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hAbstra
t In order to illustrate some of the ma
hinery of 
ontinuous bounded 
o-homology, we work out a 
ouple of 
on
rete questions in the parti
ular 
ase of SL2.First we 
ompute, in degree two, the 
ontinuous bounded 
ohomology of SL2(R)with unitary irredu
ible 
oe�
ients. Then we explore the 
onne
tions between dilog-arithm fun
tions and the 
ontinuous bounded 
ohomology of SL2(R) and SL2(C).In parti
ular, we obtain that Rogers' dilogarithm is uniquely determined by theSpen
e�Abel fun
tional equation.1 Introdu
tionAlthough the theory of bounded 
ohomology has re
ently found many appli-
ations in various �elds (see for instan
e [3℄ or [13℄), for dis
rete groups itremains s
ar
ely a

essible to 
omputation. As a matter of fa
t, almost allknown results assert either a 
omplete vanishing or yield intra
table in�nitedimensional spa
es. On the other hand, the low degree 
ontinuous bounded
ohomology H•

cb of a Lie group (with unitary 
oe�
ients) 
an be des
ribedby means of the ri
h stru
ture theory of the latter.Our �rst result in this paper derives from the investigation, in a parti
ular
ase, of the interplay between the in�nite dimensionality of the bounded 
o-homology groups of surfa
e groups and a 
on
rete des
ription of the bounded
ohomology groups for SL2.Spe
tral DistributionLet Σ be a 
ompa
t orientable surfa
e di�erent from the sphere and thetorus. The fundamental group Γ = π1Σ is Gromov hyperboli
 and, as su
h,
H2

b(Γ ) is in�nite dimensional, [7℄.Any hyperbolization Γ →֒ PSL2(R) of Σ indu
es an inje
tion
H2

b(Γ ) −→ H2
cb

(
PSL2(R), L2(PSL2(R)/Γ )

)
, (1)see [13, 11.1.5℄. On the other hand, the PSL2(R)-representation on the spa
e

L2(PSL2(R)/Γ ) de
omposes into a dire
t sum of irredu
ible representations
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olas Monodin a way di
tated by the topology and spe
tral theory of the surfa
e Σ withthe 
hosen hyperboli
 stru
ture.In this situation, it is natural to ask how the in�nite dimensional spa
e
H2

b(Γ ) gets distributed over the spe
tral de
omposition. This is a di�
ultquestion. The �rst step is of 
ourse to understand whi
h irredu
ible repre-sentations of PSL2(R) 
arry bounded 
ohomology in degree two. Observethat, sin
e H2
cb

(
PSL2(R), L2(PSL2(R)/Γ )

) is in�nite dimensional (see (1)),the spe
tral distribution is bound to be very di�erent from the one 
on
erningordinary 
ontinuous 
ohomology, in whi
h 
ase only a �nite number of uni-tary irredu
ible 
oe�
ients result in non-zero, �nite dimensional 
ohomologygroups (see the Table below). In 
ontrast, we have:Theorem 1.1. (a) Let (π,H) be an irredu
ible unitary representation of
SL2(R):(i) dimH2

cb(SL2(R),H) = 1 if the representation (π,H) is spheri
al;(ii) H2
cb(SL2(R),H) = 0 in all other 
ases;(b) If LpC denotes the series of 
omplementary Lp representations, we have

H2
cb(SL2(R), LpC) 6= 0 for all 1 < p <∞.Ex
ept for the Euler 
lass, whi
h 
orresponds to the trivial representation,the 
ohomology 
lasses above are all new � they vanish in usual 
ontinuous
ohomology. It is therefore worth mentioning that we 
an de�ne them witha very expli
it formula (Proposition 4.1).We summarize below the present state of our knowledge for the list ofall irredu
ible unitary SL2(R)-representations fa
toring through PSL2(R);for the reader's 
onvenien
e, we have re
alled on the left hand side the wellknown situation in ordinary 
ontinuous 
ohomology. We denote the trivialrepresentation by 11; the dis
rete series representations H(n) are indexed bythe minimal or maximal weight n ∈ 2Z.

H0

c H1

c H2

c H≥2

c H0

cb H1

cb H2

cb H3

cb H≥3

cb

11 R 0 R 0 R 0 R 0 ?Spheri
al 6= 11 0 0 0 0 0 0 R ? ?
H(2), H(−2) 0 R 0 0 0 0 0 ? ?
H(n), n 6= ±2 0 0 0 0 0 0 0 ? ?It would be interesting to investigate the spe
tral distribution of thebounded 
ohomology for rank one lo
ally symmetri
 spa
es of higher dimen-sion. On the other hand, ifΣ is a 
ompa
t (or �nite volume) lo
ally symmetri
irredu
ible spa
e of rank at least two, we have shown ([2℄, [3℄) that H2

b(Γ ),
Γ = π1(Σ), inje
ts into the ordinary 
ohomology by proving pre
isely thatthere are no new 
lasses in the 
ontinuous bounded 
ohomology, with unitary
oe�
ients, of the 
orresponding Lie groups.

