w, u ∈ span(Us(B)),
and since span(Us(B)) is dense in Hs, for any w, u ∈ Hs. Taking w = u = v, we
get a contradiction. Therefore the affine isometric G-action on B has bounded
orbits, and hence fixes a point in case of 1 < p ≤ 2. �



PROPERTY (T ) FOR ACTIONS ON BANACH SPACES 21

3.c. Fisher–Margulis: (T ) =⇒ (FLp), p < 2 + ε(G). Let G have Kazhdan’s
property (T ). Fix a compact generating subset K of G.

Lemma 3.1. There exists a constant C < ∞ and ε > 0 such that for any G-
action by affine isometries on a closed subspace B ⊆ Lp(µ) with p ∈ (2− ε, 2 + ε)
and any x ∈ B there exists a point y ∈ B with

‖x− y‖ ≤ C · diam(K · x), diam(K · y) <
diam(K · x)

2
.

Proof. By contradiction there exists a sequence of subspaces Bn ⊆ Lpn with pn →
2, affine isometric G-actions on Bn and points xn ∈ Bn so that, after a rescaling
to achieve diam(K · xn) = 1, we have

(3.i) diam(K · y) ≥ 1
2

∀ y ∈ B(xn, n).

Passing to an ultraproduct of the spaces Bn with the marked points xn and the
corresponding G-actions, one obtains an isometric (hence also affine) G-action
on a Hilbert space H, because the limit of Lp-parallelogram as p → 2 is the
parallelogram identity, which characterizes Hilbert spaces. (The action is well-
defined because K generates G and we ensured diam(K · xn) = 1.) If G is a
topological group, one needs to ensure continuity of the limit action by selecting
uniformly K-equicontinuous sets of vectors (as in [Sh, 6.3]; compare also [CCS]).
Due to (3.i) this G-action has no fixed points, contradicting property (FH) and
hence (T ) of G. �

Proof of (FB) for B ⊆ Lp(µ), 2 ≤ p < 2 + ε(G). Now consider an arbitrary affine
isometric G-action on a closed subspace B ⊆ Lp with |p − 2| < ε where ε =
ε(G) > 0 is as in the lemma. Define a sequence xn ∈ B inductively, starting from
an arbitrary x0. Given xn, let Rn = diam(K ·xn). Then applying the lemma there
exists xn+1 within the ball B(xn, C ·Rn) so that

diam(K · xn+1) < Rn/2.

We get Rn < R0/2n and
∑
‖xn+1 − xn‖ < ∞. The limit of the Cauchy sequence

{xn} is a G-fixed point. �

Question 3.2. For a given group G with property (T ), what can be said about
the following invariant?

p(G) := inf
{
p : G fails to have (FB) for some closed subspace B ⊆ Lp

}
.

For instance, Pansu’s aforementioned result [Pa] shows that p(G) ≤ 4n + 2 for
G = Spn,1(R).

4. Proof of Theorem A

We start with the first assertion of the theorem: (T ) ⇒ (TB) for B being
an Lp-related space as in (i), (ii) or (iii) in the theorem. We first reduce to
the case (i) where B = Lp(µ) with 1 ≤ p < ∞. Then using Corollary 2.20
of Hardin’s extension theorem, (TLp(µ)) implies (TB) for subspaces B ⊆ Lp(µ)
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where p 6= 4, 6, . . . as in (ii), and the duality argument (Corollary 2.12) gives the
result for quotients of Lq(µ) with q 6= 4/3, 6/5, . . . as in (iii). Hence it suffices to
prove (T ) ⇒ (TLp(µ)) for 1 ≤ p < ∞. We give two proofs for this implication.

Let us note that our restriction on p and q when taking subspaces/quotients
comes from our use of Hardin’s theorem.

Question 4.1. Does property (T ) implies property (TB) for any closed subspace
and any quotient B of Lp(µ) for any 1 < p < ∞ ?

4.a. Property (T ) Implies (TLp(µ)) – First Proof.

Proof. Assuming that a locally compact group G fails to have property (TLp(µ))
for some 1 ≤ p < ∞, we are going to show that G does not have (T). We may and
will assume p 6= 2; write B = Lp(µ) and H = L2(µ). Using Remark 2.11 there is
a representation % : G → O(B) so that for the canonical complement B′ of B%(G)

the restriction %′ : G → O(B′) almost has invariant vectors, i.e. there exist unit
vectors vn ∈ S(B′) so that

fn(g) = ‖%(g)vn − vn‖

converges to 0 uniformly on compact subsets of G.
We shall obtain a related unitary, or orthogonal, representation π : G → O(H)

using the following:

Lemma 4.2. For p 6= 2, the conjugation U 7→ Mp,2 ◦ U ◦M2,p by the non-linear
Mazur map sends O(B) to O(H).

Proof. Follows from Banach–Lamperti description of O(B) (Theorem 2.16) by
calculation. �

Let us then define π : G → O(H) by π(g) = Mp,2 ◦ %(g) ◦M2,p. Note that Mp,2

maps B%(G) onto Hπ(G).
As S(B′) is uniformly separated (in fact is at distance 1) from B%(G), the uniform

continuity of the Mazur map (Theorem 2.17) implies that un = Mp,2(vn) is a
sequence in S(H) such that dist(un,Hπ(G)) ≥ δ > 0 and ϕn(g) = ‖π(g)un−un‖ →
0 uniformly on compact subsets of G. Let wn denote the projections of un to
H = (Hπ(G))⊥. Then

‖wn‖ ≥ δ > 0 and ‖π(g)wn − wn‖ ≤ ϕn(g) → 0

uniformly on compacta. Thus the restriction π′ of π to H′ does not have G-invari-
ant vectors, but almost does. Hence G does not have Kazhdan’s property (T ). �

Remark 4.3. In fact, the above proof has established the following more specific
statement. Let G act measurably on a σ-finite measure space. Denote by %p

the associated linear isometric representation on Lp, namely the quasi-regular
representation twisted by the p-th root of the Radon–Nikodým derivative. Then,
the existence of almost invariant vectors in Lp

/
(Lp)%p(G) is independent of 1 ≤

p < ∞.
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4.b. Property (T ) Implies (TLp(µ)) – Second Proof.

Proof. For 1 < p ≤ 2 we have (T ) ⇒ (FLp(µ)) ⇒ (TLp(µ)) by Theorem 1.3 (1)
and (2). Using duality (Corollary 2.12) this implication extends to Lp(µ) with
2 < p < ∞. �

4.c. Property (TLp) Implies (T ).

Proof. Assume that G is not Kazhdan, i.e. G admits a unitary representation
π almost containing (but not actually containing) non-trivial invariant vectors.
Connes and Weiss [CW] showed how to find such a representation of the form
L2

0(µ). More precisely, they construct a measure-preserving, ergodic G-action
on a probability space (X, µ) which admits a a sequence {En} of asymptotically
invariant measurable subsets, namely

(4.i) ∀ g ∈ G µ(gEn 4 En) → 0 whilst µ(En) = 1/2.

