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Abstract

We prove that the groups of orientation-preserving homeomorphisms and diffeomor-
phisms of Rn are boundedly acyclic, in all regularities. This is the first full computation
of the bounded cohomology of a transformation group that is not compactly supported,
and it implies that many characteristic classes of flat Rn- and Sn-bundles are unbounded.
We obtain the same result for the group of homeomorphisms of the disc that restrict to
the identity on the boundary, and for the homeomorphism group of the non-compact
Cantor set. In the appendix, Alexander Kupers proves a controlled version of the
annulus theorem which we use to study the bounded cohomology of the homeomorphism
group of the discs.

1 Introduction

1.1 Euclidean spaces vs. compactness

The topological group Homeo(Rn) of all self-homeomorphisms of Euclidean space remains
very mysterious to this day. Its homotopy type is not completely understood and neither is
its group cohomology, despite many deep discoveries, especially in recent times (see [RW23],
[GRW23] and the references therein). In particular, the results obtained so far indicate highly
non-trivial higher homotopy groups.

By deep results of Thurston [Thu22] and McDuff [McD80], when M is the interior of a
compact manifold, the cohomology of classifying space of the topological group Homeo(M)
coincides with the group cohomology of the underlying “abstract” (discrete) group. In
contrast to the mystery surrounding the group Homeo(Rn), Mather proved in 1971 [Mat71]
that the group Homeoc(Rn) of compactly supported homeomorphisms of Rn, as an abstract
group, is acyclic. Moreover, when M itself is compact, the group cohomology of Homeo(M)
is sometimes completely known thanks to Thurston’s previously mentioned result. Thus,
“mystery resides at infinity”.

Our contribution in this article is to the bounded cohomology H•
b of homeomorphism and

diffeomorphism groups (always as abstract groups). In the compactly supported case, the ana-
logue of Mather’s theorem was established in 1985 by Matsumoto–Morita [MM85]: Homeoc(Rn)
is boundedly acyclic. More recently [MN23], the bounded cohomology of Homeo(M) and
Diff(M) has been determined for the compact case of M = S1.
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Our main result is the first complete determination of the bounded cohomology of trans-
formation groups without any compactness assumption, answering [MN23, Question 7.6].

Theorem A (Theorems 3.4 and 3.12). For all n ∈ N∗, the group Homeo+(Rn) is boundedly
acyclic.

Some results in bounded cohomology are analogues of ordinary cohomological statements,
e.g. Matsumoto–Morita’s extension of Mather’s result. By contrast, Theorem A is genuinely
different: Even though the ordinary cohomology is not yet completely known, it is known to
have a remarkably rich structure when the dimension n is high enough ([RW23, Section 3.3]).

Moreover, it is known that the group cohomology of transformations of the Euclidean
space depends on regularity. For a manifold M as before, it is a consequence of a remarkable
theorem of Tsuboi [Tsu89] that the cohomology of BDiff1(M), the classifying space of the
group Diff1(M) with C1-topology, is the same as the group cohomology of Diff1(M) as a
discrete group. However, in regularities r > 1, it is known that the group cohomology of
Diffr(M) is different from the cohomology of BDiffr(M). In particular, when M = Rn, the
topological group Diffr(Rn) for r > 0 is homotopy equivalent to O(n) but as a discrete
group, its group cohomology is the same as the cohomology of BΓr

n, the classifying space
of Cr-Haefliger structures of codimension n [Seg78, Proposition 3.1 and Proposition 1.3].
The cohomology of BΓr

n is related to the secondary characteristic classes of foliations of
codimension n and it is known to be highly nontrivial (see Section 5 and [Miz88]). Still, we
also obtain the analogue of Theorem A for diffeomorphisms in all regularities.

Theorem B (Theorems 3.4 and 3.12). For all r ∈ N∗ ∪ {∞} and all n ∈ N∗, the group
Diffr

+(Rn) is boundedly acyclic.

Remarks. (i) The above formulation in terms of orientation-preserving homeomorphism
and diffeomorphism groups Homeo+,Diff

r
+ is more natural for our proofs, but it immedi-

ately implies the result for the entire groups (see [Mon01, Corollary 8.8.5]). It is standard
that for r > 0, the derivative at the origin induces a homotopy equivalence between
Diffr

+(Rn) and GLn(R)+ as topological groups. So we have Diffr
+(Rn) = Diffr

◦(Rn) for
r > 0, where Diffr

◦ denotes the identity component. The same statement holds for r = 0
by the deep theorem in [Kir69, Corollary of Theorem 2]. We will use the corresponding
notation Homeo◦,Diff

r
◦ when this point of view is more natural.

(ii) Ordinary acyclicity usually refers to the vanishing of homology with integral coefficients,
which then implies the vanishing of cohomology with arbitrary trivial coefficients.
Bounded acyclicity is defined directly as the vanishing of bounded cohomology with
real coefficients, because fundamental techniques of the theory are unavailable over the
integers. Nevertheless, it can be understood as a version of homological acyclicity but
with a control of the norm in the spirit of homological isoperimetry, see Matsumoto–
Morita [MM85].

As suggested by the fact that our results differ from the picture in ordinary cohomology,
our proof will require a new device. That device can also be used in ordinary cohomology;
as an illustration, the special case n = 1 of Theorem A actually goes through in ordinary
cohomology and recovers the following result of McDuff (which she also attributes to Thurston
and Segal). Contrary to the original proof, this does not rely on the topology of the group
Homeo+(R), nor on foliation theory and Haefliger spaces.
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Theorem C ([McD80]). The group Homeo+(R) is acyclic.

A theorem of Ghys [Ghy01] states that the bounded Euler class in H2
b (Homeo+(S

1);Z)
classifies actions on the circle by orientation-preserving homeomorphisms up to semiconju-
gacy. Ghys’s Theorem can be used to prove that, given a countable discrete group Γ, the
semiconjugacy relation on the representation variety Homirr(Γ,Homeo+(S

1)) is smooth. Here
Homirr denotes those representations without global fixed points, and smooth equivalence
relations are the simplest ones from the point of view of Borel reducibility. On the other hand,
the semiconjugacy relation on the representation variety Homirr(Γ,Homeo+(R)) is essentially
hyperfinite, a strictly more complex type of equivalence relation, already when Γ is a free
group [BMBRT21, Section 3.5]. This is in agreement with the fact that Homeo+(R) has
vanishing bounded cohomology with integer coefficients in all positive degrees, which is a
direct consequence of Theorems A and C (see e.g. [FFLM23, Corollary 5.8]).

1.2 Taming infinity: A sketch

The new method that we introduce to study the various transformation groups of Rn is a
general paradigm applicable in many other situations, some of which will be mentioned later
in this article. We will now first sketch it in one of the simplest possible cases, namely for the
group Homeo+(R) of (orientation-preserving) homeomorphisms of the line:

The most naive attempt to reduce Homeo+(R) to the compactly supported case is to cut
R into an infinite sequence of compact intervals. Since we prefer usual sequences indexed by
N rather than bi-infinite sequences, we shall work with the subgroup G of elements that are
trivial in a neighborhood of −∞ and we consider a sequence of points that increases to +∞.
Once we prove that this group is boundedly acyclic, an elementary symmetry argument will
allow us to take care of the germs at −∞ in a similar way to conclude that Homeo+(R) itself
is boundedly acyclic.

To be more precise, we consider sequences x = (xn) of fat points xn, which means (as
in [MN23]) germs at 0 of embeddings of an interval (−1, 1) into R. Thus by definition a
homeomorphism fixing xn must be trivial in a neighborhood of the core ẋn, which is the point
ẋn = xn(0) ∈ R. In conclusion, the stabilizer in G of the entire sequence of fat points is the
product group

Homeoc((−∞, ẋ1))×
∞∏
j=1

Homeoc((ẋj, ẋj+1)).

That stabilizer, a power of compactly supported groups, is known to be [boundedly] acyclic
by previous work. Therefore a spectral sequence argument reduces the problem to the study
of two semisimplicial sets: On the one hand, the collection of all fat sequences x as above.
On the other hand, the quotient of this semisimplicial object by the G-action. An important
aspect of our approach is that the semisimplicial structure is given by the subsequence partial
order on spaces of sequences. We shall see that, in great generality, this is an acyclic and
boundedly acyclic object.

In any case, so far all this construction has merely kicked the difficulty further down the
road : The “mystery at infinity” is now contained in the abstract semisimplicial set defined by
G-orbits of increasing sequences under the order relation of taking subsequences.

At that point we observe that homeomorphisms of R are transitive on sequences (of
fat points) that increase to infinity and that, in fact, the entire structure of the quotient

3



semisimplicial object is determined by the abstract order relation on indexing the subsequences.
In precise terms, we show that this quotient semisimplicial set can be identified with the
nerve of the monoid Emb<(N) of order-preserving embeddings N → N. The remaining part
of the proof will therefore be to establish:

Theorem D. The monoid Emb<(N) is acyclic and boundedly acyclic.

It should appear plausible now that the above sketch can be implemented in many other
situations. For instance, in the case of Rn, we shall consider suitably concentric sequences of
fat spheres so that the stabilizer becomes an infinite product of groups of compactly supported
homeomorphisms of annuli (and one ball). Each aspect of the above outline will raise new
difficulties in various situations, except the final step: The quotient structure will always be
the same monoid Emb<(N).

It remains therefore to explain how we prove Theorem D, which encodes the common
residual difficulty at infinity of the diverse situations. The above spectral sequence argument is
entirely reversible: If we exhibit some [boundedly] acyclic group G acting on some [boundedly]
acyclic space of sequences with [boundedly] acyclic stabilizers and the same quotient object
Emb<(N), then the [bounded] acyclicity of Emb<(N) will follow.

This leaves us with the freedom to choose the most favorable example. One possibility
is the group of all countably supported permutations of an uncountable set. This group is
dissipated, a property well-known to imply acyclicity via the concept of binate (or pseudo-
mitotic) group [Var85, Ber89]. This property also implies bounded acyclicity [FFLM23] and
therefore we will obtain a proof of Theorem D. In closing, we observe that the choice of this
group is not unnatural: There are uncountably many ways to pass to subsequences, but each
one is of course a rearrangement of countably many items.

1.3 Beyond Euclidean spaces

As mentioned above, our proof of Theorems A and B relies on a general criterion for bounded
acyclicity. This applies to a variety of groups, which were not approachable by the previous
methods tailored to compact spaces.

An instance of this is in the zero-dimensional setting of Cantor sets. The acyclicity of
the homeomorphism group of the Cantor set was shown by Tsuboi and Sergiescu [ST94]
(and later generalized to the more general Menger spaces [ST96]). A similar strategy also
proves bounded acyclicity, as shown by Andritsch [And22]. Our methods allow us to treat
the non-compact Cantor set, which is uniquely defined as a locally compact, non-compact,
metrizable, totally disconnected space without isolated points. To the best of our knowledge,
also the acyclicity result is new.

Theorem E. The homeomorphism group of the non-compact Cantor set is acyclic and
boundedly acyclic.

In another direction, we consider homeomorphism groups of discs fixing the boundary
pointwise. While discs are compact, from the point of view of homology and bounded
cohomology, their transformation groups are closer to the groups of Theorem A: The difficulties
present at infinity are now present at the boundary. In this case, the bounded acyclicity was
already shown (in all regularities) for D2 [MN23, Theorems 1.3 and 1.4], however the proof is
dependent on certain combinatorial properties of (fat) chords in the 2-disc that fail in higher
dimensions.
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Theorem F. For all n ∈ N∗, the group Homeo(Dn, ∂) of homeomorphisms of the disc Dn

fixing the boundary pointwise, is boundedly acyclic.

We obtain the following consequence, which generalizes [MN23, Theorem 1.3] and answers
[MN23, Question 7.5]:

Corollary G. For all n ∈ N∗, the restriction Homeo+(D
n) → Homeo+(S

n−1) induces an
isomorphism in bounded cohomology in all degrees.

This allows to determine the bounded cohomology of Homeo+(D
n) in low degrees (Corollary

3.21).
These are just two more examples of the applicability of our methods, and we do not aim

for a complete list. In Section 6 we discuss further instances in which our methods apply, and
speculate about other settings where deploying our techniques seems to require additional
work.

Other applications follow from our main results by some standard manipulationos. A
notable instance is the case of compact annuli, where we prove:

Theorem H. For all n ∈ N∗, the identity component Homeo◦(S
n × [0, 1], ∂) of the group of

homeomorphisms of the annulus Sn × [0, 1] fixing both boundary components pointwise, is
boundedly acyclic.

As in the case of the disc, without imposing that the boundary is fixed we obtain a result
on restrictions (Corollary 6.4) and computations in low degree (Corollary 6.5). Leveraging
results from [MN23], we can treat all regularities in dimension 2:

Corollary I. For all r ∈ N, the restriction Diffr
◦(S

1×[0, 1]) → Diffr
◦(S

1)×Diffr
◦(S

1) induces an
isomorphism in bounded cohomology in all degrees. Explicitly, denoting by Ei ∈ H2

b (Diff
r
◦(S

1 ×
[0, 1])) the bounded Euler class for the action of Diffr

◦(S
1 × [0, 1]) on the boundary component

S1 × {i}, we have an isomorphism of graded R-algebras:

H∗
b (Diff

r
◦(S

1 × [0, 1])) ∼= R[E0,E1].

In degree 2, we recover a theorem of Militon (see [Mil14] for the definition of the torsion
number).

Corollary J ([Mil14]). For all r ∈ N and G = Diffr
◦(S

1 × [0, 1]), the space Q(G)/H1(G) of
non-trivial quasimorphisms is one-dimensional, spanned by the torsion number. In particular,
for r ̸= 2, 3, the space Q(G) of homogeneous quasimorphisms is one-dimensional, spanned by
the torsion number.

1.4 Unboundedness of characteristic classes

The bounded acyclicity of Homeo+(Rn) implies that the Milnor–Wood inequality fails for
certain characteristic classes of flat Rn-bundles and flat Sn-bundles. To describe these classes,
first recall a theorem of Thurston ([Thu22, Corollary (b) of theorem 5] and see [McD80,
Section 2, Theorem 2.5] for the proof) for homeomorphisms, we have the natural map between
classifying spaces

BHomeoδ(M) → BHomeo(M), (1)
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where Homeoδ(M) is the group of homeomorphisms of M with the discrete topology. This
map is acyclic and in particular, it induces a homology isomorphism in all degrees. The
same statement also holds in the relative case for manifolds with boundary and also for
non-compactly supported homeomorphisms of an open manifold that is an interior of a
compact manifold [McD80, Section 2, Theorem 2.5]. Therefore, the map

BHomeoδ(Rn) → BHomeo(Rn), (2)

induces a homology isomorphism in all degrees. The same also holds for Homeo+(Rn).
There have been recent breakthroughs in understanding the homotopy type and the rational
cohomology of BHomeo(Rn). In particular, there are topological Pontryagin classes pi for
Euclidean bundles that are defined as rational cohomology classes, and for oriented even
dimensional Euclidean bundles, there is also an Euler class e. Galatius and Randal-Williams
[GRW23] proved a remarkable result which implies that the map

R[e, p1, p2, . . . ] → H∗(BHomeo+(R2n);R),

is injective for 2n ≥ 6, and in the odd-dimensional case, it follows from [GRW23, Corollary
1.2] that

R[p1, p2, . . . ] → H∗(BHomeo+(R2n+1);R),
is injective for 2n + 1 ≥ 7. In low dimensions, we also know that Homeo+(R3) ≃ SO(3)
and Homeo+(R2) ≃ SO(2) ([Ham74, Theorem 1.2.3] and [BH81]). Therefore R[p1] →
H∗(BHomeo+(R3);R) and R[e] → H∗(BHomeo+(R2);R) are isomorphisms. The homology
isomorphism in (2) implies that the same holds forH∗(BHomeoδ+(Rn);R) for the corresponding
n.