∗ ∗ ∗



Bounded Cohomology of SL2 21We turn now to bounded 
ohomology in degree three. We observe �rst the
onne
tion between this 
ohomology group for SL2(C) and the Blo
h�Wignerdilogarithm. For SL2(R), we show vanishing of this 
ohomology group andrelate it to Roger's dilogarithm.The Dilogarithm and SL2Re
all that, modulo its �nite 
entre, SL2(C) is (the 
onne
ted 
omponent of)the group of isometries of Loba
hevski��'s spa
e H3. It follows, via Dupont'sisomorphism [6℄, that the 
ontinuous 
ohomology group H3
c(SL2(C)) is gener-ated by the volume form of H3. Sin
e there is an upper bound to the volumeof all geodesi
 simpli
es in this spa
e, the volume form de�nes a
tually a 
lassin H3

cb(SL2(C)). The latter 
ohomology spa
e 
an be 
omputed (see Theo-rem 2.1) using measurable bounded 
o
y
les on the spa
e of ideal simpli
es,i.e. on the spa
e of geodesi
 simpli
es with all four verti
es on the sphere atin�nity ∂H3 ∼= Ĉ.It is well known that the volume of su
h a simplex is essentially givenby the Blo
h�Wigner dilogarithm of the 
rossratio of the four points in Ĉ.In this realisation, the Spen
e�Abel fun
tional equation for the dilogarithm
orresponds simply to the 
o
y
le equation for volume. S. Blo
h has shown [1℄that the fun
tional equation essentially determines the dilogarithm amongmeasurable fun
tions; we shall rephrase his result as:Theorem 1.2. There is a natural isomorphism H3
cb(SL2(C)) ∼= H3

c(SL2(C)).Remark 1.3. It is essential for this reformulation that Blo
h's result is validin the generality of measurable fun
tions.Rogers' dilogarithm is another relative of the 
lassi
al Euler dilogarithm(see Se
t. 5.1). It appears that Rogers' dilogarithm is 
onne
ted to SL2(R),but in a slightly di�erent way. Using the 
orresponding version of the Spen
e�Abel fun
tional equation and, denoting by ∧ to the natural 
up produ
t in
ontinuous bounded 
ohomology, we show:Proposition 1.4. H2
cb(SL2(R)) ∧ H2

cb(SL2(R)) = 0.Further, the methods that we introdu
e for the spe
tral distribution allowus to show:Theorem 1.5. H3
cb(SL2(R)) = 0.This statement 
ontains a uniqueness statement similar to Blo
h's; indeed,our proof yields as a by-produ
t:Proposition 1.6. Rogers' dilogarithm is the only integrable fun
tion L :

]0, 1[→ C satisfying both the Spen
e�Abel fun
tional equation
L

(
y − x

1 − x

)
− L (y) + L (x) − L

(
x

y

)
+ L

(
x(1 − y)

y(1 − x)

)
= 0 (2)
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olas Monodand the symmetry L(1 − x) = ζ(2) − L(x) for all 0 < x < y < 1, where ζdenotes the Riemann ζ fun
tion.(A

ording to Gelfand and Ma
Pherson [8, 4.1.2℄, there is no availablereferen
e for the uniqueness of Rogers' dilogarithm.)2 Notations and ConventionsThroughout the paper, we write G = SL2(R). We 
onsider the a
tion of Gby fra
tional linear transformations on the upper half plane H2 ⊆ C anddenote by K the stabilizer SO(2) of the point i. This a
tion fa
tors throughthe double 
overing G → PSL2(R) and extends to the geometri
 boundary
∂H2 = R̂= R ∪ {∞}. We denote by P the stabilizer of ∞, whi
h is thesubgroup of upper triangular matri
es in G; one has G = KP . We shallrepeteadly use that, up to null-sets, the diagonal G-a
tion on the 
artesianprodu
t R̂3 has exa
tly two orbits.The matrix ( 1 i

i 1 ) 
onjugates G to SU(1, 1) within SL2(C). Under this
onjugation, the inverse of the stereographi
 proje
tion
ρ : S