Consider the unitary G-representation π′ on L2
0(µ) – the space of zero mean square

integrable functions, which is the orthogonal complement of the constants. Then
π′ does not have non-trivial invariant vectors because of ergodicity; but it almost
does, namely fn = 2 · 1En − 1.

For a given 1 ≤ p < ∞, consider the linear isometric G-representation % on
B = Lp(µ), %(g)f(x) = f(g−1x). Then B%(G) = R1 – the constants, and its
canonical complement is

B′ = Lp
0(µ) =

{
f ∈ Lp(µ) :

∫
f dµ = 0

}
.

The above sequence {fn} lies in Lp
0(µ), consists of unit vectors and still satisfies

‖%(g)fn − fn‖p → 0. Hence failing to have Kazhdan’s property (T ) a group G
does not have (TLp(µ)) either.

In the original paper [CW], Connes and Weiss considered discrete groups. In a
similar context the case of locally compact groups was also considered by Glasner
and Weiss (see [GW, Section 3] and references therein). One way to treat the
non-discrete case, is the following: start from a unitary representation π of a
given lcsc G which has almost invariant vectors but no invariant ones, and apply
the original Connes–Weiss Gaussian construction to the restriction π|Γ of π to
some dense countable subgroup Γ ⊆ G. This gives an ergodic measure-preserving
Γ-action on a probability space (X, µ) with an asymptotically invariant sequence
{En} on X. The fact that the representation π|Γ came from G is manifested by
the fact that it is continuous in the topology on Γ induced from G. It can be shown
to imply that the Γ-representation on L2

0(X, µ) is also continuous, hence extends
to G, and thus the Γ-action on (X, µ) extends to a measurable G-action. This
construction gives a uniform convergence in (4.i) on compact subsets of G. �

5. Fixed Point Property for Higher Rank Groups

5.a. The objective of this section is to prove Theorem B; we start with some
preliminaries for the linear part.
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The first ingredient needed for the proof is an analogue of Howe–Moore’s theo-
rem on vanishing of matrix coefficients, or rather its corollary analogous to Moore’s
ergodicity theorem, extended to the framework of uniformly equicontinuous rep-
resentations on superreflexive Banach spaces. The ucus Banach space version of
Howe–Moore is due to Yehuda Shalom (unpublished). With his kind permission
we have included the argument in Appendix 9. Here we shall use the following
corollary, which we formulate for the case of simple groups.

Corollary 5.1 (Banach space analogue of Moore’s theorem). Let k be a local
field and let G = G(k) be the k-points of a Zariski connected isotropic simple
k-algebraic group G. Let G+ be the image of the simply connected form G̃ = G̃(k)
in G under the cover map. Let H ⊆ G+ be a closed non-compact subgroup.

Then for any superreflexive space B and any continuous uniformly equicontinu-
ous linear G-representation % : G+ → GL(B), B%(H) = B%(G+) and the canonical
complements with respect to both %(G+) and %(H) coincide, and can be denoted
just by B′.

Proof. By Proposition 2.3, we may assume that B is a ucus Banach space and
% is a linear isometric representation % : G → O(B). Now the statement follows
readily from Theorem 9.1. �

5.b. The second ingredient is strong relative property (T ). It will be used to
prove Claim 5.5 below which is the only part which is specific to Lp-like spaces.
The rest of the argument applies to all affine isometric actions on ucus Banach
spaces, or all uniformly equicontinuous affine actions on a superreflexive space.

Definition 5.2. Let H n U be a semi-direct product of locally compact groups.
We shall say that it has

strong relative property (T ): if for any unitary representation π of H n
U for which H almost has non-trivial invariant vectors, U has invariant
vectors.

strong relative property (TB): where B is a Banach space, if for any lin-
ear isometric representation % : H n U → O(B) the linear isometric H-
representation %′ : H → O(B/B%(U)) does not almost have non-trivial
invariant vectors.

Remarks 5.3.
(1) The first definition is a variant of “relative property (T )”. The latter

usually refers to a pair of groups G0 ⊆ G and requires that any unitary
G-representation with G-almost invariant vectors, has non-trivial G0-in-
variant vectors. Strong relative property (T ) for H nU implies, but is not
equivalent to, relative property (T ) for (H n U,U). In fact SL2(R) n R2

has the strong relative (T ) and thus relative (T) as well, whilst its lat-
tice SL2(Z) n Z2 does not have strong relative (T ) even though the pair
(SL2(Z)nZ2,Z2) has relative property (T ). (For the latter, cf. M. Burger’s
appendix in [HV]. For the former, consider the representation on `2(Z2)
induced by the affine action on Z2.)
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(2) If B is a ucus Banach space, then the canonical splitting with respect
to %(U), namely B = B%(U) ⊕ B′ is preserved by %(H) which normalizes
ρ(U) (Corollary 2.8). Hence, as in Remark 2.11, for ucus space B strong
relative property (TB) requires that the restriction of %(H) to B′ does not
almost have invariant vectors. Strong relative (TH) for a Hilbert space H
is equivalent to the strong relative (T ).

Lemma 5.4. A semi-direct product H n U with strong relative property (T ) has
strong relative property (TB) for all Lp-related Banach spaces B of types (i), (ii),
(iii) as in Theorem A.

Proof. This is analogous to the proof of (T ) ⇒ (TB) given in Section 4.a. First
observe that the extension Theorem 2.20 and a duality argument (based on Propo-
sition 2.10) reduce the statement to the case (i) of B = Lp(µ).

Thus we assume that B = Lp(µ) with p 6= 2, and % : H n U → O(B) is a
linear isometric representation. Let B = B%(U) ⊕ B′ be the canonical splitting
with respect to U . It is preserved by %(H) because H normalizes U . Now let
π = Mp,2 ◦ % ◦ M2,p be the conjugate of % by the Mazur map. Then π is an
orthogonal representation π : H n U → O(H) where H = L2(µ) (Lemma 4.2).

If H n U fails to have strong relative (TB), then there exist xn ∈ S(B′) so that
‖%(h)xn − xn‖ → 0 uniformly on compact subsets of H. Uniform continuity of
Mp,2 and the fact that dist(S(B′),S(B%(U))) = 1, imply that for vn = Mp,2(xn)

dist(vn,H%(U)) ≥ δ > 0 ‖π(h)vn − vn‖ → 0

uniformly on compact subsets of H. Taking projections of vn to H′ we show that
in this case H n U does not have strong relative property (T ). �

5.c. Proof of Theorem B. We first show that we can assume that G is (the
k-points of a) connected and simply connected algebraic group. Assuming that
Theorem B is known for G̃0 and lattices therein; we will prove it for G and
its lattices. For any affine isometric action of G on B there is an associated
action of G̃0, inflated via the covering map G̃0 → G. G̃0 has a fixed point by
assumption, hence G has a compact orbit, as the cokernel of the covering map is
compact [M5, Theorem I.2.3.1(b)]. It follows that G has a fixed point as well. A
similar argument applies to lattices: For a given lattice Γ in G its inverse image
Γ̃ by the covering map is a lattice in G̃0, and its projection is of finite index in
Γ. Every affine isometric action of Γ gives rise to an affine isometric action of Γ̃,
which, by assumption, has a fixed point. It follows that Γ has a finite orbit, and
therefore fixes a point.