If a nontrivial class in H∗(BHomeoδ(M);R) is not in the image of the comparison map

H∗
b (BHomeoδ(M);R) → H∗(BHomeoδ(M);R),

we say that class is unbounded. A corollary of our main theorem is that any nontrivial class
in H∗(BHomeoδ+(Rn);R) is unbounded. More specifically we have the following.

Corollary K. For C0-flat oriented R2n-bundles, all classes in R[e, p1, p2, . . . ] are unbounded
for 2n ≥ 6 and for C0-flat R2-bundles, all the powers of the Euler class are unbounded. For
C0-flat R2n+1-bundles, all classes in R[p1, p2, . . . ] are unbounded for 2n+1 ≥ 7 and for C0-flat
R3-bundles, all powers of p1 are unbounded.

Similarly, for Cr-flat Rn-bundles when r > 0, every nontrivial class in H∗(BDiffr,δ
+ (Rn);R)

is unbounded. To detect nontrivial classes in H∗(BDiffr,δ
+ (Rn);R), we shall use a deep theorem

of Segal [Seg78, Prop. 1.3 and 3.1], that there exists a map

BDiffr,δ
+ (Rn) → BSΓr

n,

which is a homology isomorphism, where BSΓr
n is the classifying space of Haefliger structures

for codimension n foliations that are transversely oriented. There is extensive literature on
secondary characteristic classes of foliations that give nontrivial classes in H∗(BSΓr

n;R) when
r > 1. In particular, there is a Godbillon–Vey class in H2n+1(BSΓr

n;R) that is nontrivial
(see [Miz88] for the corresponding cocycle formula in H2n+1(BDiffr,δ

+ (Rn);R)). To detect the
nontriviality of classical characteristic classes, we consider a map

ν : BSΓr
n → BGLn(R)+,

6



which classifies oriented normal bundles to the codimension n foliations where GLn(R)+ is the
group invertible matrices with positive determinant. For all regularities, it is known that the
map ν is at least (n+ 1)-connected, see [Hae71, Remark 1, Section II.6]. Therefore, the map

ν∗ : H∗(BGLn(R)+;R) → H∗(BSΓr
n;R),

is injective in degrees ∗ ≤ n + 1 for all regularities. For r = 1, it is an isomorphism in all
degrees by a remarkable theorem of Tsuboi [Tsu89] and for r > 1, it is conjecturally injective
in degrees below 2n [Hur06, Problem 14.5]. So we obtain the following corollary about the
unboundedness of the Euler class and Pontryagin classes.

Corollary L. For Cr-flat oriented Rn-bundles when r > 1, the polynomials of degree less
than n+ 2 on Pontryagin classes and the Euler class (when n is even) are all unbounded and
when r = 1, the same statement holds without any condition on the degree of the polynomials.

Remark. Calegari in [Cal04] proved that the Euler class is unbounded for oriented Cr-flat
R2-bundles.

These unboundedness results for classical characteristic classes of flat Rn-bundles are in
contrast to Milnor, Sullivan, Smillie, and Gromov’s results on the boundedness of these classes
for flat linear Rn-bundles. For example, Milnor showed that the Euler class is bounded for
flat linear R2-bundles [Mil58]; Sullivan [Sul76] and Smillie [Smi] generalized it to flat linear
R2n-bundles. Gromov further generalized it [Gro82, Page 23] by proving that if G is an
algebraic subgroup in the linear group GLn(R), then any class in the image of the map

H∗(BG;R) → H∗(BGδ;R),

is a bounded class.
For flat Sn-bundles, we also have topological Pontryagin classes and the Euler class (if it

is oriented and n is odd). These classes are induced by the following composition

BHomeoδ(Sn) → BHomeoδ(Dn+1) → BHomeoδ(Rn+1),

where the first map is induced by coning the sphere to a disc and the second map is induced by
the restriction to the interior of the disc. So we can pull the classes in H∗(BHomeoδ◦(Rn+1);R)
to H∗(BHomeoδ◦(S

n);R). As a consequence of Galatius–Randal-Williams’s result [GRW23,
Theorem 1.4], we shall prove in Section 5 that

R[p1, p2, . . . ] → H∗(BHomeoδ(Sn);R),

is injective for n ≥ 6. We then use the bounded acyclicity of Homeo(Rn) to obtain the
following unboundedness result for the invariants of flat sphere bundles.

Theorem M. For C0-flat Sn-bundles, the classes in R[p1, p2, . . . ] are unbounded for n ≥ 7
and for n = 4, 5 and 6 the classes R[p1, p2] are unbounded. For n = 2, 3, all the powers of p1
are unbounded.

Remark. The unboundedness of p1 in H4(BHomeoδ(S3);R) was first shown in [MN23,
Theorem 1.8], answering a question of Ghys [Lan94, F.1]. Theorem M partially answers
[MN23, Questions 7.3 and 7.4].
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Outline. We begin by stating the criteria for bounded acyclicity and acyclicity in Section
2. In Section 3 we go through the list of groups from the introduction, and verify that they
satisfy the criteria. The case of the disc presents some additional technical difficulties which
are solved by a controlled annulus theorem, proven in Appendix A. We prove the criteria in
Section 4. Section 5 is dedicated to unboundedness results for characteristic classes of flat Rn-
and Sn-bundles. Finally in Section 6, we present further computations (including the results
on compact annuli), and some speculations.

Acknowledgements. FFF was supported by the Herchel Smith Postdoctoral Fellowship
Fund. SN was partially supported by NSF CAREER Grant DMS-2239106 and Simons
Foundation Collaboration Grant (855209). The authors are indebted to Benjamin Brück,
Søren Galatius, Manuel Krannich, Nicolás Matte Bon, Samuel Muñoz-Echániz, Oscar Randal-
Williams and Shmuel Weinberger for useful conversations. We also thank Alexander Kupers
for writing the proof of the “Controlled Annulus Theorem” in the appendix which is a crucial
ingredient in the proof of Theorem F.

2 A criterion for bounded acyclicity

We start by formulating a general criterion for bounded acyclicity of groups admitting a
certain action on a poset. This criterion will be the common denominator of all our proofs.

Definition 2.1. Let P be a poset. We say that P satisfies the W property, if for every
finite subposet Q with minimal elements {x1, . . . , xk} the following holds. For every subset
I ⊆ {1, . . . , k} there exists yI ∈ P such that

1. if I ⊆ J then yI ⪯ yJ ;

2. for x ∈ Q, if xi ⪯ x for all i ∈ I then yI ⪯ x.

The diagram below exhibits this property for the case Q = {x1, x2}, which justifies the
name.

x1 x2

y{1,2}

y1 y2

Let G be a group acting on a set X. The set of all sequences x = (xi)i∈N∗ , xi ∈ X of
pairwise distinct elements xi has a natural poset structure, where x ⪯ y if x is a subsequence
of y. The action of G of X induces an order-preserving action on this poset of sequences.
Any G-invariant subposet X will be called a G-poset of sequences in X.

Theorem 2.2. Let G be a group acting on a set X and let X be a G-poset of sequences in
X. Suppose that the following hold:

1. The poset X satisfies the W property;
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2. The action of G on X is transitive;

3. The stabilizer in G of some (equivalently: every) x ∈ X is boundedly acyclic.

Then G is boundedly acyclic.

We will prove this theorem in Section 4. In the next section, we will see that this criterion
is very powerful in proving bounded acyclicity of transformation groups.

There is a corresponding criterion for acyclicity, which will also be proved in Section 4.

Theorem 2.3. Let G be a group acting on a set X and let X be a G-poset of X-sequences.
Suppose that the following hold:

1. The poset X satisfies the W property;

2. The action of G on X is transitive;

3. The stabilizer in G of some (equivalently: every) x ∈ X is acyclic.

Then G is acyclic.

2.1 Bounded acyclicity for compactly supported groups

When applying the criterion from Theorem 2.2, we will need a way to prove bounded acyclicity
of the stabilizers. These will always be compactly supported transformation groups,, which
are known to be boundedly acyclic in great generality [MM85, FFLM23, Mon22, CFFLM23].
For instance, to deduce Theorems A and B from the criterion, we will only need the following
statement:

Theorem 2.4 ([MN23, Theorem 1.6, Lemma 2.3]). Let n ∈ N∗, r ∈ N∗ ∪ {∞}, let M be a
closed Cr-manifold and let Z be a Cr-manifold diffeomorphic to M × Rn. Then the groups
Homeoc(Z),Diff

r
c(Z), are boundedly acyclic.

Moreover, any (possibly infinite) direct product of such groups is boundedly acyclic.

In more delicate cases, such as for discs, we will need a more general criterion (which
actually implies Theorem 2.4).

Definition 2.5 ([CFFLM23, Definition 4.2]). We say that the group G has commuting
Z-conjugates if for every finitely generated subgroup H ≤ G there exists t ∈ G such that
[H, tpHt−p] = 1 for all p ∈ N∗.

Theorem 2.6 ([CFFLM23, Theorem 1.3]). If the group G has commuting Z-conjugates, then
G is boundedly acyclic.

Another useful feature of bounded acyclicity that we will use in the sequel is the following:

Proposition 2.7 ([MN23, Proposition 2.4], see also [MR23, Theorem 4.1.1]). Consider a
short exact sequence 1 → N → G→ Q→ 1, where N is boundedly acyclic. Then the quotient
G→ Q induces an isomorphism Hn

b (G)
∼= Hn

b (Q) for all n ∈ N.

The criteria presented so far only give bounded acyclicity. To apply Theorem 2.3 we use
another property which guarantees both acyclicity and bounded acyclicity.
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Definition 2.8. We say that a group G is binate if for every finitely generated subgroup
H ≤ G there exist a homomorphism ψ : H → G such that [H,ψ(H)] = 1 and an element
t ∈ G such that t−1ψ(h)t = hψ(h) for all h ∈ H.

Theorem 2.9 ([Var85, Ber89]). Binate groups are acyclic.

Theorem 2.10 ([FFLM23]). Binate groups are boundedly acyclic.

Again, the main example of binate groups comes from compactly supported groups,
although these are now more restricted:

Proposition 2.11 ([Var85, Ber89]). The groups Homeoc(Rn) are binate.

This implies that the groups Homeoc(Rn) are acyclic, which was already proved by Mather
[Mat71]. An advantage of using the binate property is that it passes to products:

Lemma 2.12 ([SV87]). Any (possibly infinite) direct product of binate groups is binate.

2.2 Interweaving subsequences

We now present a common framework that will allow us to interweave subsequences in various
settings, in order to verify the W property.

Let X be any set endowed with a preorder relation ⊑ and an equivalence relation ≃
contained in ⊑ (i.e. x ≃ y ⇒ x ⊑ y). Define X to be the collection of all cofinal increasing
sequences of pairwise inequivalent elements of X. Explicitly, this means:

• ∀n ≤ m : xn ⊑ xm;

• ∀x ∈ X ∃n : x ⊑ xn;

• ∀n ̸= m : xn ̸≃ xm.

Or course we shall only be interested in this definition for examples where there exist
cofinal sequences at all. We record the following elementary observation.

Lemma 2.13. The set X is closed under passage to subsequences.

We will prove that the subsequence order relation ⪯ has the desired property by cyclically
weaving subsequences together.

Proposition 2.14. In the above setting, the poset X has the W property.

Proof. Let Q ⊆ X be a finite subposet, with minimal elements x1, . . . ,xk. We write xj =
{xjn}n∈N∗ . The main step in the construction of the various yJ is the following inductive
construction of a single sequence y = (yn)n∈N∗ .

We start by setting y1 := x11. Next, we will choose y2 among the elements of x2 as follows.
Since Q is a finite set of sequences of pairwise inequivalent elements, there is q ∈ N such that
∀x ∈ Q∀r > q : xr ̸≃ y1. Since x2 is increasing and cofinal, we can choose p > q with y1 ⊑ x2p
and we define y2 = x2p. The general inductive step is analogous: Suppose that y1, . . . , yn have
been defined, with each yi an element of xj for j ≡ i mod k. Then we choose yn+1 to be an
element xj+1

p of xj+1 (or x1 if j ≡ 0 mod k) with the following property. If q is an upper
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bound for the index of any element of any x ∈ Q that is equivalent to some y1, . . . , yn, then
we take p > r such that yi ⊑ xj+1

p (respectively yi ⊑ x1p) for all i = 1, . . . , n. The sequence
y is by definition an increasing sequence of pairwise inequivalent elements and it is cofinal
because it shares a subsequence with a cofinal increasing sequence (any of the xi).

Turning to the requirements of the W property, we now define yI for I ⊆ {1, . . . , k} to be
the subsequence of y that selects only those indices that are congruent to an element of I
modulo k; in particular y{1,...,k} = y. Then by definition yI ⪯ yJ whenever I ⊆ J , and the
fact that yI ⪯ x if xi ⪯ x for all i ∈ I, is the point of the construction above.

Remark 2.15. Since the above proof verifies the W property by explicitly interweaving
subsequences of the finite set of sequences given for W, it holds verbatim for sub-posets
Y ⊆ X as soon as Y has the following two closure properties:

• Y is closed under passing to subsequences;

• If x ∈ X can be written as the disjoint union of two subsequences, each in Y, then
x ∈ Y .

3 Verifying the criterion

We now go through the groups from the introduction (except for transformation groups of
compact annuli, which will be treated in Section 6), justifying why they satisfy the criterion
from Theorem 2.2 (and in some cases, from Theorem 2.3 as well). We start with the case
of the line, which is the easiest, and the only one among the transformation groups of
Euclidean spaces where we are able to establish ordinary acyclicity as well. Then we move
on to transformation groups of Rn, and then to discs, where the proof of transitivity will be
especially involved. Next, we study the non-compact Cantor set, where the combinatorics of
sequences feels different, but still fits into our framework; in this case we will also be able to
establish ordinary acyclicity. In the last section, we show that the auxiliary group of countably
supported permutations of an uncountable set satisfies the criteria: Although it may seem
unrelated, it will feature an important role in the proof itself.

3.1 Transformation groups of the line

Let r ∈ N ∪ {∞}. In this section we prove that the groups Diffr
+(R) are boundedly acyclic,

our proof will depend on Theorem 2.2. This includes also Homeo+(R) which corresponds
to the case r = 0. In fact, we will work with the subgroup G ≤ Diffr

+(R) of elements that
fix a neighborhood of (−∞, 0] pointwise. This can be seen as a subgroup of the group of
homeomorphisms of R>0 := (0,+∞). The bounded acyclicity of Diffr

+(R) will follow by some
standard manipulations.

The objects that make up the G-poset of X-sequences to which Theorem 2.2 applies are
fat points.