1 ⊆ C −→ R̂, ρ(z) =
z + i

iz + 1intertwines the G-a
tion on R̂ ∼= G/P with the homographi
 SU(1, 1)-a
tionon the unit 
ir
le in C. To avoid 
onfusion, we use the notation g⋆s forthe a
tion of g ∈ G on s ∈ S
1 obtained in this way. O

asionally, it willbe 
onvenient to use for S

1 the additive parametrisation R/2πZ. With thisnotation, one has (ku)⋆s= s+ 2u for ku =
(

cos u sin u
− sin u cos u

), u ∈ R/2πZ.We shall assume all 
ontinuous unitary representations to have separablerange. For the 
omplete 
lassi�
ation of the irredu
ible 
ontinuous unitaryrepresentations of G, we refer to [10℄ or [11℄ (see also Se
t. 3.2). A repre-sentation is 
alled spheri
al if it has a (non-zero) K-invariant ve
tor. Asfar as bounded 
ohomology is 
on
erned, it is enough � as we shall re
allbelow � to 
onsider the representations whi
h fa
tor through the proje
tion
SL2(R) → PSL2(R). Irredu
ible representations of this kind are either spheri-
al or belong to the dis
rete series. In Se
t. 4.1, we shall re
all the 
onstru
tionof the spheri
al representations.Let g be the Lie algebra of G and gC its 
omplexi�
ation. If (π,H) is a
ontinuous unitary G-representation, we denote by HK the spa
e of K-�niteve
tors. Besides the K-a
tion, HK has also a stru
ture of gC-module (if HK isirredu
ible or more generally admissible, the (gC,K)-stru
ture turns it intoa Harish-Chandra module, see [14℄).If S is a standard measure spa
e and H a separable Hilbert spa
e, L∞

(
S,H

)denotes the spa
e of measurable essentially bounded H-valued fun
tion 
lasses;



Bounded Cohomology of SL2 23observe that weak and strong measurability 
oin
ide here. Given a regulara
tion of a lo
ally 
ompa
t group H on S (so that H-a
tion on L∞(S) isweak-∗-
ontinuous, [3℄)and a 
ontinuous unitary H-representation on H, we
onsider the 
orresponding representation on L∞
(
S,H

). We borrow Zimmer'snotion of amenability for H-a
tions on S, see [15℄.For the general theory of 
ontinuous bounded 
ohomology, we refer to [3℄and [13℄. We re
all the followingTheorem 2.1 ([3℄, [13℄). Let H be a lo
ally 
ompa
t se
ond 
ountable group,
(π,H) a 
ontinuous unitary H-representation and S an amenable regular H-spa
e. Then the 
ohomology of the 
omplex

0 −→ L∞(S,H)H d1

−−−→ L∞
(
S2,H

)H d2

−−−→ L∞
(
S3,H

)H d3

−−−→ · · ·is 
anoni
ally isometri
ally isomorphi
 to the 
ontinuous bounded 
ohomology
H•

cb(H,H). The same is true for the sub
omplex of alternating 
o
hains. �The above maps dn : L∞
(
Sn,H

)
→ L∞

(
Sn+1,H

) are the usual Alexander�Spanier 
oboundaries dn =
∑n

j=0(−1)jdn
j , wherein dn

j omits the jth variable.We shall mostly use the following parti
ular 
ase of the theorem:Corollary 2.2. For every 
ontinuous unitary G-representation (π,H), the
ohomology of the 
omplex
0 −→ L∞(S1,H)G d1

−−−→ L∞
(
(S1)2,H

)G d2

−−−→ L∞
(
(S1)3,H

)G d3

−−−→ · · ·is 
anoni
ally isometri
ally isomorphi
 to H•
cb(G,H). The same is true forthe sub
omplex of alternating 
o
hains. �3 A Di�erential GroupIn this se
tion, we introdu
e a graded di�erential group (A•

M
, ∂) into whi
hwe shall translate questions about measurable 
o
y
les on the 
ir
le by meansof the Fourier transformation. The stru
ture of A

•
M will be well suited to �ndobstru
tions to the existen
e of 
o
y
les.We use the multipli
ative parametrisation S

1 = {z ∈ C : |z| = 1}, so that
C[z] is identi�ed with the algebra of trigonometri
 polynomials. For n ≥ 0,we denote by µn the normalized Haar measure on (S1)n+1. If ν ∈ Zn+1, wedenote by χν the 
hara
ter χν(z) = zν0

0 · · · zνn
n for z ∈ (S1)n+1.3.1 Fourier Transformation with Coe�
ientsLet (π,H) be a 
ontinuous unitary G-representation. Sin
e the in
lusion

C[z] ⊗ · · · ⊗ C[z]⊗ HK −→ L1(S1)⊗̂ · · · ⊗̂L1(S1)⊗̂H
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olas Monodis dense and the dual of the right hand side is L∞
(
(S1)n+1,H

) by the Dunford�Pettis theorem [5, VI.8℄, we dedu
e by duality that the 
anoni
al map to thealgebrai
 dual of the left hand side is inje
tive. Denoting by H′
K the alge-brai
 dual of HK and by F(Zn+1,H′

K) the spa
e of all maps Zn+1 → H′
K we
on
lude that the Fourier transformation

L∞
(
(S1)n+1,H

) ̂
−−−−−→ F(Zn+1,H′

K)