Hereafter we will assume that G is (the k-points of a) connected and simply
connected group. In that case G decomposes into a direct product of simply
connected almost simple groups G =

∏
Gi [M5, Proposition I.1.4.10].

In view of (the independent) Sections 8.a and 8.b, more specifically Proposi-
tion 8.8(2) and the discussion following Definition 8.2, property (FB) for G =

∏
Gi

is inherited by its lattices. Thus it suffices to consider the ambient group G =
∏

Gi



26 U. BADER, A. FURMAN, T. GELANDER, AND N. MONOD

only. By Proposition 2.15(3) the statement reduces to that about almost-simple
factors Gi.

So we are left proving the theorem for G = G(k), a higher rank connected,
simply-connected, almost-simple algebraic group. Using Proposition 2.13, we as-
sume that B is a ucus Banach space and we consider a G-action on B by affine
isometries, with % : G → O(B) denoting the linear part of the action. Let
B = B%(G) ⊕ B′ be the canonical decomposition and %′ : G → O(B′) denote
the corresponding sub-representation.

Claim 5.5 (For Lp-like spaces). G contains a direct product A×H so that
(1) The restriction %′|H : H → O(B′) does not almost contain invariant vec-

tors.
(2) A is a one-dimensional split torus, and in particular it is not compact.

Proof. Any higher rank almost-simple group G = G(k) is known to contain a
subgroup whose simply-connected cover is isomorphic to either G0 = SL3(k) or
G0 = Sp4(k) [M5, Theorem I.1.6.2]. In the first case G0 = SL3(k) contains the
semi-direct product H0 n U0 = SL2(k) n k2 embedded in SL3(k) as

 a b x
c d y
0 0 1

∣∣∣∣∣∣ ad− bc = 1


where U0

∼= k2 is the subgroup given by a = d = 1, b = c = 0. It is normalized by
the copy H0 of SL2(k) embedded in the upper left corner. Let A0 ⊆ SL3(k) be
the subgroup diag[λ, λ, λ−2], λ ∈ k∗, which centralizes H0 in G0, and let A and
H n U denote the corresponding subgroups in G.

The semi-direct product SL2(k) n k2 is known to have strong relative prop-
erty (T ). Hence it has strong relative property (TB) for Lp-related spaces B

(Lemma 5.4). By 5.1 we have B%(G) = B%(U) and we have denoted by B′ the
common canonical complement. Then (1) follows from the strong relative prop-
erty (TB) for H n U , while (2) is clear from the construction.

In the second case G contains a copy of G0 = Sp4(k) which is usually defined
as a subgroup of SL4(k) by

Sp4(k) =
{
g ∈ SL4(k) | tgJg = J

}
, where J =

(
0 I
−I 0

)
.

The semi-direct product H0 n U0 embedded in SL4(k) is{(
A B
0 tA−1

)∣∣∣∣ A ∈ SL2(k), tB = A−1B (tA)
}

with H0 denoting the image A 7→ diag[A,t A−1] of SL2(k), and U0 the normal
Abelian subgroup {(

I B
0 I

) ∣∣∣∣ tB = B

}
.

The semi-direct product H0 n U0 actually lies in Sp4(k), it is isomorphic to
SL2(k) n S2(k), where S2(k) is the space of symmetric bilinear forms on k2 with
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the natural SL2(k) action. This semi-direct product is also known to have strong
relative property (T ), and therefore strong relative (TB). H0 is centralized by
A0 =

{
diag[λ, λ, λ−1, λ−1] : λ ∈ k∗

}
. As in the G0 = SL3(k) case, we conclude

that the corresponding product A × H ⊆ G satisfies (1) and (2). The claim is
proved. �

We now turn to the affine isometric G-action defined by a %-cocycle c ∈ Z1(%).
We shall prove that c ∈ B1(%) i.e. that G has a global fixed point. Write c(g) =
c0(g) + c′(g) with c0(g) ∈ B%(G) and c′(g) ∈ B′ where B = B%(G) ⊕ B′ is the
canonical splitting. Then c0 : G → B is a homomorphism into the (additive)
Abelian group. As G has compact Abelianization, c0(g) ≡ 0, which means that
the affine G-action preserves each affine subspace p + B′. Hence both the affine
G-action and the representation can be restricted to B′.

Claim 5.5 provides an input for the following general lemma:

Lemma 5.6. Let a direct product of topological groups A×H act by affine isome-
tries on a Banach space B. Suppose that the associated linear isometric represen-
tation % restricted to H does not almost have invariant vectors. Then the affine
action of A has bounded orbits in B. In particular, if B is uniformly convex, then
A has a fixed point in B.

Remark 5.7. In the uniformly convex case, this follows of course from the
stronger splitting theorem (Theorem C); compare also with Theorem 7.1 below for
the weaker assumption that the product does not almost have invariant vectors.

Proof of the lemma. Let % : A×H → O(B) and c ∈ Z1(%) denote the associated
linear isometric representation and the translation cocycle. The commutation
relation between any h ∈ H and a ∈ A gives

c(h) + %(h)c(a) = c(ha) = c(ah) = c(a) + %(a)c(h)

which can be rewritten as

(I − %(h))c(a) = (I − %(a))c(h).

By the assumption on %(H), there exists a compact subset K ⊆ H and an ε > 0
so that maxh∈K ‖%(h)v− v‖ ≥ ε · ‖v‖ for all v ∈ B. Let R = maxh∈K ‖c(h)‖ < ∞.
Then for a ∈ A

ε · ‖c(a)‖ ≤ max
h∈K

‖(I − %(h))c(a)‖ ≤ 2R.

Hence supa∈A ‖c(a)‖ ≤ 2R/ε, i.e. the A-orbit of 0 is bounded. If B is uniformly
convex then the circumcentre of this orbit is an A-fixed point as in Lemma 2.14.

�

We restrict the G-action to B′ since G has no additive characters. It follows
from Claim 5.5 and Lemma 5.6 that for some (one-dimensional) split torus A,
there is an A-fixed point. This point is unique; indeed, if x, y are A-fixed, then
x − y ∈ B′ is an A-invariant vector for the linear representation %. Since A is
non-compact, the ucus analogue of Moore’s ergodicity (Corollary 5.1) implies that
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B%(A) = B%(G). Hence x− y = 0 as claimed. Being unique, it is also fixed by any
element commuting with A.