Definition 3.1. A fat point in R>0 is a germ at 0 of an orientation-preserving Cr-embedding
(−1, 1) → R>0. The image of 0 is the core ẋ of the fat point x.

11



In order to define a poset F of fat sequences and to deduce from Proposition 2.14 that
this poset has the W property, it suffices to define relations ⊑ and ≃ satisfying the condition
of Subsection 2.2. We define x ≃ y ⇔ ẋ = ẏ and x ⊑ y ⇔ ẋ ≤ ẏ. Thus in particular we see
that the poset F of increasing cofinal sequences of mutually inequivalent elements can be
described concretely as the set of sequences x = (xi)i∈N∗ of fat points such that the cores
ẋ = (ẋi)i∈N∗ form a strictly increasing diverging sequence in R>0. For brevity we call them
fat sequences in R>0.

The group G acts on fat points by composition: If x : (−1, 1) → R>0 is a fat point with
core ẋ, then g.x := g ◦ x is a fat point with core g.ẋ. Since the action of G on R>0 is
orientation-preserving, the action on sequences of fat points preserves the conditions defining
F . This makes F into a G-poset of sequences. We now have to verify Items 2 and 3 from
Theorem 2.2:

Lemma 3.2. For every fat sequence x ∈ F , the stabilizer of x in G is isomorphic to the
power Diffr

c(R)N and thus it is boundedly acyclic. In case r = 0, it is also acyclic.

Proof. Let x = (xi)i∈N∗ . An element g ∈ G is in the stabilizer of x if and only if it fixes a
neighbourhood of ẋi for each i ∈ N∗. Therefore the stabilizer is isomorphic to the product

Diffr
c((0, ẋ1))×

∏
i≥2

Diffr
c((ẋi−1, ẋi))

which is isomorphic to Diffr
c(R)N. The bounded acyclicity now follows from Theorem 2.4. In

case r = 0, the acyclicity follows from Proposition 2.11, Lemma 2.12 and Theorem 2.9.

Lemma 3.3. The action of G on F is transitive.

Proof. Let x = (xi)i∈N∗ be the fat sequence whose i-th fat point is the germ of the embedding
(−1, 1) → (i − 1, i + 1) ⊂ R>0 defined as translation by i, so ẋi = i. Let y = (yi)i∈N∗ be
any other fat sequence. For each i, choose εi ∈ (0, 1

2
) to be such that the closed intervals

yi([−εi, εi]) ⊂ R>0 are pairwise disjoint. Then the composition

gi : (i− εi, i+ εi)
x−1
i−−→ (−εi, εi)

yi−→ R>0

sends the fat point xi to the fat point yi. Interpolating via cutoff functions matching the
regularity of G, we can construct g ∈ G such that g|(i−εi,i+εi) = gi. Then g.x = y.

The transitivity is particularly easy to show in this case, but will require some extra work
in higher dimensions.

We have thus proved:

Theorem 3.4. The group G satisfies the criterion from Theorem 2.2, and thus is boundedly
acyclic. In case r = 0, the group G also satisfies the criterion from Theorem 2.3, and thus is
acyclic.

This allows to conclude the proof of Theorems A and B for the case of the line:
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Proof of Theorems A and B for n = 1. Let G± be the group of germs at ±∞ of Diffr
+(R),

which gives the short exact sequence

1 → Diffr
c(R) → Diffr

+(R) → G− × G+ → 1.

Since Diffr
c(R) is boundedly acyclic by Theorem 2.4, the quotient induces an isomorphism in

bounded cohomology, by Proposition 2.7. Since moreover G+
∼= G−, it suffices to show that

G+ is boundedly acyclic. For this, we consider the short exact sequence

1 → G ∩Diffr
c(R) → G→ G+ → 1.

Now G ∩ Diffr
c(R) ∼= Diffr

c(R) is boundedly acyclic, so once again the quotient induces an
isomorphism in bounded cohomology. We have shown that G is boundedly acyclic, so G+ is
also boundedly acyclic, which concludes the proof.

We similarly obtain Theorem C.

Proof of Theorem C. As in the previous proof, we pass from the acyclicity of G and Homeoc(R)
to the acyclicity of Homeo+(R) using the analogue of Proposition 2.7 in homology; namely, if
1 → N → G→ Q→ 1 is a short exact sequence and N is acyclic, then the quotient G→ Q
induces an isomorphism Hn(G;Z) ∼= Hn(Q,Z) for all n ∈ N (this follows from an application
of the Lyndon–Hochschild–Serre spectral sequence [Bro94, Therem VII.6.3]).

3.2 Transformation groups of Euclidean space

Let r ∈ N ∪ {∞} and n ∈ N≥2. In this section, we prove Theorems A and B for the group
G := Diffr

+(Rn); this includes also Homeo+(Rn), which corresponds to the case of r = 0.
Our goal is to construct a poset of sequences of fat spheres (replacing fat points in higher
dimensions), to which we can apply Theorem 2.2. The construction is close to the one for R,
however, it presents some additional difficulties.

The main thing that needs addressing is transitivity. In the case of R, we clearly have
transitivity on fat points, a basic starting point for transitivity on fat sequences. In our
setting, we will need transitivity on germs of embeddings of (locally flat) spheres in Rn. The
fact that this action is transitive is now non-trivial, and would have to rely on the annulus
Theorem [Kir69], which in Cr-category for r > 0 is not known in dimension 4. To amend this,
we work with a poset that only allows for embeddings of a certain type:

Definition 3.5. The model fat sphere in Rn is the germ at Sn−1 × {0} of the (orientation-
preserving, Cr) embedding Σ: Sn−1 × (−1

2
, 1
2
) → Rn defined by (x, ρ) 7→ (1 + ρ)x.

The core of Σ, denoted by Σ̇, is the embedding Sn−1 → Rn obtained by restricting Σ to
Sn−1 × {0}. We denote by Σb := Bn

1 (0) and by Σu := Rn \Bn

1 (0); these are respectively the
bounded and unbounded components of Rn \ im Σ̇.

By abuse of notation, we will often identify an embedding with its germ. Given g ∈ G, we
define g.Σ := g ◦ Σ, which is an orientation-preserving Cr-embedding Sn−1 × (−1

2
, 1
2
) → Rn,

and again we use g.Σ to also denote the germ at Sn−1 × {0} of this embedding. We will
consider all such possibilities.
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Definition 3.6. A fat sphere in Rn is the germ of an orientation-preserving, Cr-embedding
S : Sn−1 × (−1

2
, 1
2
) → Rn that can be obtained as g.Σ for some g ∈ G.

The core of S, denoted by Ṡ, is the embedding Sn−1 → Rn obtained by restricting S to
Sn−1 × {0}. Note that if S = g.Σ then Ṡ = g.Σ̇.

We denote by Sb and Su the bounded and unbounded components of Rn \ im Ṡ. If S = g.Σ,
then Sb = g.Σb and Su = g.Σu.

Note that since we defined fat spheres starting from a model fat sphere, everything is well-
defined directly, without any need to appeal to the Jordan–Brower or Schoenflies Theorems.
Moreover, the set of fat spheres comes endowed with a natural action of G, which is transitive
by definition.

The poset we will be working on will consist of certain sequences of fat spheres. Having a
well-defined notion of bounded components, we will be able to formalize the idea of going to
infinity.

Definition 3.7. We say that a fat sphere S in Rn englobes a set B ⊂ Rn if B is contained
in the bounded component Sb. We say that a sequence of fat spheres (Si)i∈N∗ is concentric
going to infinity if Si englobes im Ṡi−1, and every compact subset of Rn is englobed by Si for
large enough i.

A fat sequence in Rn is a collection S = (Si)i∈N∗ of fat spheres that are concentric going
to infinity. We write S ⪯ T if S is a subsequence of T, and denote by F the corresponding
poset.

As in the case of the line, we can now define relations which allow us to deduce from
Proposition 2.14 that the poset of fat sequences has the W property. We define S ≃ T ⇔
Ṡ = Ṫ and S ⊑ T if either Ṡ = Ṫ or T englobes Ṡ.

As we did with fat spheres, it will be useful to define a basepoint in the set of fat sequences.

Definition 3.8. Set Σ1 := Σ to be the model fat sphere. Define Σi to be the image of Σ
under the homothety with ratio i; note that the image of the core of Σi in Rn is the sphere of
radius i around the origin. The sequence (Σi)i∈N∗ is concentric going to infinity, and so it
defines a fat sequence Σ, which we call the model fat sequence.

We now verify the Items 2 and 3 from Theorem 2.2.

Lemma 3.9. The stabilizer of the model fat sequence Σ in G is isomomorphic to Diffr
c(Rn)×

Diffr
c(S

n−1 × R)N, and thus is boundedly acyclic.

Proof. An element g ∈ G is in the stabilizer of Σ if and only if it fixes a neighborhood of
im Σ̇i for each i ∈ N∗. Denote by Bi the open ball of radius i around the origin, that is the
bounded component defined by Σi. Then the stabilizer is isomorphic to the product of

Diffr
c(B1)×

∏
i≥2

Diffr
c(Bi \Bi−1).

Since B1 is Cr-diffeomorphic to Rn, and Bi+1 \Bi is C
r-diffeomorphic to Sn−1 ×R, we obtain

the result. The last statement follows from Theorem 2.4.

The last (and hardest) part is transitivity.
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Lemma 3.10. The action of G on F is transitive.

Proof. Let Σ = (Σi)i∈N∗ be the model fat sequence. Let S = (Si)i∈N∗ be any other fat sequence.
Since the action on the set of fat spheres is transitive by construction, for each i there exists
gi ∈ G such that gi.Σi = Si, and εi ∈ (0, 1

4
) such that the compact sets Σi(S

n−1 × [−εi, εi])
are pairwise disjoint, and the compact sets gi ◦ Σi(S

n−1 × [−εi, εi]) are also pairwise disjoint.
We want to show that there exists g ∈ G such that the restriction of g on Σi(S

n−1 × [−εi, εi])
coincides with the restriction of gi. Then g.Σ = S.

Given that fat spheres, by definition, are in the orbit of a model fat sphere, each fat sphere
comes with data of a global Cr-diffeomorphism in G. This makes arguing for transitivity
easier, otherwise we would have to use the annulus theorem in the Cr category. To find g
such that g.Σ = S, we inductively construct hk ∈ G such that

• hk(Σi) = Si for i ≤ k.

• h−1
k+1 ◦ hk is the identity in an open neighborhood of the standard ball that bounds Σk.

Then g is the composition of all hi’s. This is well defined since each x ∈ Rn eventually lies
in the interior of (Σk)b for some big k and the second condition assures that hj(x) = hk(x)
for j ≥ k.

For k = 1, we let h1 = g1. Now suppose that hk is given. To construct hk+1, we shall
modify hk by an element in G whose support does not intersect (Sk)b as follows. We have
two different embeddings of the thin annulus Σk+1(S

n−1 × [−εk+1, εk+1]) into Rn; one is
given by the global Cr-diffeomorphism gk+1 which gives the fat sphere Sk+1, and the other
is given the global Cr-diffeomorphism hk. Recall from Remark (ii) in the introduction that
Diffr

+(Rn) = Diffr
◦(Rn) for all r. Therefore hk and gk+1 are isotopic to the identity, and so

these two embeddings are isotopic embeddings in Rn. But we need to make sure that these
two embeddings are isotopic away from Σk. To show this we need a version of the annulus
theorem in our setting that follows from the isotopy extension theorem (for r > 0 see [Hir76,
Section 8] and [Pal60] and for r = 0 see [EK71]).

Claim 3.11. Let Wi be the region between Ṡi = gi ◦ Σi(S
n−1 × {0}) and Ṡi+1 = gi+1 ◦

Σi+1(S
n−1 × {0}). The manifold Wi is C

r-diffeomorphic to Sn−1 × [0, 1].

As we shall see in the proof of the claim, the reason that this statement is easier than the
annulus theorem is that the two spheres come with data of embeddings that are (ambiently)
isotopic.

Proof of the claim. Since by radial dilation, we can send Σi(S
n−1 ×{0}) to Σi+1(S

n−1 ×{0}),
we can assume that there exists f ∈ G such that f(Ṡi+1) = Ṡi. To simplify the notation,
we shall consider the following situation. Suppose S(r) is the standard sphere of radius r
around the origin and for f ∈ G we know that the sphere S ′ = f(S(1)) is in the interior of
the unit ball. We want to prove that the region between S ′ and S(1) is Cr-diffeomorphic to
Sn−1 × [0, 1]. Since f is isotopic to the identity, the sphere S ′ is isotopic to S(1/2). Since
spheres are compact, the support of this isotopy can be contained inside S(k) for some big k.
The isotopy extension theorem says that the isotopy between S ′ and S(1/2) can be extended
to a path of Cr-diffeomorphisms of D(k), the ball of radius k whose boundary is S(k), that is
compactly supported (i.e. is the identity near S(k)). So there is g in Diffr

c(int(D(k))) such
that g(S ′) = S(1/2).
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Note that the region between S ′ and S(1) is Cr-diffeomorphic to the region between
S ′ and S(k) since we just added the standard annulus between S(1) and S(k) to one of
the sphere boundaries S(1). So it is enough to show that the region between S ′ and S(k)
is Cr-diffeomorphic to the region between S(1/2) and S(k). Note that g maps the region
between S ′ and S(k) to the region between S(1/2) and S(k) which is what we wanted.

So by the claim, the region Wk+1 between gk+1 ◦Σk+1(S
n−1×{0}) and gk ◦Σk(S

n−1×{0})
and the regionW ′

k+1 between hk◦Σk+1(S
n−1×{0}) and gk◦Σk(S

n−1×{0}) are Cr-diffeomorphic
to an annulus Sn−1 × [0, 1].

So we can find an isotopy from gk+1◦Σk+1(S
n−1×{0}) to a sphere close to gk◦Σk(S

n−1×{0})
by pushing along the annulusWk+1. Similarly we can isotope hk◦Σk+1(S

n−1×{0}) to the sphere
close to gk◦Σk(S

n−1×{0}) by pushing alongW ′
k+1. Therefore, gk+1◦Σk+1(S

n−1×[−εk+1, εk+1])
and hk ◦ Σk+1(S

n−1 × [−εk+1, εk+1]) are isotopic via an isotopy that does not intersect the
sphere gk ◦ Σk(S

n−1 × {0}).
Since the thin annuli gk+1 ◦Σk+1(S

n−1× [−εk+1, εk+1]) and hk ◦Σk+1(S
n−1× [−εk+1, εk+1])

are compact subsets of Rn, the isotopy between them is compactly supported. Therefore, by
the isotopy extension theorem, there exists g ∈ Diffr

c(int(D(k))) for a large enough k such
that

• the support of g does not intersect the disc that bounds the sphere gk ◦Σk(S
n−1 × {0}).

• g sends hk ◦ Σk+1(S
n−1 × [−εk+1, εk+1]) to gk+1 ◦ Σk+1(S

n−1 × [−εk+1, εk+1]).

So now we define hk+1 to be g ◦ hk which completes the induction step and the proof of
Lemma 3.10.

We can now conclude the proof of Theorems A and B:

Theorem 3.12. The group Diffr
+(Rn) satisfies the criterion from Theorem 2.2, and thus is

boundedly acyclic.