Let now S ⊇ A be a maximal split torus. Recall (Cartan decomposition)
that there is a compact subgroup M < G such that G = MSM . (We refer
to [M5, I.2.2.1], recalling that we placed ourselves in the case of simply connected
algebraic groups; in fact, there is even a “positive semigroup” S+ ⊆ S such that
G = MS+M , but we shall not need this.)

At this point, we observe that if any group G of isometries of any metric space
can be written as a product of finitely many subgroups with bounded orbits, then
G itself has bounded orbits. Since S ⊇ A is commutative, it fixes the unique
A-fixed point. In particular, S has bounded orbits. Since M is compact, it has
bounded orbits. In conclusion, it follows that G = MSM has bounded orbits and
hence a fixed point (Lemma 2.14), concluding the proof of Theorem B.

6. Minimal Sets

Let B be a strictly convex reflexive Banach space and G a group acting on B by
affine isometries. Consider the ordered category C of non-empty closed convex G-
invariant subsets of B endowed with G-equivariant isometric maps and inclusion
order. The goal of this section is to study minimal elements of C (regardless of
whether they exist). In Section 7 we shall prove their existence, under certain
conditions (see Corollary 7.5).

The Mazur–Ulam theorem states that a surjective isometry between (real) Ba-
nach spaces is affine. It is not known (and probably not true under no further
assumptions) whether the analogous of the Mazur–Ulam theorem holds in the gen-
eral context of convex subsets of Banach spaces. However, for subsets of strictly
convex spaces it is obviously true:

Lemma 6.1. Let C ⊆ B be a convex subset. Then every isometric map C → B
is affine.

Proof. It is enough to show that for all x, y ∈ C and every 0 < t < 1 the point
p = tx + (1− t)y is determined metrically. This is true since by strict convexity

B(x, (1− t)‖x− y‖) ∩ B(y, t‖x− y‖) = {p}.

�

In particular the morphisms of C are affine. Another useful geometric property
of closed convex sets in B is the existence of a nearest point projection.

Lemma 6.2. Let C be a non-empty closed convex subset of B. Then for every
x ∈ B there exist a unique point πC(x) ∈ C such that ‖x− πC(x)‖ = d(x,C).

Proof. The uniqueness follows from strict convexity. By the Hahn-Banach theorem
C is weakly closed since it is closed and convex; therefore, by reflexivity and the
Banach–Alaoğlu theorem we have a nested family C ∩ B(x, d) of weakly compact
sets as d ↘ d(x,C); its intersection yields existence. �
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The map πC : B → C is called the nearest point projection on C. We remark
that it is not continuous in general. It is continuous for uniformly convex Banach
spaces and non-expanding for Hilbert spaces. Still, the distance between a point
and its projection is always a 1-Lipschitz function:

Lemma 6.3. Let C be a non-empty closed convex subset of B. Then the function
x 7→ ‖πC(x)− x‖ from B to R is 1-Lipschitz.

Proof. For any x, y ∈ B

‖πC(x)− x‖ ≤ ‖πC(y)− x‖ ≤ ‖πC(y)− y‖+ ‖y − x‖.
�

Lemma 6.4. If C ∈ C is a minimal element, then any convex G-invariant con-
tinuous (or lower semi-continuous) function ϕ : C → R is constant.

Proof. If ϕ were to assume two distinct values s < t, then ϕ−1((−∞, s]) would be
a strictly smaller element of C. �

Lemma 6.5. Let C,C ′ ∈ C with C minimal. Then the nearest point projection
π = πC′ |C : C → C ′ is affine.

Proof. For every x, y ∈ C and t ∈ [0, 1], the definition of π implies

(6.i) ‖π
(
tx + (1− t)y

)
−

(
tx + (1− t)y

)
‖

≤ ‖
(
tπ(x) + (1− t)π(y)

)
−

(
tx + (1− t)y

)
‖

≤ t‖π(x)− x‖+ (1− t)‖π(y)− y‖.
It follows that the function C → R, x 7→ ‖π(x) − x‖ is convex. Clearly it is
G-invariant, and by Lemma 6.3 it is continuous, hence Lemma 6.4 implies that
‖π(x) − x‖ is constant on C. This constant must be d(C,C ′); as both the right-
hand side and the left-hand side in (6.i) equal d(C,C ′), it follows that

‖
(
tπ(x) + (1− t)π(y)

)
−

(
tx + (1− t)y

)
‖ = ‖π

(
tx + (1− t)y

)
−

(
tx + (1− t)y

)
‖.

Therefore, by the uniqueness part of Lemma 6.2, tπ(x) + (1 − t)π(y) must be
π
(
tx + (1− t)y

)
. �

Lemma 6.6. If C ∈ C is minimal and T : C → B is a G-equivariant affine map,
then there exist a %(G)-invariant vector b ∈ B such that T (c) = c+b for all c ∈ C.

Proof. The map C → R, x 7→ ‖Tx − x‖ is G-invariant, continuous and convex,
hence by Lemma 6.4 it has a constant value d ≥ 0. Since B is strictly convex and
C is convex, the affine map σ(x) = Tx− x from C to the sphere of radius d in B
must be constant. Its value b = σ(C) is the desired (%(G)-invariant) translation
vector. �

Corollary 6.7. The map πC : C → C ′ from Lemma 6.5 is in fact a translation.

Corollary 6.8. If C,C ′ ∈ C are minimal, then they are equivariantly isometric.
Moreover, any equivariant isometry C → C ′ is a translation by a %(G)-invariant
vector.
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Proof. By Corollary 6.7, πC′ |C : C → C ′ is an isometry; it is G-equivariant and
hence onto by minimality of C ′. The second claim follows from Lemma 6.1 and
Lemma 6.6. �

7. Actions of Product Groups and Splitting

7.a. The main goal of this section is to prove Theorem C. By Proposition 2.13
we may assume the affine action to be isometric with respect to a ucus norm on
a Banach space B. The main step is the following theorem.

Theorem 7.1. Let G = G1×G2 be a product of topological groups with a continu-
ous action by affine isometries on a uniformly convex Banach space B without G-
fixed point. Assume that the associated linear G-representation % does not almost
have non-zero invariant vectors. Then there exists a non-zero %(Gi)-invariant
vector for some i ∈ {1, 2}.

The proof of Theorem 7.1 uses minimal sets (in analogy to [Mo2]); notice that
we are in the setting of Section 6 since uniformly convex spaces are reflexive and
strictly convex [BL, App. A]. More precisely, we show:

Proposition 7.2. Let G and B be as above. Then there exists a minimal non-
empty closed convex G1-invariant subset in B. In fact, any non-empty closed
convex G1-invariant subset contains a minimal such subset.

Proof of Theorem 7.1. Proposition 7.2 provides a minimal non-empty closed con-
vex G1-invariant set C ⊆ B. If there is no non-zero %(G1)-invariant vector,
Lemma 6.6 (applied to G1) shows that G2 fixes every point of C. Since G1

preserves C and G has no fixed point, C cannot consist of a single point. Picking
two distinct points x, y ∈ C yields the non-zero %(G2)-invariant vector x− y. �

Recall that uniform convexity is characterized by the positivity of the convex-
ity modulus δ defined in Section 2.a. Moreover, δ is a positive, non-decreasing
function which tends to zero at zero. Defining

δ−1(t) = sup{ε : δ(ε) ≤ t},
δ−1 is easily seen to share the same properties. Furthermore, for every ε > 0,
δ−1 ◦ δ(ε) ≥ ε.

Proof of Proposition 7.2. Let C0 ⊆ B be any non-empty closed convex G1-invari-
ant subset; we will show that C0 contains a minimal subset (if no initial C0 was
prescribed, one may choose C0 = B).

Pick any p ∈ C0 and let C1 ⊆ C0 be the closed convex hull of the G1-orbit of
p. By Hausdorff’s maximal principle, we can chose a maximal chain D of non-
empty closed convex G1-invariant subsets of C1. If bC := πC(0) is bounded as
C ranges over D, then for some R > 0 we have a nested family of non-empty
sets B(0, R) ∩ C which are weakly compact by reflexivity, Hahn–Banach theorem
and Banach–Alaoğlu theorem. In particular the intersection

⋂
D is non-empty,

thus providing a minimal set for G1. Therefore, we may from now on assume
for a contradiction that the (non-decreasing) net RC := ‖bC‖ is unbounded over
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C ∈ D. Let D′ ⊆ D be the cofinal segment defined by RC > 0. We will obtain a
contradiction by showing that for every compact K ⊆ G, diam(%(K)b̂C) tends to
zero along C ∈ D′, where b̂C = bC

RC
.

Indeed, choose Ki ⊆ Gi compact with K ⊆ K1×K2 and let L = maxg∈K1×K2 ‖g·
0‖. The choice of bC implies g·bC 6= 0 and RC ≤ ‖ bC+g·bC

2 ‖ for all g ∈ G. Therefore,
setting x = bC

‖g·bC‖ , y = g·bC

‖gbC‖ , the convexity modulus δC,g := δ(‖x− y‖) gives

RC ≤ ‖1
2
bC +

1
2
g ·bC‖ ≤ ‖1

2
(x+y)‖·‖g ·bC‖ ≤ (1−δC,g) ·(‖g ·bC−g ·0‖+‖g ·0‖)

≤ (1− δC,g)(RC + L) ≤ RC(1 +
L

RC
− δC,g) ∀ g ∈ K1.

Therefore δC := supg∈K1
δC,g ≤ L

RC
→ 0 along C ∈ D′ and hence

sup
g∈K1

‖g · bC − bC‖
‖g · bC‖

≤ δ−1(δC) → 0.

Using ‖g · bC‖ ≤ ‖g · bC − g0‖+ L ≤ RC + L, it follows that

(7.i) sup
g∈K1

‖g · bC − bC‖
RC

→ 0 along C ∈ D′.

On the other hand, for every g ∈ G2, the function z 7→ ‖g · z − z‖ is continuous,
convex and G1-invariant;therefore, it is bounded by ‖g · p − p‖ on C1. Setting
L′ = maxg∈K2 ‖g · p− p‖, it follows now that for all k = (g1, g2) ∈ K we have

RC · ‖%(k)b̂C − b̂C‖ = ‖kbC − bC − k0‖ ≤ ‖g1bC − bC‖+ ‖g2g1bC − g1bC‖+ L

≤ ‖g1bC − bC‖+ L′ + L.

Thus, in view of (7.i), diam(%(K)b̂C) goes to zero as claimed. �

Proof of Theorem C. We adopt the notation and assumptions of that theorem;
let % be the linear part of the action. Assume first n = 2. Since we have in
particular B%(G) = 0, Corollary 2.9 yields a canonical splitting B = B%(G1) ⊕
B%(G2) ⊕ B0 invariant under %(G). Decomposing the cocycle G → B along this
splitting shows that up to affine isometry we may assume that the affine G-space
B splits likewise as affine product of affine spaces with corresponding linear parts.
However, Theorem 7.1 shows that the resulting affine G-action on B0 must have
a fixed point since B

%(Gi)
0 = 0. Therefore we obtain a G-invariant affine subspace

G-isometric to B%(G1) ⊕B%(G2) in B, as claimed.
In order to obtain the general case n ≥ 2, we only need to observe that Corol-

lary 2.9 applied to the product G1 ×
∏

i≥2 Gi allows us to apply induction on
n. �

Remark 7.3. The above proof characterizes as follows the subspaces Bi ⊆ B
appearing in the statement of Theorem C: Upon possibly replacing the Bi with
the corresponding linear subspace (which corresponds to replacing the cocycles
with cohomologous cocycles), we have Bi = B%(G′

i) for G′
i =

∏
j 6=i Gj .
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7.b. A More Geometric Approach to Theorem B and a Step Towards
Conjecture 1.6. Before going on towards the superrigidity theorem, let us ex-
plain a more geometric, and seemingly more general, approach to prove (TB) ⇒
(FB), which is based on minimal sets. First we shall formulate a very general
statement in the vein of Conjecture 1.6:

Theorem 7.4. Let B be a ucus Banach space and G a topological group with prop-
erty (TB) and compact Abelianization. Then for any continuous affine isometric
action of G on B there is a minimal non-empty closed convex subset C ⊆ B.
Moreover AutG(C) is trivial, C ⊆ B′ and C is unique up to translations by a
%(G)-invariant vector.

The proof of Theorem 7.4 relies on the following consequence of our discussion
of minimal sets:

Corollary 7.5. Let G be a topological group with a continuous action by affine
isometries on a uniformly convex Banach space B. Assume that the associated
linear representation does not almost have non-zero invariant vectors. Then there
exists a unique minimal non-empty closed convex G-invariant subset C0 ⊆ B.
Moreover, there are no non-trivial G-equivariant isometries of C0.

Remark 7.6. In view of the additional statement of Proposition 7.2, the set C0 is
contained in every non-empty closed convex G-invariant subset. Thus it is indeed
the (non-empty) intersection of all those subsets.