Remark 3.13. A similar strategy might work to study the bounded cohomology of Diffr
◦(M×

Rn) for a closed manifold M (note that we used the isotopy extension theorem for the proof
of Lemma 3.10, which is why we need to explicitly require that diffeomorphisms are isotopic
to the identity to hope for a generalization). Since we do not have any application in mind
for the possible bounded acyclicity of Diffr

◦(M × Rn), we do not pursue it in this paper.

3.3 Homeomorphism group of the disc

In this section, we tackle discs Dn, which we model as the unit disc in Rn. In case n = 1, there
is no difference between homeomorphisms of the disc and of the line, therefore we assume n ≥ 2.
Our goal is to show Theorem F: The group G := Homeo(Dn, ∂) of homeomorphisms of the
disc fixing the boundary pointwise is boundedly acyclic (note that since the boundary is fixed,
the orientation is automatically preserved). We will construct a poset analogous to the case
of Rn, to which Theorem 2.2 can be applied; here controlling the behaviour at the boundary
will present additional difficulties, and is the reason we only consider homeomorphisms.

Definition 3.14. The model fat sphere in Dn is the germ at Sn−1 × {0} of the orientation-
preserving C0-embedding Σ: Sn−1 × (−1

4
, 1
4
) → Dn defined by (x, ρ) 7→ (1

2
+ ρ)x.
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The core of Σ, denoted by Σ̇ is the embedding Sn−1 → Dn obtained by restricting Σ to
Sn−1 × {0}.

We denote by Σin := Bn
1
2

(0) and Σout := Dn \Bn
1
2
(0), these are respectively the inner and

outer components of Dn \ im Σ̇.

Once again we use the same notation for embeddings and their germs, and denote
g.Σ := g ◦ Σ.

Definition 3.15. A fat sphere in Dn is the germ of an orientation-preserving C0-embedding
S : Sn−1 × (−1

4
, 1
4
) → Dn that can be obtained as g.Σ for some g ∈ G.

The core of S, denoted by Ṡ, is the embedding Sn−1 → Dn obtained by restricting S to
Sn−1 × {0}. Note that if S = g.Σ then Ṡ = g ◦ Σ̇.

We denote by Sin and Sout the inner and outer components of Dn \ im Ṡ.

As in the case of Rn we considered sequences of fat spheres going to infinity, here we will
consider sequences of fat spheres going to the boundary. The definition of ≃ and ⊑ is exactly
the same; note that the cofinality amounts to asking that every compact subset of the interior
of Dn is englobed by Si for large enough i.

In the case of Rn we simply defined fat sequences, as sequences of fat spheres that are
concentric going to infinity. In the case of discs, there is a further condition that will be
needed in order to have continuity at the boundary.

Definition 3.16. Let (Si)i∈N∗ be a cofinal increasing sequence of pairwise inequivalent fat
spheres. We say that (Si)i∈N∗ has trivial germ at the boundary if for every x ∈ Sn−1 we have

lim
i→∞

Ṡi(x) = ∂(x);

where ∂ : Sn−1 → Dn is the canonical embedding of the boundary.

Since G is continuous at the boundary, and restricts to the identity, the action of G on
sequences of fat spheres preserves the properties of being concentric going to the boundary,
and having trivial germ at the boundary. We now have our suitable definition of fat sequences:

Definition 3.17. A fat sequence in Dn is a cofinal increasing sequence of pairwise inequivalent
fat spheres with trivial germ at the boundary. We denote by F the corresponding poset.

Set Σ1 := Σ to be the model fat sphere. Define Σi to be the image of Σ under a
homeomorphism of Dn fixing the boundary that restricts to homothety by 2(1− 2−i) on a
neighbourhood of im Σ̇1; note that the image of the core of Σi in D

n is the sphere of radius
1 − 2−i around the origin. The sequence (Σi)i∈N∗ is concentric going to the boundary and
has trivial germ at the boundary, so it defines a fat sequence Σ, which we call the model fat
sequence.

We now have a G-poset of sequences F , and we need to verify the three conditions
from Theorem 2.2. The first one, the W property, follows from Proposition 2.14 in view of
Remark 2.15. The stabilizer of the model fat sequence does not split as a direct product to
which Theorem 2.4 applies. Still, we will be able to apply Theorem 2.6 to obtain its bounded
acyclicity.

Lemma 3.18. The stabilizer of the model fat sequence Σ in G has commuting Z-conjugates,
and thus is boundedly acyclic.
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Proof. An element g ∈ G belongs to the stabilizer GΣ if and only if it fixes a neighbourhood
of Σ̇i for each i ∈ N∗. Denote by Bi the open ball of radius (1− 2−i) around the origin, that
is the inner component defined by Σi. Then GΣ is a subgroup of the product

Homeoc(B1)×
∏
i≥2

Homeoc(Bi \Bi−1),

which in turn can be identified with a subgroup of homeomorphisms of the interior of Dn.
However, unlike the case of Rn, this time GΣ is a proper subgroup, since given a sequence of
elements in Bi \ Bi−1, their image under every element g ∈ G must have the same limit in
the boundary.

Let H ≤ GΣ be a finitely generated subgroup. For i ≥ 2, denote by Hi the projection of
H onto Homeoc(Bi \ Bi−1). This is a finitely generated subgroup of a group of compactly
supported homeomorphisms of a non-compact space, so all of Hi is supported on some compact
set. We can choose this to be a compact annulus Ai ⊂ Bi \ Bi−1. More explicitly, we can
find a compact interval Ii ⊂ (1− 21−i, 1− 2−i) such that Ai is the set of all elements of norm
contained in Ii, and every element of Hi fixes (Bi \ Bi−1) \ Ai. Similarly, we denote by H1

the projection of H on Homeoc(B1), which is supported on some compact set A1 ⊂ B1.
We will construct an element t ∈ GΣ with the property that tp(Ai)∩Ai = ∅ for all p, i ∈ N∗.

Let us conclude the proof assuming the existence of such an element. For every p ∈ N∗, the
sets ∪iAi and ∪it

p(Ai) are disjoint. Indeed, by construction Ai is disjoint from tp(Ai), and
moreover Ai ⊂ Bi \ Bi−1 is disjoint from tp(Aj) ⊂ Bj \ Bj−1 for all j ̸= i, because t ∈ GΣ

preserves the sets Bi \Bi−1. It follows that the group H, supported on ∪iAi, and the group
tpHt−p, supported on ∪it

p(Ai), commute. This concludes the proof that GΣ has commuting
Z-conjugates; the last statement follows from Theorem 2.6.

It remains to construct t. For i ≥ 2, let Ii := (ai, bi), and choose an element fi ∈
Homeoc(1−21−i, 1−2−i) with the property that fi(ai) > bi. Since fi is orientation-preserving,
it follows that fp

i (Ii)∩Ii = ∅ for all p ∈ N∗. We then define an element ti ∈ Homeoc(Bi \Bi−1)
in cylindrical coordinates by

Sn−1 × (1− 21−i, 1− 2−i) → Sn−1 × (1− 21−i, 1− 2−i) : (x, ρ) 7→ (x, fi(ρ)).

The choice of fi then implies that tpi (Ai) ∩ Ai = ∅ for all p ∈ N∗. We also choose an element
t1 ∈ Homeoc(B1) such that tp1(A1) ∩ A1 = ∅ for all p ∈ N∗.

We define t on the interior of Dn so that t|B1 = t1 and t|Bi\Bi−1
= ti for all i ≥ 2, and

set t|∂Dn = id |∂Dn . Clearly t is a homeomorphism when restricted to the interior of Dn,
which restricts to the identity on a neighbourhood of im Ṡi for all i ∈ N∗, and it satisfies
tp(Ai) ∩Ai = ∅ for all p, i ∈ N∗. So it only remains to show that t ∈ G, i.e. t is continuous at
the boundary. For this, let (yj)j∈N∗ be a sequence of points in Dn such that yj → y ∈ ∂Dn.
Since t restricts to the identity on the boundary, we may assume without loss of generality that
yj belongs to the interior of Dn, for all j. Up to removing finitely many terms, we may assume
that yj has norm at least 1

2
, which allows to use cylindrical coordinates to check continuity:

Say yj = (xj, ρj), y = (x, 1) and so xj → x ∈ Sn−1 and ρj → 1 ∈ [1
2
, 1]. Let ij ∈ N∗ be such

that ρj ∈ [1− 21−ij , 1− 2−ij ]. Then t(yj) = t(xj, ρj) = (xj, f(ρj)) ∈ {xj}× [1− 21−ij , 1− 2−ij ].
In particular ρj → 1 implies f(ρj) → 1, and so t(yj) → y, which concludes the proof.

We are left to show transitivity, which follows from the results in the appendix, in particular
a controlled version of the annulus theorem.
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Lemma 3.19. The action of G on F is transitive.

Proof. Combine Theorem A.6 with Corollary A.10.

We can now conclude the proof of Theorem F:

Theorem 3.20. The group Homeo(Dn, ∂) satisfies the criterion from Theorem 2.2, and thus
is boundedly acyclic.

We deduce from this Corollary G:

Proof of Corollary G. We have a short exact sequence

1 → Homeo(Dn, ∂) → Homeo+(D
n) → Homeo+(S

n−1) → 1,

where the quotient is given by the restriction. It is indeed surjective, as can be seen by a cone
construction. By Theorem F the kernel is boundedly acyclic, and so the conclusion follows
from Proposition 2.7.

The bounded cohomology of Homeo+(S
1), and thus of Homeo+(D

2), was fully computed
in [MN23, Theorems 1.1 and 1.3]. In higher dimensions, Homeo+(S

n−1) has been computed
in low degrees [MN23, Theorems 1.8 and 1.10], and using Corollary G we obtain:

Corollary 3.21. For all n ≥ 3, the bounded cohomology of Homeo+(D
n) vanishes in degrees

2 and 3. Moreover, the bounded cohomology of Homeo+(D
4) vanishes in degree 4.

3.4 Homeomorphism group of the non-compact Cantor set

The non-compact Cantor set K is uniquely characterized as being a space that is non-compact,
locally compact, totally disconnected, metrizable and without isolated points. Concretely, it
can be modelled as K × N, where N is the set of natural numbers with the discrete topology,
and K is a Cantor set, for example in the dyadic model 2N. We fix a basepoint o of K, and
throughout we will use this specific model for K.

Following [And22], we say that a fat point inK is the germ at o of an embedding x : K → K
with clopen image. The core of the embedding is ẋ := x(o). We are again in the abstract
setting of Section 2.2 if we define x ≃ y ⇔ ẋ = ẏ and this time take for ⊑ the trivial relation
(x ⊑ y∀x, y). We consider the subposet of the resulting poset F of sequences of pairwise
inequivalent sequences defined by requiring that the sequence of cores be discrete. We call
these sequences simply fat sequences. This subposet satisfies the requirements of Remark 2.15
and therefore F satisfies the W property.

Lemma 3.22. The action of G on F is transitive.

Proof. Let x and y be two fat sequences. Let Un, Vn be compact open subsets of K, such
that ẋi ∈ Un if and only if i = n, and similarly ẏi ∈ Vn if and only if i = n. By the
topological characterization of the Cantor set and the non-compact Cantor set, each Ui, Vi
is homeomorphic to K, and each of their complements is homeomorphic to K. Thus, up to
choosing larger Ui, Vi, we may assume that (Un)n∈N∗ and (Vi)i∈N∗ form partitions of K by
countably many compact open subsets.

Now, by [And22, Lemma 3.3.16], for each n there exists a homeomorphism hn : Un → Vn
that sends xn to yn. The unique map h : K → K that agrees with hn on Un is then a
homeomorphism that sends x to y.
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Lemma 3.23. The stabilizers for the action of G on F are binate, therefore they are acyclic
and boundedly acyclic.

Proof. We consider the simplest fat sequence, namely x = (xn)n∈N where xi : K → K = K×N
is defined by xn(p) = (p, n). Let H be a finitely generated subgroup of the stabilizer Gx. Then
for each n there exists a clopen subset Un of o ∈ K such that H fixes pointwise Un × {n},
which is a compact open subset of K. Let Sn denote the complement of Un in K, and let Vn
denote a proper compact open subset of Un that contains o. Finally, we let Wn := Un \ Vn,
which is again a compact open subset of K. Now Sn, Un, Vn are all homeomorphic to K, and
so we have a decomposition:

K =

(⋃
n

Vn × {n}

)⊔(⋃
n

Wn × {n}

)⊔(⋃
n

Sn × {n}

)
=: KV ⊔KW ⊔KS.

Each of KV ,KW ,KS is homeomorphic to K, the group H is supported on KS, and the fat
sequence x is contained in KV .

By the topological characterization, a countably infinite disjoint union of non-compact
Cantor sets is homeomorphic to a non-compact Cantor set. Therefore there is a homeomor-
phism KW

∼= K0 × (Z \ {0}), for some non-compact Cantor set K0. This allows to define a
homeomorphism KW ⊔KS → K0 × Z, that restricts to a homeomorphism KS → K0 × {0},
which gives a new decomposition

K = KV ⊔ (K0 × Z) .

The group H is supported on K0 × {0}.
We now define a homeomorphism t : K → K as follows:

t(x) :=

{
x if x ∈ KV ;

(x0, i+ 1) if x = (x0, i) ∈ K0 × {i} ⊂ K0 × Z.

Then t ∈ G, and since t restricts to the identity on KV , it belongs to the stabilizer Gx.
It remains to define the homomorphism ψ : H → G. We set

ψ(h)(x) :=

{
x if x ∈ KV ⊔ (K0 × Z≤0)

tiht−i(x) if x ∈ K0 × {i} ⊂ K0 × Z>0.

Since H is supported on K0×{0} and ψ(H) is supported on K0×Z>0, we have [H,ψ(H)] = 1.
Moreover, t−1ψ(h)t = hψ(h) for all h ∈ H, which follows by a direct computation. This
proves that Gx is binate, and we conclude using Theorems 2.9 and 2.10.

This concludes the proof of Theorem E:

Theorem 3.24. The group Homeo(K) satisfies the criteria from Theorems 2.2 and 2.3, and
thus is acyclic and boundedly acyclic.

3.5 Countably supported bijections of an uncountable set

Our last example is of a different flavour from the previous ones, but it will be crucial in the
proofs of Theorems 2.2 and 2.3.

20



Definition 3.25. Let X be an uncountable set. We let G be the group of bijections of X
that have countable support.

In contrast to the previous results in this section, we will not use the criteria from Theorems
2.2 and 2.3 to prove that G is [boundedly] acyclic; this is because the [bounded] acyclicity of
G will be used in the proof. Instead, we establish the [bounded] acyclicity G directly:

Proposition 3.26. The group G is binate, therefore it is acyclic and boundedly acyclic.

Proof. Let H ≤ G be a finitely generated subgroup. Because each element of H has countable
support, there exists a countably infinite subset Y0 ⊂ X such that H is supported on Y0. Now
let Yi, i ∈ Z \ {0} be countably infinite subsets of X that are disjoint from Y0 and from each
other. Fix a bijection πi : Yi−1 → Yi for all i ∈ Z. We define

t(x) :=

{
πi(x) if x ∈ Yi−1;

x otherwise.

Then t is supported on the union of the Yi, which is countable, so t ∈ G. Next, for each i ≥ 1
let Πi := πi ◦ · · · ◦ π1 : Y0 → Yi and define

ψ(h)(x) :=

{
ΠihΠ

−1
i (x) if x ∈ Yi;

x otherwise.