Proof of Corollary 7.5. For the existence of C0, we may apply Proposition 7.2 if
G = G1 × 1 has no fixed point, or otherwise take such a fixed point for C0. Both
uniqueness and the additional statement follow now from Corollary 6.8. �

Proof of Theorem 7.4. Since G has compact Abelianization, the %(G)-invariant
subspace B′ is in fact G-invariant as an affine space, as the projection of the
cocycle to B%(G) must be a homomorphism. It follows that every minimal non-
empty closed convex G-invariant set is contained in some coset of B′. The existence
and uniqueness of such subset C inside B′ follows from Corollary 7.5. The fact
that any two such sets are different by a %(G)-invariant vector is a consequence of
Corollary 6.8. �

Let us now describe an alternative proof for Theorem B. Let B be an Lp-related
Banach space as in Theorem B. We reduce to the case where G is (the k-points of
a) connected, simply-connected and almost-simple as in Section 5. Now G either
contains a copy of SL3(k) or of Sp(4, k) that, in each case, contains a semidirect
product HnU with the strong relative property (TB) (see Lemma 5.4 and the proof
of Claim 5.5 ). We decompose B = B%(U) ⊕ B′ according to that U -action; note
that by Howe-Moore B%(U) = B%(G). Then B′ is invariant under the affine action
of G and H does not almost has invariant vectors in B′. Hence, by Corollary 7.5
there is a unique minimal non-empty closed convex H-invariant subset C ⊆ B′

and it has no non-trivial automorphisms which commute with the H-action. Since
by Claim 5.5 the centralizer of H is non-compact, it follows by Howe–Moore that
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C is reduced to a point. Now one finishes the proof as in Section 5 using a Cartan
decomposition.

8. Induction and Superrigidity

Let Γ < G = G1 × · · · ×Gn be a lattice in a product of n ≥ 2 locally compact
groups. Under an irreducibility assumption, the splitting theorem (Theorem C)
implies a superrigidity result for uniformly equicontinuous affine Γ-actions on su-
perreflexive spaces B. As before such an action can be viewed as an affine isometric
Γ-action on a ucus Banach space B. It therefore suffices to apply the splitting
theorem to the induced G-action on an induced space Lp(G/Γ, B) (compare [Sh]
for the Hilbertian case).

The goal of this section is to address the various (mostly technical) issues that
arise when carrying out this programme. We begin by preparing for a statement
(Theorem 8.3 below) that will then imply a more general form of Theorem D.

8.a. Let G be a locally compact group and Γ < G a lattice. The induction
procedure will work smoothly if Γ is uniform (i.e. cocompact); in order to treat
some non-uniform cases, one introduces the following.

Definition 8.1 ([M5, III.1.8]). The lattice Γ is weakly cocompact if the G-repre-
sentation L2

0(G/Γ), i.e. the canonical complement of the trivial representation in
L2(G/Γ), does not almost have non-zero invariant vectors.

One verifies that any cocompact lattice is weakly cocompact. If G has prop-
erty (T ), then all its lattices are weakly cocompact. This also holds if G is any
(topologically) connected semisimple Lie group ([Bk], compare also [M5, III.1.12]).
By Remark 4.3, this definition does not depend on considering L2(G/Γ) rather
than Lp(G/Γ) for some other 1 ≤ p < ∞.

Definition 8.2 (See [Sh, 1.II]). Let p > 0. The lattice Γ is p-integrable if either (i)
it is uniform; or (ii) it is finitely generated and for some (or equivalently any)
finite generating set S ⊆ Γ, there is a Borel fundamental domain D ⊆ G (with
null boundary) such that∫

D
‖χ(g−1h)‖p

S dh < ∞ ∀ g ∈ G,

where ‖ · ‖S is the word-length associated to S and χ : G → Γ is defined by
χ−1(e) = D, χ(gγ−1) = γχ(g).

This formulation is a bit awkward so as to include all uniform lattices since (ii)
would otherwise fail when G is not compactly generated. Condition (ii) holds
(with any p ≥ 1) for all irreducible lattices in higher rank semisimple Lie/algebraic
groups, see [Sh, §2]; it holds likewise for Rémy’s Kac–Moody lattices [Ry].

Finally, given a product structure G = G1 × · · · × Gn, we say that a lattice
Γ < G is irreducible if its projection to each Gi is dense.
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Theorem 8.3. Let Γ be an irreducible lattice in a locally compact σ-compact group
G = G1× · · · ×Gn. Assume that Γ is weakly cocompact and p-integrable for some
p > 1. Let B be a ucus Banach space with a Γ-action by affine isometries.

If the associated linear Γ-representation does not almost have invariant vectors,
then there is a Γ-closed complemented affine subspace of B on which the Γ-action
is a sum of actions extending continuously to G and factoring through G → Gi.
(Compare Remark 1.9.)

Theorem 8.3 indeed implies Theorem D in the wider generality of weakly co-
compact p-integrable lattices, since Proposition 2.13 allows us to assume that the
topological vector space of Theorem D is in fact a ucus Banach space with a
Γ-action by affine isometries.

A (simpler) application of the same techniques implies the following result:

Theorem 8.4. Let Γ be an irreducible lattice in a locally compact σ-compact group
G = G1× · · · ×Gn. Assume that Γ is weakly cocompact and p-integrable for some
p > 1.

Then any homomorphism Γ → R extends continuously to G.

This result was established by Shalom in the case of cocompact lattices [Sh, 0.8]
(actually, his proof holds in the setting of square-integrable lattices). It is therefore
un surprising that our results imply the generalisation stated in Theorem 8.4 above
(see the end of this section).

8.b. Induction. Throughout this section, G is a locally compact second count-
able group and Γ < G a lattice. In particular, the Haar measure induces a standard
Lebesgue space structure on G/Γ.

Remark 8.5. Even though Theorem 8.3 and Theorem D was stated in the more
general setting of σ-compact groups, it is indeed enough to treat the second
countable case: one can reduce to the latter by a structural result of Kakutani–
Kodaira [KK] (the details of the straightforward reduction are expounded at length
in [Mo2]).

Let B be any Banach space and 1 < p < ∞. We consider the Banach space
E = Lp(G/Γ, B) as in Section 2.e.

Lemma 8.6. If B is uniformly convex or ucus, then so is E.

Proof. This follows from a result of Figiel and Pisier, see Theorem 1.e.9 point (i)
in [LT], Volume II. �

Suppose now that B is endowed with a linear isometric Γ-representation %.
Then E can be canonically isometrically identified

(8.i) E ∼= L[p](G, B)%(Γ)

with the space of those Bochner-measurable Γ-equivariant function classes f : G →
B such that ‖f‖B : G/Γ → R is p-integrable (the latter condition is symbolized
by the notation L[p]). Here, we choose to interpret Γ-equivariance as f(gγ) =
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%(γ)−1f(g). The isomorphism (8.i) can be e.g. realized by restricting equivariant
maps to any Borel fundamental domain D ⊆ G for Γ since D ∼= G/Γ as Lebesgue
spaces. This identification allows us to endow E with a continuous linear isometric
G-representation by left multiplication. This G-representation is called the induced
representation. If we choose a fundamental domain D ⊆ G and consider the
corresponding map χ as in Definition 8.2, then this G-representation reads as
follows for f ∈ E = Lp(G/Γ, B):

(8.ii) (hf)(gΓ) = %(χ(g)−1χ(h−1g))f(h−1gχ(h−1g)Γ)

(a good indication that the model (8.i) is more natural!).

Lemma 8.7. Assume Γ weakly cocompact in G. If the linear Γ-representation
does not almost have invariant vectors, then the induced linear G-representation
does not either.

Proof. The proof given by Margulis in the unitary case [M5, III.1.11] holds without
changes (recalling that we can apply weak cocompactness in the Lp setting by
Remark 4.3). �

Suppose now that B is endowed with an isometric Γ-action – not necessarily
linear anymore. We want to endow E with a continuous affine isometric G-action
by identifying E with a space of Γ-equivariant function classes G → B as before,
except that equivariance is now understood with respect to the affine Γ-action.
Formally, there is nothing to change to the special case of linear action considered
above; the action is defined by left G-translation of equivariant maps, so that via
the natural identification we get for f ∈ E = Lp(G/Γ, B) the action

(8.iii) (hf)(gΓ) = χ(g)−1χ(h−1g)f(h−1gχ(h−1g)Γ)

in complete analogy with (8.ii). However, the Lp integrability property might be
lost. The condition (ii) of Definition 8.2 is a straightforward sufficient condition
to retain integrability; cocompactness of Γ is also enough, because it ensures that
one can choose D in such a way that for any compact C ⊆ G the set {η ∈ Γ :
Dη ∩C 6= ∅} is finite [B2, VII §2 Ex. 12]. Compare [Sh, §2] (and [Mo2, App. B]).

In conclusion, we may always consider the continuous induced (affine) isometric
G-action on E when Γ is p-integrable.

By construction, the linear part of the induced affine action coincides with the
induced linear G-representation on E considered earlier. If we denote by b : Γ → B
the cocycle of the original affine Γ-action, then comparing (8.ii) with (8.iii) shows
that the cocycle b̃ : G → E of the induced affine action is given by

(8.iv) b̃(h)(gΓ) = b
(
χ(g)−1χ(h−1g)

)
.

Moreover, the correspondence b 7→ b̃ induces a (topological) isomorphism H1(Γ, B) →
H1(G, E).

At this point, we record the following.

Proposition 8.8. Keep the notation of this section.
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(1) If Γ has property (FB) then so does G.
(2) If G has property (FE) and Γ is p-integrable, then Γ has property (FB).

Proof. For (1), consider any continuous affine isometric G-action on B; then there
is a Γ-fixed point b ∈ B. The corresponding orbit map G → B descends to a
continuous map G/Γ → B. The image of the normalized invariant measure on
G/Γ in B being preserved by G, it follows from Lemma 2.14 that there is a G-fixed
point.

For (2), consider an affine isometric Γ-action on B and endow E with the
induced affine action as in the discussion above. Then there is a G-fixed point
f ∈ E. It follows from the description of E as space of equivariant maps that f is
essentially constant and that its essential value is a Γ-fixed point of B. �

8.c. Superrigidity. In order to prove Theorem 8.3, we now analyse the interplay
between the induction constructions and the setting of irreducible lattices Γ < G =
G1 × · · · × Gn as in the beginning of this Section 8. We will roughly imitate the
arguments given by Shalom in [Sh] when he deduces Corollary 4.2 ibid.

Keep all the above notations and write G′
i =

∏
j 6=i Gj . First we observe that the

irreducibility of Γ implies that for each i it is a well-posed definition to consider
the maximal (possibly zero) linear subspace Bi ⊆ B on which the linear Γ-rep-
resentation % extends to a continuous G-representation %i : G → Gi → O(Bi)
factoring through Gi; moreover Bi is automatically closed by maximality.

The induced space E is ucus by Lemma 8.6. The isometric (affine) G-action on
E has no fixed point by the very same argument given to prove Proposition 8.8(2).
On the other hand, the linear part does not have almost invariant vectors by
Lemma 8.7. Thus Theorem C applies: There is a G-invariant closed complemented
affine subspace E ⊆ E and an affine isometric G-equivariant isomorphism E ∼=
E1 ⊕ · · · ⊕ En, where each Ei is a ucus space with an affine isometric G-action
factoring through G → Gi. In view of Remark 7.3, there is no loss of generality in
assuming that Ei is the space of G′

i-fixed under the induced linear representation.
One verifies readily the following:

Lemma 8.9. The map Bi → E ∼= L[p](G, B)%(Γ) that to v ∈ Bi associates the
function G → B defined by g 7→ %i(g−1)v yields an isometric isomorphism of
(linear) G-spaces Bi

∼= Ei. �

Indeed, since the image of Γ in Gi is dense, the Fubini–Lebesgue theorem implies
that any map f : G → B in E that is G′

i-invariant in the linear representation on
E is an orbit map as in the lemma.

At this point we observe that if the subspaces Bi had trivial intersection, we
would indeed have found a subspace

⊕
Bi

∼=
⊕

Ei of B on which the affine Γ-
action extends continuously to G as requested. In general, we have a Γ-equivariant
affine map ⊕

Ei −→
∑

Bi ⊆ B

induced by the maps of Lemma 8.9. Alternatively, we can think of this map
as follows: The cocycle induced as in (8.iv) decomposes as a sum of cocycles
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b̃ =
⊕

b̃i : G → E, b̃i : G → Gi → Ei, and in turn by Lemma 8.9 each b̃i is the
cocycle induced under the correspondence (8.iv) from a cocycle bi : Γ → Bi; the
affine Γ-action on

∑
Bi is determined by the cocycle

∑
bi. This completes the

proof of Theorem 8.3. �

Remark 8.10. As mentionned in Remark 1.9, the obstruction to extending the
affine Γ-action on some subspace of B is confined within a compact group. Indeed,
the only reason we might end up with a sum of action extending to G through
various Gi rather than with a direct sum (which then extends globally to G) is
the possibility that Bi∩Bj 6= 0 for some i 6= j. But then the linear representation
of Γ on Bi ∩Bj extends continuously to G in two different ways, both through Gi

and through Gj . This may indeed happen but forces the image of Γ in O(Bi∩Bj)
to be compact, see examples and discussion in [Mo2].

Let us only mention the most basic example: Γ < G = G1 × G2 with Gi =
Zo{±1} and Γ = Z2o{±1}. Then Γ acts affinely isometrically without fixed point
on B = R (by (n, m; ε).x = εx + n + m) and the associated linear representation
does not almost have invariant vectors. However, it is easy to check that this
action does not extend to G. Instead, it is a sum of actions extending to Gi with
sum map R⊕R → B = R. Here B1 = B2 = B.

Proof of Theorem 8.4. Recall that the space of homomorphisms Γ → R is pre-
cisely the space of affine isometric Γ-actions on R with the trivial representation
as linear part. By Remark 4.3, the G-representation on Lp

0(G/Γ) does not almost
have invariant vectors. Therefore, using p-integrable induction, one deduces The-
orem 8.4 from Theorem C very exactly as Shalom deduced Theorem 0.8 in [Sh]
from Theorem 3.1 in [Sh]. �

9. Appendix: Howe–Moore Theorem on Banach Spaces

In this appendix we sketch the proof of a version of the well known Howe–Moore
theorem on vanishing of matrix coefficients for unitary representations, extended
to the framework of ucus Banach spaces. This generalization is due to Yehuda
Shalom (unpublished) and we state it here with a sketch of the proof for reader’s
convenience.