Then ψ(h) is supported on ∪i≥1Yi, so it belongs to G. It is easy to see that [H,ψ(H)] = 1
and that t−1ψ(h)t = hψ(h). This shows that G is binate, the last statements then follow from
Theorems 2.9 and 2.10.

We now show that G satisfies the conditions for our two criteria.

Proposition 3.27. The group G satisfies the criteria from Theorems 2.2 and 2.3.

Proof. Let X be the set of sequences of pairwise distinct elements in X. Then X is a G-poset
of sequences, which satisfies the W property by Proposition 2.14 by taking ≃ to be equality
and ⊑ to be the trivial relation. Because sequences are countable, the action is transitive.
The stabilizer Gx of a sequence x with image Y is the subgroup of G supported on X \ Y ;
since this set has the same cardinality as X, it follows that Gx is isomorphic to G, and thus
is acyclic and boundedly acyclic by Proposition 3.26.

4 Proof of the criterion

In this section, we prove the criteria from Theorems 2.2 and 2.3. Most of the section will be
devoted to the proof of Theorem 2.2, which yields the bounded acyclicity results that are the
main subject of this paper, we will show how to adapt the arguments to prove Theorem 2.3
in Subsection 4.5.

We start in Subsection 4.1 with some background on the bounded cohomology of semisim-
plicial sets. This will include a result from [MN23] which allows to compute the bounded
cohomology of a group via an action on a boundedly acyclic semisimplicial set with boundedly
acyclic stabilizers. In Subsection 4.2 we examine in detail the case of posets, and see how
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the W property implies bounded acyclicity; this will require the proof of several basic results
about the cohomology of posets to be made uniform, in the spirit of [MM85, KS23].

In Subsection 4.3 we examine the orbit complex for the action of a group as in Theorem
2.2. This is quite straightforward, but it is perhaps the most surprising part of the argument:
It will imply that a group as in Theorem 2.2 has the same bounded cohomology as the monoid
Emb<(N∗) of order-preserving embeddings of N∗. Finally, in Subsection 4.4 we show that
Emb<(N∗) is boundedly acyclic, this will be proved indirectly, by appealing to the bounded
acyclicity of the group of countably supported bijections of an uncountable set, which we
treated in Subsection 3.5.

4.1 Bounded cohomology of semisimplicial sets

Let X• be a semisimplicial set. Its bounded cohomology Hn
b (X•) is the cohomology of the

complex
0 → ℓ∞(X0) → ℓ∞(X1) → ℓ∞(X2) → · · ·

where the coboundary operators are defined as the duals of the face maps of X•. The
coefficients are always understood to be R unless specified otherwise. We say that X• is
boundedly acyclic if Hn

b (X•) = 0 for all n > 0.
If G is a discrete group and X• is the nerve of G, this defines the bounded cohomology of

G, denoted by Hn
b (G). More explicitly, we have X• = G•, with face maps defined as

di : Xn → Xn−1

d0(g1, . . . , gn) = (g2, . . . , gn);

di(g1, . . . , gn) = (g1, . . . , gi−1, gigi+1, gi+2, . . . , gn), i ∈ {1, . . . , n− 1};
dn(g1, . . . , gn) = (g1, . . . , gn−1).

This definition can be directly generalized to define the bounded cohomology of a discrete
semigroup (or monoid), which will appear in Section 4.4. In both cases, we say that the
(semi)group G is boundedly acyclic if Hn

b (G) = 0 for all n > 0.

In the case of groups, the homogeneous resolution identifies the bounded cohomology of G
with the cohomology of the subcomplex of invariants:

0 → ℓ∞(G)G → ℓ∞(G2)G → ℓ∞(G3)G → · · ·

In this context, we have a semisimplicial set X•, which is nothing but the full simplex on
G with the usual face maps, endowed with a simplicial action of G; and the subcomplex of
invariants is the complex computing the bounded cohomology of the semisimplicial set of
orbits G\X•. Simplicial actions of G can calculate its bounded cohomology in much greater
generality:

Theorem 4.1 ([MN23, Theorem 3.3], see also [MR23]). Let G be a group acting on a
boundedly acyclic and connected semisimplicial set X•. Suppose that, for all p ∈ N:

1. The stabilizer of each point in Xp is boundedly acyclic;

2. There are only finitely many isomorphism types of such stabilizers.

Then there is an isomorphism Hn
b (G)

∼= Hn
b (G\X•).
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In order to prove bounded acyclicity of the relevant semisimplicial sets, we will use a
framework, introduced by Matsumoto and Morita [MM85], and recently developed further

by Kastenholz and Sroka [KS23]. Given a semisimplicial set X•, we let C̃(X•) denote the
corresponding augmented simplicial chain complex, endowed with the ℓ1-norm with respect
to the standard basis.

Definition 4.2. Let f, g : X• → Y• be two simplicial maps between semisimplicial sets. A
bounded homotopy between f and g is a sequence of bounded linear maps {hp : C̃p(X•) →
C̃p+1(Y•)}p≥0 such that

d1h0 = f0 − g0

and for all p ∈ N∗:
dp+1hp + hp−1dp = fp − gp.

If a bounded homotopy exists, we say that f and g are boundedly homotopic.
Two semisimplicial sets are boundedly homotopy equivalent if there exist simplicial maps

f : X• → Y• and g : Y• → X• such that fg and gf are both boundedly homotopic to the
identity.

Now we consider the notion of uniform acyclicity for semisimplicial sets, which is what we
will use to prove [bounded] acyclicity in the sequel.

Definition 4.3. We say that a semisimplicial set X• is uniformly acyclic if the following
holds. For every p ≥ 0 there exists a constant KX•

p > 0 such that for every cycle z ∈ C̃p(X•)

there exists c ∈ C̃p+1(X•) such that dp+1(c) = z and ∥c∥ ≤ KX•
p · ∥z∥.

This is relevant to us because of the following result, already implicit in [MM85]:

Lemma 4.4 ([KS23, Corollary 7.4]). If X• is uniformly acyclic, then it is acyclic and
boundedly acyclic.

In order to check uniform acyclicity of a semisimplicial set, it can be useful to restrict to
its finite sub-semisimplicial sets.

Definition 4.5. Let f : X• → Y• be a simplicial map. We say that f is uniformly acyclic if
the following holds. For every p ≥ 0 there exists a constant Kf

p > 0 such that for every cycle

z ∈ C̃p(X•) there exists c ∈ C̃p+1(Y•) such that dp+1(c) = fp(z) and ∥c∥ ≤ Kf
p · ∥z∥.

Lemma 4.6. Let Y• be a semisimplicial set. Suppose that there exist constants Kp > 0 such
that every inclusion of a finite sub-semisimplicial set ι : X• ↪→ Y• is uniformly acyclic with
constants Kι

p ≤ Kp. Then Y• is uniformly acyclic, with constants bounded by Kp.

Proof. This is a direct consequence of the fact that uniform acyclicity is defined in terms of
simplicial cycles, which are supported on finitely many simplices.

The easiest case of a uniformly acyclic semisimplicial set is that of a cone.

Lemma 4.7 ([KS23, Corollary 7.4]). A simplicial cone CX• over the semisimplicial set X•
is uniformly acyclic, and the constant KCX•

p can be chosen to be equal to 1.

We rephrase this in the relative setting of uniformly acyclic maps:
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Lemma 4.8. Let f : X• → Y• be a simplicial map that factors through the simplicial cone
CX•. Then f is uniformly acyclic, and the constant Kf

p can be chosen to be equal to 1.

These notions are compatible with bounded homotopy equivalences.

Lemma 4.9. Let f, g : X• → Y• be two simplicial maps that are boundedly homotopic via
the bounded homotopy {hp}p≥0. If f is uniformly acyclic, then so is g, with constants
Kg

p ≤ Kf
p + ∥hp∥.

Proof. Let z ∈ C̃p(X•) be a reduced cycle. Since f is uniformly acyclic, there exists c ∈
C̃p+1(Y•) such that dp+1(c) = fp(z) and ∥c∥ ≤ Kf

p · ∥z∥. Now

gp(z) = dp+1(hp(z)) + hp−1(dp(z))− fp(z) = dp+1(hp(z)− c),

where we used that z is a reduced cycle and the definition of c. Moreover

∥hp(z)− c∥ ≤ ∥hp∥ · ∥z∥+Kf
p · ∥z∥.

4.2 Bounded cohomology of posets

Every poset (P ,⪯) has an associated semisimplicial set: Its nerve, where a p-simplex is a
chain {x0 ⪯ x1 ⪯ · · · ⪯ xp}, and the face maps correspond to deleting an element from the
chain. Let us stress that this definition allows for degenerate simplices, which is why we are
working with semisimplicial sets instead of simplicial complexes.

We will denote posets by P, and the corresponding semisimplicial sets by P•. Posets
are more amenable to proofs of acylicity than general semisimplicial sets [Bjö95], and some
of those techniques can be adapted to bounded cohomology [KS23]. In this section, we
prove bounded analogues of some basic lemmas in this context, which will lead to a useful
combinatorial criterion for uniform acyclicity of a poset. We start with the acyclic carrier
lemma [Bjö95, Lemma 10.1].

Definition 4.10. Let X•, Y• be semisimplicial sets. A carrier is a map Φ which to each
simplex σ ∈ Xp associates a sub-semisimplicial set Φ(σ) of Y•, and such that Φ(σ) ⊆ Φ(τ)
whenever σ ⊆ τ . A carrier Φ is said to be uniformly acyclic if for all σ ∈ X•, the semisimplicial
set Φ(σ) is uniformly acyclic, and the corresponding constants K

Φ(σ)
p in degree p are bounded

by constants Kp independent of σ.
A carrier for a simplicial map f : X• → Y• is a carrier Φ such that f(σ) ∈ Φ(σ) for all

σ ∈ X•.

Lemma 4.11. Let f, g : X• → Y• be two simplicial maps. Suppose that f, g admit a common
uniformly acyclic carrier Φ. Then f and g are boundedly homotopic. More precisely, if
the constants Kp witness the uniform acyclicity of Φ, and satisfy 1 ≤ Kp ≤ Kp+1, then the
bounded homotopy {hp}p≥0 satisfies ∥hp∥ ≤ 2(p+ 1)(Kp)

p.

The proof will show that a sharper bound is possible, even unconditionally, but this is all
we will need for the proofs.

Proof. We construct the bounded homotopy {hp}p≥0 by induction. For σ ∈ X0, both f0(σ)

and g0(σ) represent an element in Φ(σ)0, and so z := (f0 − g0)(σ) ∈ C̃0(Φ(σ)) is a reduced

cycle. By the uniform acyclicity assumption, there exists a chain c ∈ C̃1(Φ(σ)) such that
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d1(c) = z and ∥c∥ ≤ K0 · ∥z∥ ≤ 2K0. We define h0(σ) := c, extend it linearly to a map

h0 : C̃0(X•) → C̃1(Y•) and notice that d1h0 = f0 − g0 and ∥h0∥ ≤ 2K0.

Now let p ∈ N∗ and suppose by induction that for all 0 ≤ i < p bounded maps hi : C̃i(X•) →
C̃(Y•) have been defined so that the homotopy identity holds, and moreover hi(σ) is supported
on Φ(σ) for all σ ∈ Xi. Fix σ ∈ Xp, and set z := (fp − gp − hp−1dp)(σ). Then the induction

hypothesis shows that dp(z) = 0 and z is supported on Φ(σ), so z ∈ C̃p(Φ(σ)) is a cycle.

By the uniform acyclicity assumption, there exists c ∈ C̃p(Φ(σ)) such that dp+1(c) = z
and ∥c∥ ≤ Kp · ∥z∥ ≤ Kp · (2 + ∥hp∥). We define hp(σ) := c, extend it linearly to a map

hp : C̃p(X•) → C̃p+1(Y•), and notice that dp+1hp − hp−1dp = fp − gp, and

∥hp∥ ≤ Kp(2 + ∥hp−1∥) ≤ 2Kp +Kp2p(K
p−1)p−1 ≤ 2(p+ 1)(Kp)

p.

This can be used to prove a bounded version of Quillen’s Order Homotopy Theorem
[Bjö95, Theorem 10.11]:

Theorem 4.12. Let X• be a semisimplicial set, and let P be a poset. Let f, g : X• → P• be
simplicial maps. If f(x) ⪯ g(x) for every x ∈ X0, then f and g are boundedly homotopic via
a bounded homotopy {hp}p≥0 with ∥hp∥ ≤ 2(p+ 1).

Proof. For each simplex σ ∈ X• define Φ(σ) to be the sub-semisimplicial set of P• spanned by
f(σ)∪g(σ). Every vertex of Φ(σ) dominates the minimal element of f(σ), so the corresponding
semisimplicial set is a cone, which is uniformly acyclic and whose constant can be chosen to
be equal to 1 in all degrees (Lemma 4.7). The result then follows from Lemma 4.11.

We will only use the following consequence of Theorem 4.12 (the W property is given in
Definition 2.1).

Corollary 4.13. Let P be a poset with the W property. Then P• is uniformly acyclic.

Proof. We will show that P• satisfies the criterion of Lemma 4.6. That is, for every finite
subposet Q ⊂ P, we will show that the inclusion ι : Q• → P• is uniformly acyclic with
constants independent of Q. Let x1, . . . , xk be the minimal elements of Q, and let yI , I ⊆
{1, . . . , k} be the elements of P whose existence is ensured by the W property. Define the
map f : Q → P by sending x ∈ Q to yIx , where Ix = {i ∈ {1, . . . , k} | xi ⪯ x}. Item 1
of Definition 2.1 states that yI ⪯ yJ if I ⊆ J , and this implies that f is order-preserving.
Item 2 states that yIx ⪯ x, and so f(x) ⪯ x, for all x ∈ Q. Therefore Theorem 4.12
applies and shows that f : Q• → P• is boundedly homotopic to ι, via a bounded homotopy
{hp}p≥0 with ∥hp∥ ≤ 2(p + 1). However, every element of f(Q) is dominated by y{1,...,k},
so f(Q•) is contained in a cone. Lemma 4.8 then shows that f is uniformly acyclic with
Kf

p ≤ 1 for all p. Finally, we apply Lemma 4.9 to deduce that ι is uniformly acyclic with
Kι

p ≤ Kf
p + ∥hp∥ ≤ 1 + 2(p + 1). Since this bound is independent of Q, we conclude from

Lemma 4.6 that P is uniformly acyclic.

4.3 The orbit complex

Let us now begin the proof of Theorem 2.2. Recall the setup: The group G is acting on a
set X, and there is a G-invariant poset of sequences in X such that the action of G on X is
transitive, and has boundedly acyclic stabilizers. Moreover, X satisfies the W property, which
implies that the semisimplicial set X• is boundedly acyclic, by Corollary 4.13. Therefore the
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action of G on X• satisfies the hypotheses of Theorem 4.1. It remains to show that the orbit
complex G\X• is boundedly acyclic.