Theorem 9.1. Let I be a finite set, ki, i ∈ I be local fields, Gi connected semisim-
ple simply-connected ki-groups, Gi = Gi(ki) the locally compact group of ki-points,
and G =

∏
i∈I Gi.

Let B be a ucus Banach space and % : G → O(B) a continuous isometric linear
representation, such that B%(Gi) = {0} for each i ∈ I. Then all matrix coefficients
cx,λ(g) = 〈%(g)x, λ〉, x ∈ B, λ ∈ B∗, vanish at infinity, i.e. cx,λ ∈ C0(G).

Notice that we can (and will) assume that the Gi have no ki-anisotropic factors,
since the group of ki-points of such factors are compact.

Proof of Theorem 9.1. In a way of contradiction, assume that for some gn → ∞
in G, v ∈ S(B), λ ∈ S(B∗) one has

inf |〈%(gn)x, λ〉| = ε > 0.
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We shall prove that at least one simple factor Gi of G has a non-trivial %(Gi)
invariant vector.

Let G = KAK be a Cartan decomposition of G (here K =
∏

Ki and A =
∏

Ai

where Gi = KiAiKi is the Cartan decomposition for Gi). We first show that
without loss of generality one may assume gn ∈ A.

Lemma 9.2 (KAK Reduction). There exists a sequence an → ∞ in the Cartan
subgroup A ⊆ G and non-zero vectors y, z ∈ B so that

%(an)y w−→z 6= 0.

where w−→ denotes the weak convergence.

Proof. Write gn = knank′n where kn, k′n ∈ K and an ∈ A. Then an → ∞ because
gn →∞. Upon passing to a subsequence, k′n → k′ ∈ K and kn → k ∈ K. Denote

yn = %(k′n)x, y = %(k′)x, µn = %∗(k−1
n )λ, µ = %∗(k−1)λ

where %∗ is the dual (contragradient) G-representation on B∗. Using the weak-
compactness of the unit ball of B we may also assume that

%(an)y w−→z.

We shall show that 〈z, µ〉 = lim〈%(gn)x, λ〉 which is bounded away from zero, hence
implying z 6= 0.

Recall that in a uc Banach space B the weak and the strong topologies agree
on the unit sphere S(B): indeed if yn

w−→y are unit vectors, then

1− δ(‖yn − y‖) ≥ ‖yn + y‖/2 ≥ 〈(yn + y)/2, y∗〉 → 1.

Hence δ(‖yn − y‖) → 0 and ‖yn − y‖ → 0. For the same reason we also have
‖µn − µ‖ → 0 in S(B∗). For an arbitrary ξ ∈ B∗

|〈%(an)yn, ξ〉 − 〈%(an)y, ξ〉| ≤ ‖yn − y‖ · ‖ξ‖ → 0.

Hence %(an)yn
w−→z. In general, if zn

w−→z in B and µn
w−→µ in B∗ then 〈zn, µn〉 →

〈z, µ〉 because weakly convergent sequences are bounded in norm and

|〈zn, µn〉 − 〈z, µ〉| ≤ |〈zn, µn − µ〉|+ |〈zn − z, µ〉|
≤ (sup ‖zn‖) · ‖µn − µ‖∗ + |〈zn − z, µ〉| → 0.

Therefore

〈%(gn)x, λ〉 = 〈%(ank′n)x, %∗(k−1
n )λ〉 = 〈%(an)yn, µn〉 → 〈z, µ〉

implying |〈z, µ〉| ≥ ε, which in particular means that z 6= 0. �

Lemma 9.3 (Generalized Mautner Lemma). Suppose that {an} and h in G satisfy
a−1

n han → 1G in G. If y, z ∈ B are such that %(an)y w−→z then %(h)z = z. In
particular, if %(an)z = z then %(h)z = z.

Proof. (Strong) continuity of % gives

‖%(han)y − %(an)y‖ =
∥∥%(a−1

n han)y − y
∥∥ → 0

At the same time %(an)y w−→z and %(han)y w−→%(h)z. Hence %(h)z = z. �
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We can now prove Theorem 9.1 in the case of G = SL2(k) where k is a local
field. Assuming that % : SL2(k) → O(B) has some matrix coefficient not vanishing
at infinity, we get by Lemma 9.2 a sequence an → ∞ in A, and non zero vectors
y, z ∈ B with %(an)y w−→z.

Let H be the unipotent (horocyclic) subgroup defined by H = {h ∈ G :
a−1

n han → e}. It is normalized by an, and by Lemma 9.3 z is a (non-trivial)
%(H)-invariant vector. We may assume that ‖z‖ = 1. The matrix coefficient
f(g) = 〈%(g)z, z∗〉 is a continuous function on G, which is bi-H-invariant:

f(gh) = 〈%(g)%(h)z, z∗〉 = 〈%(g)z, z∗〉 = f(g)(9.i)

f(hg) = 〈%(g)z, %∗(h−1)z∗〉 = 〈%(g)z, z∗〉 = f(g)(9.ii)

for all g ∈ G and h ∈ H. The proof can be now completed as in the original
unitary Howe–Moore Theorem. By (9.i), f can be viewed as a continuous function
f0 on the punctured plane G/H = k2 − {(0, 0)}, and by (9.ii), f0 is constant on
each horizontal line `s = {(t, s) : t ∈ k}, s 6= 0, where we identify H with the
upper triangular unipotent subgroup by choosing an appropriate basis for k2. By
continuity, f0 is a constant on {(t, 0) : t 6= 0}. Since f0(0, 1) = f(e) = 1 this
constant is 1.

This implies that z is %(A)-invariant because 〈%(a)z, z∗〉 = f(a) = f(e) = 1
whilst z∗ attains its norm only on z.

Thus z is fixed by the upper triangular group AH ⊆ G and f descends to a
continuous function f1 on the projective line P(k2) = G/AH. The H-action on
P(k2) has a dense orbit. Thus f1 is constant 1, and so is f :

〈%(g)z, z∗〉 = f(g) = f(e) = 1 (g ∈ G)

Thus the unit vector z is %(G)-invariant, completing the proof in the case of
G = SL2(k).

The proof of the unitary Howe–Moore theorem for semisimple Lie group G =∏
Gi (c.f. Zimmer [Z], Margulis [M5]) relies only on the reduction to the Cartan

subgroup (Lemma 9.2), the structure of such groups, the case of SL2(k) and on
Mautner Lemma. Thus the “unitary” argument can be applied almost verbatim
to the present setup of ucus Banach spaces. �
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