Consider a simplex {x0 ⪯ x1 ⪯ · · · ⪯ xp} for p ≥ 0. Define ιi : xi → N∗ to be the index
map, which associates to a fat point in xi its index in the sequence. Now xp−1 is uniquely
determined by the indices that describe it as a subsequence of xp. Therefore, once xp has
been given, xp−1 can be described in terms of an order-preserving embedding ηp : N∗ ↪→ N∗,
such that the following diagram commutes:

xp−1 xp

N∗ N∗ηp

ιpιp−1

Proceding inductively in the same way, we define order-preserving embeddings ηi : N∗ → N∗

that intertwine the inclusion of xi−1 into xi with the order isomorphisms ιi−1, ιi, so that the
following diagram commutes:

x0 x1 · · · xp−1 xp

N∗ N∗ · · · N∗ N∗

ιpιp−1ι1ι0

η1 η2 ηp−1 ηp

We denote by Emb<(N∗) the monoid of order-preserving embeddings of N∗. We write
multiplication in Emb<(N∗) in terms of the right action of Emb<(N∗) on N∗, so given
η, ζ ∈ Emb<(N∗), their product ηζ is the embedding given by applying η, then ζ. Let
Ip : Xp → Emb<(N∗)p be the map that associates to a p-simplex {x0 ⪯ · · · ⪯ xp} the p-tuple
(η1, . . . , ηp).

Lemma 4.14. The map Ip : Fp → Emb<(N∗)p induces a bijection G\Xp → Emb<(N∗)p,
which we also denote by Ip.

Proof. Given a p-simplex {x0 ⪯ · · · ⪯ xp}, the action of G intertwines the maps ιi, i.e. the
following diagram commutes:

xi xi.g

N∗ N∗=

.g

ιpιp

Since this is true for each i, we see that Ip is invariant under the action of G.
Now let {x0 ⪯ · · · ⪯ xp} and {y0 ⪯ · · · ⪯ yp} be two p-simplices with the same image

under Ip. Let g ∈ G be an element such that g.xp = yp; this exists by Lemma 3.3. Since
the embedding ηp : N∗ → N∗ is valid for both g.xp−1 → g.xp and yp−1 → yp, the indices that
define yp−1 as a subsequence of yp are the same that describe g.xp−1 as a subsequence of
g.xp = yp. This shows that g.xp−1 = yp−1, and repeating the same argument by induction we
conclude that these two p-simplices are in the same G-orbit.
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This produces an identification of the simplices of the orbit complex. We now show that
this extends to an isomorphism:

Lemma 4.15. The maps Ip : G\Xp → Emb<(N∗)p define an isomorphism of semisimplicial
sets G\X• → Emb<(N)• from the orbit complex to the nerve of Emb<(N)•. In particular,
there is an isomorphism in bounded cohomology Hn

b (Emb<(N∗)) → Hn
b (G\X•).

Proof. We already know that Ip is a bijective map sending simplices to simplices. We need to
show that these maps intertwine the face maps. Let {x0 ⪯ · · · ⪯ xp} be a simplex, whose
image under Ip is (η1, . . . , ηp). Removing xi yields the following commutative diagrams. For
0 < i < p:

x0 x1 · · · xi−1 xi+1 · · · xp−1 xp

N∗ N∗ · · · N∗ N∗ · · · N∗ N∗

ιi+1ιi−1ι1ι0

η1 η2 ηi−1 ηiηi+1 ηi+2 ηp−1

ιp−1 ιp

ηp

While for i = 0 and i = p we are simply removing the first and last columns, respectively. We
now compute the effect on face maps, starting with i = 0:

Ip−1(d
0
p({x0 ⪯ · · · ⪯ xp})) = Ip−1({x1 ⪯ · · · ⪯ xp})

= (η2, . . . , ηp)

= d0p(η1, . . . , ηp) = d0p(Ip({x0 ⪯ · · · ⪯ xp})).

Analogously:
Ip−1(d

n
p ({x0 ⪯ · · · ⪯ xp})) = dnp (Ip({x0 ⪯ · · · ⪯ xp})).

And for 0 < i < p:

Ip−1(d
i
p({x0 ⪯ · · · ⪯ xp})) = Ip−1({x1 ⪯ · · · ⪯ xi−1 ⪯ xi+1 ⪯ · · · ⪯ xp})

= (η2, . . . , ηi−1, ηiηi+1, ηi+2, . . . , ηp)

= dip(η1, . . . , ηp) = dip(Ip({x0 ⪯ · · · ⪯ xp})).

The discussion in this subsection is summarized in the following result:

Proposition 4.16. Let G be a groups satisfying the criterion from Theorem 2.2. Then there
is an isomorphism in bounded cohomology Hn

b (Emb<(N∗)) ∼= Hn
b (G).

Proof. Consider the action of G on X•. This semisimplicial set is uniformly acyclic by
Corollary 4.13, so it is acyclic and boundedly acyclic by Lemma 4.4. The stabilizer of a
simplex {x0 ⪯ · · · ⪯ xp} coincides with the stabilizer of xp, which is boundedly acyclic,
and all such stabilizers are conjugate by transitivity. So Theorem 4.1 applies and gives
an isomorphism Hn

b (G)
∼= Hn

b (G\X•). By Lemma 4.14, the latter is in turn isomorphic to
Hn

b (Emb<(N∗)).

4.4 Bounded cohomology of the embedding monoid

It remains to show that the embedding monoid Emb<(N∗) is boundedly acyclic. This will be
proved indirectly, using the group of countably supported permutations on an uncountable
set, from Subsection 3.5.
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Theorem 4.17. The monoid Emb<(N∗) is boundedly acyclic.

Proof. By Proposition 4.16, it suffices to exhibit a boundedly acyclic group that satisfies the
criterion from Theorem 2.2. This is the group of countably supported permutations of an
uncountable set, by Propositions 3.26 and 3.27.

Proof of Theorem 2.2. Combine Proposition 4.16 and Theorem 4.17.

4.5 Acyclicity

A completely analogous proof holds in the case of acyclicity. As before, we split the proof
into two statements.

Proposition 4.18. Let G be a groups satisfying the criterion from Theorem 2.3. Then there
is an isomorphism in homology Hn(Emb<(N∗);Z) ∼= Hn(G;Z).

Proof. The analogue of Theorem 4.1 holds for homology with integral coefficients, in our case.
Indeed, by [Bro94, Chapter VII.7], there is a spectral sequence

E1
p,q =

⊕
σ∈Σp

Hp(Gσ;Zσ) ⇒ Hp+q(G;Z),

where Gσ is the stabilizer of the simplex σ, and Zσ is the module Z with the Z[Gσ]-module
structure defined by the sign of the permutation that an element of Gσ induces on the set of
vertices of σ. In our setting, the semisimplicial sets in questions are posets, so Gσ fixes the
vertices of σ pointwise, and thus we recover the isomorphism Hp(G;Z) ∼= Hp(G\X•). Since
the orbit complex is isomorphic to the nerve of Emb<(N∗) (Lemma 4.15), we conclude.

Theorem 4.19. The monoid Emb<(N∗) is acyclic.

Proof. As in the proof of Theorem 4.17, we appeal to Proposition 4.18 and the acyclicity of
the group of countably supported bijections of an uncountable set (Proposition 3.26).

Proof of Theorem 2.3. Combine Proposition 4.18 and Theorem 4.19.

Remark 4.20. As we have seen in the previous section, actions on posets of sequences
with boundedly acyclic stabilizers are easier to construct than actions with acyclic stabilizers.
However, let us point out that the isotropy spectral sequence that we used in the proof of
Proposition 4.18 only requires the acyclicity of the semisimplicial set being acted on, which in
our setting follows from Corollary 4.13. A more careful analysis of this spectral sequence for
the groups in question, aided by the acyclicity of the orbit complex established via Theorem
4.19, could shed some light on their homology, even when we know that acyclicity does not
hold.

4.6 An alternative approach

The final step in the proof of the criteria is the [bounded] acyclicity of the monoid Emb<(N∗),
which we achieved by appealing to the auxiliary group of countably supported permutations
of an uncountable set. This is the most streamlined approach that we were able to find, which
has the peculiarity of leaving the world of transformation groups. In this section, we sketch an
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alternative approach that is more technically involved, but more thematically coherent: We
show how to prove that the group G ≤ Homeo+(R) of elements that fix a neighbourhood of
(−∞, 0] pointwise, is [boundedly] acyclic directly. Then the same arguments as above can be
applied to deduce the [bounded] acyclicity of Emb<(N∗), concluding the proof of the criterion.
We only deal with bounded acyclicity in this sketch, but the proof could be carried through
analogously for acyclicity (alternatively, recall that the acyclicity of Homeo+(R) is already
known [McD80], and the acyclicity of the group G follows from the same manipulations we
did in the proof of Theorem C).

For the scope of this argument, we call a fat sequence in R>0 a collection x = (xi)i∈N∗ of
fat points in R>0 such that the cores ẋ = (ẋi)i∈N are pairwse distinct and form a discrete
subset of R>0. This is a similar definition as before, except that the sequence of cores does
not need to be increasing, although the discreteness assumption implies that it is diverging.

The crucial difference is in the order relation. We denote x ⪯ y if x is a subset of y: We
do not require that the inclusion preserves the order given by the indices in the sequences.
Now the relation ⪯ is not antisymmmetric anymore, and so we are dealing with a preordered
set (proset for short), and not a poset. We denote by F this proset. The group G acts on F
by preserving the preorder, and thus it also acts on the nerve F•, which is a semisimplicial
set in the usual way.

The uniform acyclicity of F• now requires modifications of the arguments in Subsection 4.2,
where posets are replaced with prosets, cones are replaced with nerves of prosets admitting a
global maximum, and the W property has to be modified appropriately. By the discreteness
and disjointness assumption, the stabilizer of a fat sequences is isomorphic to a product of
copies of Homeoc(R), and thus it is boundedly acyclic.

It remains to study the orbit complex G\F•. Since G preserves the natural order on R>0,
but fat sequences are not required to follow this order, the action of G on F is not transitive
and accordingly the orbit complex will be larger. We fix a basepoint in F , for example the
fat sequence with cores the natural numbers and trivial germs. Every other fat sequence with
the same cores is in a different G-orbit, and is parametrized by a permutation of N∗. This
permutation is a complete invariant of the G-orbit, since G can send any fat sequence to a
unique fat sequence with cores the natural numbers.

Now, to a p-simplex {x0 ⪯ · · · ⪯ xp} we can associate both the underlying permutations
of N∗ associated to each xi, and also p embeddings N∗ → N∗ which describe the way xi−1

sits inside xi. The key difference is that now these embeddings need not be order-preserving.
Unraveling the definitions, and describing explicitly the face maps as we did in Subsection
4.3, we see that the orbit complex is isomorphic to the nerve of the category Emb(N∗)×Π.
Here Emb(N∗) is the monoid of all self-embeddings of N∗, seen as a category with one object;
Π is a category with objects indexed by permutations of N∗ and a unique morphism between
any two objects; and × denotes the product of categories.

We can now study the bounded cohomology of this nerve via a spectral sequence, noticing
that the complex ℓ∞(Nerve•(Emb(N∗) × Π)) is the total complex of the double complex
ℓ∞(Nervep(Emb(N∗)); ℓ∞(Nerveq(Π))). The bounded acyclicity will then follow from the fact
that both Nerve•(Π) and Emb(N∗) are boundedly acyclic.

First, Nerve•(Π) is boundedly acyclic by virtue of being the nerve of a proset with a global
maximum, which as we saw before is a replacement for cones in the context of prosets.

As for the monoid Emb(N∗), one can prove this similarly to an argument sketched (for
acyclicity) by de la Harpe and McDuff [dlHM83, Appendix 2], who in turn attribute it to
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unpublished work of Quillen [Qui10]. The fundamental notion is that of semiconjugacy : Two
endomorphisms f, g : Emb(N∗) → Emb(N∗) are semiconjugate if there exists µ ∈ Emb(N∗)
such that µf(x) = f(x)µ for all x ∈ Emb(N∗). The key property of semiconjugacy is that
semiconjugate maps are homotopic. In fact they are even boundedly homotopic, and this can
be proven analogously: See e.g. [Mon01, Lemma 8.2.7] for a proof in the case of groups, where
semiconjugacy is the more familiar notion of conjugacy. Then one shows that there exists an
endomorphism of Emb(N∗) that is semiconjugate to both the identity endomorphism, and to
the constant endomorphism at the identity embedding [dlHM83, Appendix 2]. This implies
that the identity and a constant map induce the same map in bounded cohomology, which is
only possible if Emb(N∗) is boundedly acyclic.

It is worth pointing out that, even in this approach, the bounded acyclicity of embedding
monoids plays a crucial role in the proof.

5 Unboundedness of the topological Pontryagin classes

Recall from the introduction that the map

BHomeoδ(M) → BHomeo(M),

is an acyclic map when M is a compact manifold or the interior of a compact manifold
with boundary ([McD80, Section 2, Theorem 2.5]). The same holds for Homeo+(M). If we
combine this result for M = Rn and the non-vanishing result of Galatius and Randal-Williams
[GRW23] we obtain that

R[e, p1, p2, . . . ] → H∗(BHomeoδ+(R2n);R),

is injective for 2n ≥ 6, and in the odd-dimensional case, it follows from [GRW23, Corollary
1.2] that

R[p1, p2, . . . ] → H∗(BHomeoδ+(R2n+1);R),

is injective for 2n+1 ≥ 7. In dimension 2 and 3, we obtain that R[p1] → H∗(BHomeoδ+(R3);R)
and R[e] → H∗(BHomeoδ+(R2);R) are isomorphisms. Given that Homeo+(Rn) is a boundedly
acyclic group by Theorem A, all the nontrivial classes in H∗(BHomeoδ+(Rn);R) are unbounded.
This gives a proof of Corollary K. In general, for oriented Cr-flat Rn-bundles for any regularity
r, we have the following result.

Theorem 5.1. For oriented Cr-flat Rn-bundles of any regularity r ≥ 0, the polynomials in
terms of the Euler class (when n is even) and Pontryagin classes pi that are of degree less
than n+ 2 are all unbounded.

Proof. By a deep result of Segal [Seg78, Propositions 1.3 and 3.1], we know that there is a
natural map

BDiffr,δ
+ (Rn) → BSΓr

n,

which is a homology isomorphism, where BSΓr
n is the classifying space of Haefliger structures

for codimension n foliations that are transversely oriented, see [Seg78, Section 1] for more
details. There is also a map

ν : BSΓr
n → BGLn(R)+,
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which classifies oriented normal bundles to the codimension n foliations where GLn(R)+ is the
group invertible matrices with positive determinant. For all regularities, it is known that the
map ν is at least (n+ 1)-connected, see [Hae71, Remark 1, Section II.6]. Hence, in particular,
the induced map

H∗(BGLn(R)+) → H∗(BDiffr,δ
+ (Rn)),

is an isomorphism for ∗ ≤ n. So the polynomials of the Euler class, when n is even, and the
Pontryagin classes pi are nontrivial for all r when the degree of the polynomial is less than
n+ 2. Given that Diffr

+(Rn) is a bounded acyclic group by Theorem B, all these nontrivial

classes in H∗(BDiffr,δ
+ (Rn)) are unbounded.

To prove the unboundedness of Pontryagin classes for C0-flat sphere bundles, we need the
following lemma.

Lemma 5.2. Let st : Homeo(Rn) → Homeo(Rn+1) be the stabilization map that sends a
homeomorphism f to f × id. Let α be the following composition

Homeo(Rn) → Homeo(Sn) → Homeo(Dn+1) → Homeo(int(Dn+1))
∼=−→ Homeo(Rn+1),

where the first map is induced by the one-point compactification, the second map is induced by
taking a cone over the origin, the third map is the restriction to the interior of the disc which
is homeomorphic to Rn+1. By choosing an orientation preserving homomeorphism between
int(Dn+1) and Rn+1, we obtain a continuous homomorphism α : Homeo(Rn) → Homeo(Rn+1)
which is independent of the choice up to homotopy. Then also the maps st and α are homotopic
through homomorphisms.

Proof. First note that different identifications are induced by conjugation by an orientation
preserving homomorphism of Rn. Since conjugation by elements that are isotopic to the
identity induces a homomorphism on Homeo(Rn) that is homotopic to the identity, the
homomorphism α is well defined up to homotopy.

We identify Sn as the one-point compactification of Rn and choose ∞n, the point at
infinity, as the base point of Sn. Let CSn be the cone Sn× [0, 1]/Sn×{0} and let ĊSn be the
open cone Sn × [0, 1)/Sn × {0}. Let also SSn = CSn/Sn × {1} be the unreduced suspension
of Sn. Let us denote the path in CSn and SSn which is the image of ∞n × [0, 1] by l. We
identify Sn+1 with SSn and the point ∞n+1 with the image of Sn × {1}.

For a closed subset Y of a space X, we write Homeo(X, Y ) to denote those homomorphisms
of X that restrict to the identity on Y . We can identify Homeo(Rn) with Homeo(Sn,∞n).
So we consider the following model of the stabilization map

Homeo(Sn,∞n) → Homeo(Sn × [0, 1],∞n × [0, 1]) → Homeo(SSn, l) → Homeo(Sn+1,∞n+1).

On the other hand, we can identify int(Dn+1) with ĊSn such that the line l is identified
with the line from the origin to ∞n ∈ Sn. With this identification, we have a model of the
homomorphism α as the following composition

Homeo(Sn,∞n) → Homeo(ĊSn, l) → Homeo(SSn, l) → Homeo(Sn+1,∞n+1),

which is the same homomorphism as the above model for the stabilization map.

Using this lemma we can prove the unboundedness of certain Pontryagin classes for flat
sphere bundles as follows.
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Proof of Theorem M. First we shall see the nonvanishing of topological Pontryagin classes
in H∗(BHomeoδ(Sn);R). By Lemma 5.2 and the Thurston–McDuff homology isomorphism
[McD80], we know that the composition

H∗(BHomeoδ(Rn+1);R) → H∗(BHomeoδ(Sn);R) → H∗(BHomeoδ(Rn);R),

is induced by the stabilization map. By Galatius–Randal-Williams [GRW23] we know that

R[p1, p2, . . . ] ↪→ H∗(BHomeoδ(Rn);R),

is injective for all n ≥ 6. Therefore, we also have the injective map

R[p1, p2, . . . ] ↪→ H∗(BHomeoδ(Sn);R).

Now consider the following commutative diagram

H∗(BHomeoδ(Sn+1);R) H∗(BHomeoδ(Rn+1);R) H∗(BHomeoδ(Sn);R)

H∗
b (BHomeoδ(Sn+1);R) H∗

b (BHomeoδ(Rn+1);R) H∗
b (BHomeoδ(Sn);R).

By Theorem A, we know that H∗
b (BHomeoδ(Rn+1);R) = 0 in positive degrees. A diagram

chase implies that all the classes R[p1, p2, . . . ] in H∗(BHomeoδ(Sn+1);R) are unbounded.
For 4 ≤ n ≤ 6, we can use iterations of these composition of maps to get the diagram

H∗(BHomeoδ(Sn);R) H∗(BHomeoδ(Rn);R) . . . H∗(BHomeoδ(S3);R)

H∗
b (BHomeoδ(Sn);R) H∗

b (BHomeoδ(Rn);R) . . . H∗
b (BHomeoδ(S3);R).

Recall that Homeo(S3) ≃ O(4), so the Thurston–McDuff theorem implies that

R[p1, p2] → H∗(BHomeoδ(S3);R)

is an isomorphism. Therefore, the same argument as before implies that the classes R[p1, p2] ↪→
H∗(BHomeoδ(Sn);R) for 4 ≤ n ≤ 6 are unbounded.

If we continue the same diagram up H∗(BHomeoδ(S1);R), we obtain that the classes
R[p1] ↪→ H∗(BHomeoδ(Sn);R) for n = 2, 3 are also unbounded.

6 Further results and questions

We conclude by mentioning other settings in which Theorem 2.2 applies, with minor variations
of the arguments of Section 3. On the other hand, when trying to tackle other transformation
groups of interest, we encounter technical difficulties, and we leave these as open questions.
Let us stress that even though Theorem 2.2 may not apply for some of these cases, the general
proof strategy seems fruitful beyond its specific scope. For example, our proof shows that the
W property is nothing but a simple combinatorial condition to ensure bounded acyclicity
of posets of sequences, and more sophisticated criteria could work in more general contexts.
Moreover, our statement of Theorem 4.1 made the convenient assumption that the stabilizers
belong to finitely many isomorphism classes, which was enough for our purposes, but the
principle works more generally, as long as the vanishing modulus of the stabilizers is controlled
[MN23, Theorem 3.3].
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6.1 Results

We start by considering other transformation groups of the line. Let PLω
+(R) denote the

group of orientation preserving piecewise linear homeomorphisms of R with a discrete set
of breakpoints. Subgroups of this group are central in the theory of left orderable groups,
and include lifts of piecewise linear groups of the circle [GS87], as well as the first examples
of finitely generated simple left orderable groups [HL19, MBT20]. The bounded acyclicity
of these simple groups was already proven in [CFFLM23, Example 5.41]; the proof relies on
their quasi-periodic nature, and in particular it does not generalize to the whole of PLω

+(R).
With a very minor variation on the arguments in Subsection 3.1, we obtain:

Theorem 6.1. The group PLω
+(R) is boundedly acyclic.

Proof. Any subgroup of Homeoc(R) acting without global fixed points has commuting Z-
conjugates [CFFLM23, Corollary 5.32]. Therefore, by the same argument as in the proof of
Theorem A for Homeo+(R), it suffices to prove bounded acyclicity of the subgroupG < PLω

+(R)
of elements that fix pointwise (−∞, 0]. We consider the poset X of strictly increasing diverging
sequences of points in R≥0. The action of G is transitive, and this poset satisfies the W
property, by Proposition 2.14 (where x ≃ y ⇔ x = y and x ⊑ y ⇔ x ≤ y). The stabilizer of a
sequence is isomorphic to PL+(I)

N, where I = [0, 1] and PL+(I) denotes the group of piecewise
linear homeomorphisms of I with a finite set of breakpoints. Because germs at fixed points are
abelian, the commutator subgroup of PL+(I)

N is a product of subgroups of Homeoc(R) acting
without global fixed points, so it has commuting Z-conjugates by [CFFLM23, Corollary 5.32]
and [CFFLM23, Lemma 4.8]. It then follows from Theorem 2.6 and coamenability [Mon01,
Proposition 8.6.6] that PL+(I)

N is boundedly acyclic. Thus Theorem 2.2 applies, and we
conclude.

The proof generalizes seamlessly to the piecewise projective case PPω
+(R); again, subgroups

of this group have provided very important examples in group theory, particularly in the
realm of non-amenable groups without free subgroups [Mon13, LM16]:

Theorem 6.2. The group PPω
+(R) is boundedly acyclic.

Proof. The proof of Theorem 6.1 applies, with the only modification that germs at fixed
points are not abelian but metabelian.

Next, we consider point stabilizers in transformation groups of Euclidean spaces. Let
Diffr

+(Rn, 0) denote the stabilizer of 0 in Diffr
+(Rn). For r ≥ 1, the derivative at 0 gives a

surjective homomorphism Diffr
+(Rn, 0) → GLn(R)+, which admits a section: The inclusion

GLn(R)+ → Diffr
+(Rn, 0). This implies that the bounded cohomology of GLn(R)+ embeds

into the bounded cohomology of Diffr
+(Rn), which is therefore not boundedly acyclic [Gro82].

On the other hand, we prove:

Theorem 6.3. For all n ∈ N∗, the group Homeo+(Rn, 0) is boundedly acyclic.

Proof. We identify Homeo+(Rn, 0) ∼= Homeo+(S
n, {0,∞}), which gives a short exact sequence

1 → Homeo(Sn, near{0,∞}) → Homeo+(S
n, {0,∞}) → G0 × G∞ → 1.

Here Homeo(Sn, near{0,∞}) denotes the group of homeomorphisms of Sn that fix pointwise
a neighbourhood of {0,∞}, and G0 and G∞ denote the germs at 0 and ∞, respectively. By
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Theorem 2.4 the group Homeo(Sn, near{0,∞}) ∼= Homeoc(S
n−1 ×R) is boundedly acyclic, so

Proposition 2.7 reduces the statement to the bounded acyclicity of G0 × G∞. Since G0
∼= G∞,

it suffices to show that G∞ is boundedly acyclic. We also have a short exact sequence

1 → Homeoc(Rn) → Homeo+(Rn) → G∞ → 1,

so Theorem 2.4, Theorem A and Proposition 2.7 imply that G∞ is boundedly acyclic.

In a similar way, we can deal with compact annuli, which were mentioned in the introduction.
We denote by Homeo◦(S

n × [0, 1], ∂) the identity component of the group of homeomorphisms
of the annulus fixing both boundary components pointwise.

Proof of Theorem H. Consider the short exact sequence

1 → Homeoc,◦(S
n × (0, 1)) → Homeo◦(S

n × [0, 1], ∂) → G0 × G1 → 1.

Here G0 and G1 denote the germs at the boundary component Sn × {0} and Sn × {1},
respectively. As in the proof of Theorem 6.3, it suffices to show that G0

∼= G1 is boundedly
acyclic. This follows from Theorem F, by considering the short exact sequence

1 → Homeoc(B
n+1) → Homeo(Dn, ∂) → G1 → 1.

Corollary 6.4. For all n ∈ N∗, the restriction Homeo◦(S
n × [0, 1]) → Homeo◦(S

n) ×
Homeo◦(S

n) induces an isomorphism in bounded cohomology in all degrees.

Proof. Consider the short exact sequence

1 → Homeo◦(S
n × [0, 1], ∂) → Homeo◦(S

n × [0, 1]) → Homeo◦(S
n)× Homeo◦(S

n) → 1

and apply Theorem H and Proposition 2.7.

As in Corollary 3.21, using [MN23, Theorems 1.8 and 1.10] we can now compute the
bounded cohomology of Homeo◦(S

n × [0, 1]) for n ≥ 2, in low degrees (note that in this case
we also need a degree-wise version of Proposition 2.7, see [MN23, Proposition 2.4]).

Corollary 6.5. For all n ≥ 2, the bounded cohomology of Homeo◦(S
n × [0, 1]) vanishes in

degrees 2 and 3. The bounded cohomology of Homeo◦(S
3 × [0, 1]) vanishes in degree 4.

In case n = 1 we can say more.

Proof of Corollary I. The first statement was already proved in Corollary 6.4 for r = 0. For
r ≥ 1, it follows from a similar argument, given the bounded acyclicity of Diffr

◦(D
2, ∂), which

is part of the proof that the restriction Diffr
◦(D

2) → Diffr
◦(S

1) induces an isomorphism in
bounded cohomology [MN23, Theorem 1.4]. For the second statement, [MN23, Theorem
1.2] gives an isomorphism of graded R-algebras H∗

b (Diff
r
◦(S

1)) ∼= R[E ]. The computation for
the product follows from a suitable Künneth argument: See [FFLM23, Proposition 6.13] for
a proof of the analogous statement for the product of two copies of Thompson’s group T
(the statement is conditional on the bounded acyclicity of Thompson’s group F , which was
proven in [Mon22]). Alternatively, the desired statement can be recovered from [FFLM23,
Proposition 6.13], by using the fact that there is an embedding T → Diffr

◦(S
1) which is

semiconjugate to the standard embedding [GS87], and therefore induces an isomorphism in
bounded cohomology in all degrees.
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Using the computation in degree 2, we recover a theorem of Militon. For a group G, we
denote byQ(G) the space of homogeneous quasimorphismsG→ R, and byH1(G) the subspace
of homomorphisms. There is a natural homogeneous quasimorphisms on Diffr

◦(S
1 × [0, 1]),

called the torsion number [Mil14]. Given f ∈ Diffr
◦(S

1 × [0, 1]), let F ∈ Diffr
◦(R × [0, 1])

be a lift to the universal cover. The restriction to the two boundary components defines
maps F0, F1 in the universal cover of Homeo◦(S

1), to which we can associate the asymptotic
translation number τ . We define the torsion number as

ρ(f) := τ(F0)− τ(F1).

This is well-defined: If we replace F by another lift, then τ(F0) and τ(F1) are both shifted by
an integer, so their difference is the same. Moreover, ρ is a homogeneous quasimorphisms, in
fact, δρ is the difference of the canonical real bounded Euler cocycles of E1 and E0, as follows
from the definitions [Mat86] (see also [Fri17, Section 10.8]).

Proof of Corollary J. There is an exact sequence (see e.g. [Fri17, Proposition 2.8]):

0 → H1(G) → Q(G) → H2
b (G) → H2(G).

We know that H2
b (G) = RE0 ⊕ RE1 by Corollary I. Both E0 and E1 are non-trivial in H2(G);

this is because the restriction G→ Diffr
◦(S

1) to either boundary component admits a section.
The fact that δρ is the difference of the canonical real bounded Euler cocycles of E1 and E0

implies at once that E1 − E0 generates the kernel of H2
b (G) → H2(G), and that Q(G)/H1(G)

is one-dimensional, spanned by ρ.
The last statement is a consequence of the fact that, for r ̸= 2, 3, the group G is perfect

[Ryb98, Theorem 5] (see also [AF09]).

6.2 Questions

A very obvious question is whether Theorem F holds in higher regularity:

Question 6.6. Is Diffr(Dn, ∂) boundedly acyclic for r ≥ 1 and n ≥ 3?

The case of n = 2 is known [MN23, Theorems 1.3 and 1.4], by methods specific to
dimension 2. Our method is not dependent on dimension, but dealing with differentiability at
the boundary presents several complications.

The main application of Theorem F is the isomorphism in bounded cohomology between
homeomorphism groups of discs and spheres (Corollary G). However, the bounded cohomology
of Homeo+(S

n), and more generally of Diffr
+(S

n), is understood (beyond low degrees) only in
dimension 1 [MN23, Theorems 1.1 and 1.2].

Question 6.7. Is Diffr
+(S

n) boundedly acyclic for r ≥ 0 and n ≥ 2?

See also [MN23, Questions 7.3 and 7.4] for related questions.

One interesting feature of the proof of bounded acyclicity of Homeo(Rn) was that we
had to study the bounded cohomology of certain monoids of self-embeddings. Normally the
classifying space of the monoid of self-embeddings is more flexible to study than that of their
maximal subgroup. But we had to go through auxiliary groups to prove bounded acyclicity of
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Emb<(N∗). On the other hand Homeo(Rn) is the maximal subgroup of the monoid Emb(Rn)
of self-embeddings of Rn. As the topological monoid, Kister [Kis64] showed that the inclusion

Homeo(Rn) → Emb(Rn),

induces a weak homotopy equivalence. As a discrete monoid, Segal’s results in [Seg78] imply
that

BHomeoδ(Rn) → BEmbδ(Rn),

induces a homology isomorphism. Now that our main theorem proves the bounded acyclicity
of Homeo(Rn) as a discrete group, it seems natural to ask the following question.

Question 6.8. Is Embδ(Rn) boundedly acyclic?

Hirsch–Thurston [HT75] proved that the Euler class for flat C0-sphere bundles over an
amenable base vanishes. Moreover, Calegari [Cal04, Theorem D] showed that the Euler class
for C1-flat R2-bundles over a torus should vanish. Even though the Euler class vanishes for
such bundles with amenable bases, we know that the Euler class is unbounded [MN23, Cal04].
This suggests the following question.

Question 6.9. Are the Euler classes inH2n(Diffr(R2n, vol);R) and inH2n(Diffr(S2n−1, vol);R)
bounded?

Let us point out that Diffr
c(Rn; vol) is boundedly acyclic [CFFLM23, Corollary 1.12],

but our methods from Section 3.2 break down in several ways when trying to prove that
Diffr(Rn; vol) is boundedly acyclic.

A Controlled annulus theorem (by Alexander Kupers)

In this appendix, we will prove that the action of Homeo(Dn, ∂) of homeomorphisms of the
disc fixing the boundary pointwise on the set F of “fat sequences” is transitive: Combine
Theorem A.6 with Corollary A.10.

A.1 Sequences of spheres in Rn

As preparation, we will study the action of homeomorphisms of Rn on sequences of spheres. A
parametrised sphere in Rn is a locally flat embedding S : Sn−1 ↪→ Rn so that the composition

Sn−1 S−→ Rn\{point in bounded component of Rn\im(S)} π−→ Sn−1

is orientation-preserving (i.e. preserves the fundamental class). We say S1 englobes S0 if S0 is
contained in the bounded component of Rn \ S1.

Definition A.1. A sequence of parametrised spheres is a collection S = {Si}i∈N∗ of disjoint
parametrised spheres such that Si englobes Si−1.

Example A.2. The standard sequence Σ of parametrised spheres is given by letting
Σi : S

n−1 ↪→ Rn be given by x 7→ i · x.
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The identity component of the group of homeomorphisms of Rn acts on the collection S
of all sequences of parametrised spheres by post-composition. As a warm-up we will prove
the following:

Theorem A.3. A sequence S lies in the orbit of the standard nested sequence Σ under
Homeo◦(Rn) if and only if every compact subset of Rn intersects finitely many Si.

We refer to the condition in the previous definition as S going to infinity. It is equivalent to
Rn being equal to union of the bounded components of Rn \ im(Si) for all i ≥ 1: if a compact
K intersects the image of infinitely many Si, pick a sequence kj ∈ K with kj ∈ im(Sij ) where
ij → ∞ and let k be the limit of a convergent subsequence, then we must have that k must
lie in the unbounded component of Rn \ im(Sij) for all j and hence the intersection of the
unbounded components of all R \ im(Si) is non-empty.

The proof will use as main input two slightly sharpened variants of the Schoenflies and
annulus theorems.

Theorem A.4 (Schoenflies theorem). Let S be a parametrised sphere and W denote the
closure of the bounded component of Rn \ im(S). Then there is a homeomorphism h : Dn → W
that agrees with S on Sn−1.

Proof. The usual Schoenflies theorem provides a homeomorphism g : Dn → W ([Bro60, Maz59,
Mor60]). By the Alexander trick (g|Sn−1)−1 ◦ S extends to a homeomorphism of Dn and
precompose g with this to get the desired homeomorphism.

Theorem A.5 (Annulus theorem). Let S1, S2 be parametrised spheres with S1 englobed by S2,
and let W denote the closure of the region between these. Then there is a homeomorphism
h : Sn−1 × [1, 2] → W that agrees with S1 on Sn−1 × {1} and S2 on Sn−1 × {2}.

Proof. The usual annulus theorem provides a homeomorphism h : Sn−1 × [1, 2] → W [Moi52,
Kir69, Qui82]. We may assume by precomposing with a reflection if necessary that h is
orientation-preserving on both boundary components. Then (h|Sn−1×{1})

−1 ◦ S1 is orientation-
preserving and since Homeo+(S

n−1) is path-connected, there is an isotopy bt : S
n−1 × [0, 1] →

Sn−1 from it to the identity. Similarly, there is an isotopy b′t from the identity to (h|Sn−1×{2})
−1◦

S2. Now define a homeomorphism of Sn−1 × [1, 2] by

(x, t) 7−→

{
(b2t(x), t) if t ∈ [0, 1/2],

(b′2t−1(x), t) if t ∈ [1/2, 1]

and precompose h with it to get the desired homeomorphism.

Proof of Theorem A.3. The direction ⇐ is clear as the standard nested sequence has the
property of going to infinity and this property is preserved by homeomorphisms. For the
direction ⇒, without any hypothesis on S = {Si}i∈N∗ we will inductively construct an
embedding h : Rn → Rn so that hΣi = Si. The condition that the sequence goes to infinity
guarantees this is surjective, and any surjective embedding is a homeomorphism. It will lie in
the identity component because by construction it will be orientation-preserving.

Let W1 denote the closure of the bounded component of Rn \ im(S1) and Wi+1 : Si ⇝ Si+1

for i ≥ 1 denote the closure of the region between im(Si) and im(Si+1). Apply Theorem A.4
to get a homeomorphism h1 : D

n → W1 and apply Theorem A.5 to get homeomorphisms
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hi+1 : S
n−1 × [i, i + 1] → Wi+1, all agreeing with the appropriate Si’s on their boundary

components. Now we define h as

h(x) :=

{
h1(x) if x ∈ Dn,

hi+1(x) if x ∈ Sn−1 × [i, i+ 1] for i ≥ 1,

where we identify Sn−1 × [i, i+ 1] with a subset of Rn using radial coordinates.

A.2 Sequences of spheres in Dn

Let Homeo(Dn, ∂) denote those homeomorphisms that are the identity on ∂Dn (not necessarily
near the boundary). Identifying the interior of Dn with Rn, these are those homeomorphisms

h of Rn such the function h(tx)
|h(tx)| : S

n−1 → Sn−1, defined for t sufficiently large, converges
uniformly to the identity at t → ∞. We may ask what the orbit of the standard nested
sequence under Homeo(Dn, ∂) ⊂ Homeo+(Rn) is.

To state the answer, we introduce a notion of “radial control” using reference maps to
Sn−1, with metric d induced from the standard one on Euclidean space. Given reference maps
r0 : X0 → Sn−1 and r1 : X1 → Sn−1, we say that a continuous map f : X0 → X1 has diameter
< ϵ if sup{d(r0(x), r1(f(x))) | x ∈ X0} < ϵ. The map x 7→ x

|x| induces a map to Sn−1 on any
subset of Rn avoiding the origin; unless we say otherwise, this is the reference map to Sn−1

on such subsets. Let us make some elementary observations about this notion:

• If f, g are composable so that diam(f) < ϵ and diam(g) < δ then diam(gf) < ϵ+ δ.

• If h is a homeomorphism so that diam(h) < ϵ then diam(h−1) < ϵ.

• If {Ai} is a cover then diam(f) = sup diam(f |Ai
).

Theorem A.6. A sequence of parametrised spheres S = {Si}i∈N∗ ∈ S lies in the orbit of the
standard sequence Σ under Homeo(Dn, ∂) if and only if diam(Si) → 0 as i→ ∞.

We refer to the condition in the theorem as S having trivial germ at the boundary.
This theorem will follow by essentially the same proof as for Theorem A.3 once we establish

the following “controlled annulus theorem”. Such a result was surely known to the experts,
but we could not find it in the literature.

Proposition A.7 (Controlled annulus theorem). Let S1, S2 be parametrised spheres with S1

englobing the origin and S2 englobing S1, and let W denote the closure of the region between
these. For all ϵ > 0 there exists a δ > 0 so that if S1, S2 have diameter < δ, then there is a
homeomorphism h : Sn−1 × [1, 2] → W of diameter < ϵ that agrees with S1 on Sn−1 ×{1} and
S2 on Sn−2 × {2}.

The proof relies on local contractibility of spaces of locally flat embeddings, in the compact-
open topology. If Y is a metric space and X any space, for any two maps f, g : X → Y
we define d(f, g) = sup{d(f(x), g(x)) | x ∈ X}. The following is a consequence of [EK71],
explicitly stated as [DV09, Theorem 7.3.1].

Theorem A.8. Let N be a compact PL-manifold with metric and M ⊂ intN be a two-sided
closed PL-submanifold of codimension one. For all ϵ > 0 there exists a δ > 0 so that for
any locally flat embedding e : M → intN satisfying d(e, incM) < δ there is a homeomorphism
h : N → N fixing the boundary pointwise, satisfying he = incM , and d(h, idN) < ϵ.
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Proof of Proposition A.7. We suppose S1, S2 have diameter < δ for some small δ to be
specified at the end of the proof.

Picking spheres of radii Rmin and Rmax such that S1 lies between them, we can re-
gard using radial coordinates S1 as an embedding Sn−1 → Sn−1 × [Rmin, Rmax]. By pick-
ing a suitable self-homeomorphism λ of [Rmin, Rmax] fixing the boundary, we can assume
d((id×λ)S1, incSn−1×{Rave}) < δ where Rave := 1

2
(Rmin + Rmax). For ϵ′ to be picked later,

by taking δ to be small we can use Theorem A.8 to find a homeomorphism g̃1 of Sn−1 ×
[Rmin, Rmax] that fixes the boundary, satisfying d(g̃1, idSn−1×[Rmin,Rmax]) < ϵ′ and g̃1(id×λ)S1 =
incSn−1×{Rave}. Extending g̃1(id×λ) by the identity and rescaling the radial coordinates by
1

Rave
, we get a homeomorphism g1 of diameter < ϵ′ so that g1S1 = incSn−1×{1}.
Now pick a sphere of radius R′

max so that g1S2 lies between it and of that of radius 1. Using
that diam(g1S2) < ϵ′+δ, by making ϵ′ and δ smaller we can use the same argument to construct
a homeomorphism g2 supported in Sn−1 × [1, R′

max] of diameter < ϵ′′ for ϵ′ ≤ ϵ′′ and satisfying
g2g1S2 = incSn−1×{2}. Then (g2g1)

−1 restricts to a homeomorphism Sn−1 × [1, 2] → W of
diameter < ϵ′ + ϵ′′ agreeing with Si on S

n−1 × {i} for i = 1, 2. By taking δ small enough we
can make ϵ′ + ϵ′′ ≤ ϵ.

Proof of Theorem A.6. The direction ⇐ is clear as the standard sequence satisfies the condi-
tion of having trivial germ at the boundary and it is preserved by homeomorphisms of Dn

fixing ∂Dn pointwise. For the direction ⇒, we will construct an embedding h : Rn → Rn so
that hΣi = Si and diam(h|Sn−1×t) → 0 as t → ∞ using the second condition on the nested
sequence. As before, the first condition guarantees this is surjective so a homeomorphism and
it will be orientation-preserving so in the identity component.

Let W1 denote the closure of the bounded component of Rn \ im(S1) and Wi+1 : Si ⇝ Si+1

denote the closure of the region between im(Si) and im(Si+1). Pick now for each k ≥ 1 a
δk > 0 so that Proposition A.7 applies with ϵ = 1/k.

Apply the Schoenfies theorem (Theorem A.4) to get a homeomorphism h1 : D
n → W1

and apply the controlled annulus theorem (Proposition A.7) to get a homeomorphisms of
hi+1 : S

n−1×[i, i+1] → Wi+1 of diameter < 1/k for k largest such that diam(Si), diam(Si+1) <
δk when possible. There will be finitely many i where this is not possible, and then apply the
annulus theorem (Theorem A.5) to get homeomorphisms hi+1 : S

n−1 × [i, i+ 1] → Wi+1. All
of these agree with the appropriate Si’s on the boundary. Now we can define h as

h(x) :=

{
h1(x) if x ∈ Dn,

hi+1(x) if x ∈ Sn−1 × [i, i+ 1] for i ≥ 1,

where we identify Sn−1 × [i, i + 1] with a subset of Rn using radial coordinates, and by
construction diam(h|Sn−1×{t}) → 0 as t→ ∞.

A.3 Sequences of germs in Rn or Dn

We can also consider germs near Sn−1 × {0} of orientation-preserving topological embeddings
S : Sn−1 × (−1

4
, 1
4
) ↪→ Rn.

Definition A.9. A sequence of germs of parametrised spheres is a collection S = {Si}i≥1 of
disjoint germs of parametrised spheres such that Si englobes Si−1.
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There is a standard such sequence Σ given by the germs of Σi : S
n−1 × (−1

4
, 1
4
) → Rn

given by (x, s) 7→ (i+ s) · x. We will use the notation Ṡi := Si|Sn−1×{0} for the cores and Ṡ
for the resulting sequence of parametrised spheres.

Corollary A.10. A sequence S of germs of parametrised spheres lies in the orbit of the
standard sequence Σ under Homeo+(Rn) or Homeo(Dn, ∂) if and only if its sequence of cores
Ṡ does.

Proof. The direction ⇒ is obvious. For ⇐, given S = {Si}i∈N∗ we pick a homeomorphism
sending Ṡ to the standard sequence. It remains to adjust the germs near the standard spheres
and to do so, we will use that for any germ of embedding Sn−1 × [0, 1) → Sn−1 × [0, 1) near
Sn−1×{0} that is the identity on Sn−1×{0}, there is a compactly-supported homeomorphism
that is the identity on the boundary which sends it to the germ of the identity of arbitrarily
small diameter. To find this, note that both the given germ and the identity germ can be
represented by collars on the boundary and invoke the collaring uniqueness theorem [KS77,
Theorem A.1, Essay I], which comes with control. We now pick for each germ Si extending Σi

two homeomorphisms as above—one for each side, in Sn−1×(i−1/4, i] and Sn−1× [i, i+1/4)—
that map its germ to the standard germ, have diameter smaller than 1/i, and necessarily
agree on Sn−1 × {i} so may be combined into a single homeomorphisms. The resulting
homeomorphisms, one for each i ∈ N∗, by construction have disjoint compact support so may
be combined into a single homeomorphism h so that hSi = Σi and diam(h|Sn−1×{t}) → 0 as
t→ ∞.
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[FFLM23] F. Fournier-Facio, C. Löh, and M. Moraschini, Bounded cohomology and binate groups, J. Aust.
Math. Soc. 115 (2023), no. 2, 204–239. MR 4640119

[Fri17] R. Frigerio, Bounded cohomology of discrete groups, Mathematical Surveys and Monographs, vol.
227, American Mathematical Society, Providence, RI, 2017. MR 3726870

[Ghy01] E. Ghys, Groups acting on the circle, Enseign. Math. (2) 47 (2001), no. 3-4, 329–407. MR
1876932

[Gro82] M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982),
no. 56, 5–99. MR 686042

[GRW23] S. Galatius and O. Randal-Williams, Algebraic independence of topological Pontryagin classes, J.
Reine Angew. Math. 802 (2023), 287–305. MR 4635347

[GS87] E. Ghys and V. Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle, Comment.
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