F̂ (ν)(v) =

∫

(S1)n+1

〈F (z)|v〉χν(z) dµn(z)(where F ∈ L∞
(
(S1)n+1,H

), ν ∈ Zn+1, and v ∈ HK) is inje
tive.We de�ne the operators S± on F(Zn+1,H′
K) by

(S±ψ)(ν) =

n∑

j=0

(νj ± 1)ψ(ν ± ǫj) (ν ∈ Z
n+1) , (3)where (ǫj)

n
j=0 is the 
anoni
al basis of Zn+1. Further, de�ne

∂ = ∂n : F(Zn,H′
K) −→ F(Zn+1,H′

K)by ∂n =
∑n

j=0(−1)j∂n
j and

∂n
j ψ(ν) =

{
ψ(ν0, . . . , ν̂j, . . . , νn) if νj = 0,
0 otherwise . (4)One 
he
ks readily theLemma 3.1. For all n ≥ 0, the ∂n+1-
o
y
les, i.e. fun
tions belonging to

Ker∂n+1, are supported on the union ∆(n) = {ν :
∏n

j=0 νj = 0} of the
anoni
al hyperplanes in Zn+1. �One 
an also show that the resulting 
omplex is a
y
li
, but we shall notneed this information.The dual gC-stru
ture on F(Zn+1,H′
K) is given by

(X∗ψ)(ν)(v) = ψ(ν)(−dπ(X)v) (ψ ∈ F(Zn+1,H′
K), X ∈ gC) ,where dπ is the di�erential of π whi
h is well de�ned sin
e v ∈ HK is smooth.In order to state the following proposition, we de�ne E± ∈ gC by E± =(

1 ±i
±i −1

) and denote by T the map T : Zn+1 → Z, de�ned by T (ν0, . . . , νn) =∑n
j=0 νj . We re
all that v ∈ HK is of weight ℓ ∈ Z if π(kt)v = eiℓtv. Thefollowing proposition will motivate the introdu
tion of our group A•

M
:Proposition 3.2. The Fourier transformation L∞

(
(S1)•,H

)
→֒ F(Z•,H′

K)has the following properties:
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(
(S1)•,H

) is G-equivariant, then E∗
±F̂ = 2iS∓F̂ ;(b) If F ∈ L∞

(
(S1)•,H

) is G-equivariant and v ∈ HK is of weight ℓ, then
F̂ (·)(v) is supported on the hyperplane {ν : T (ν) = −ℓ/2}. In parti
ular,
F̂ (·)(v) vanishes if ℓ is odd;(
) The Fourier transformation preserves alternation and intertwines the
oboundary d with ∂.Proof. (a) For X ∈ gC and gt = exp(tX),

ĝtF (ν)(v) =

∫

(S1)n+1

〈F ((g−1
t )⋆z)|π(g−1

t )v〉χν(z) dµn(z) ,and thus the equivarian
e of F implies by produ
t di�erentiation
X∗F̂ (ν)(v) = D

∫

(S1)n+1

〈F ((g−1
t )⋆z)|v〉χν(z) dµn(z) ,where D is a shorthand for ∂

∂t

∣∣
t=0

. This be
omes further
X∗F̂ (ν)(v) =

∫

(S1)n+1

〈F (z)|v〉D
(
χν((gt)⋆z)

d(gt)⋆µn

dµn
(z)
)
dµn(z) .Using now

D
(
χν((gt)⋆z)

)
=

n∑

j=0

νjχν−ǫj
(z)D((gt)⋆zj)and

D
(d(gt)⋆µn

dµn
(z)
)

=

n∑

j=0

D
(d(gt)⋆µ0

dµ0
(zj)

)
,we have

X∗F̂ (ν)(v) =

n∑

j=0

νj

∫

(S1)n+1

〈F (z)|v〉D((gt)⋆zj)χν−ǫj
(z) dµn(z) (5)

+
n∑

j=0

∫

(S1)n+1

〈F (z)|v〉χν(z)D
(d(gt)⋆µ0

dµ0
(zj)

)
dµn(z) . (6)Now write E± = H ± iV with H =

(
1 0
0 −1

) and V = ( 0 1
1 0 ). The images of

at = exp(tH) and ut = exp(tV ) in SU(1, 1) under the 
onjugation by ( 1 i
i 1 )introdu
ed in Se
t. 4 are respe
tively ( cosh t i sinh t

−i sinh t cosh t

) and ( cosh t sinh t
sinh t cosh t

). Usingthis, one 
omputes
D
(
(at)⋆zj

)
= i(1 + z2

j ) , and D
(
(ut)⋆zj

)
= 1 − z2

j .Computing the Radon�Nikodým derivatives yields
d(at)⋆µ0

dµ0
(zj) =

(
cosh 2t+ i

z−1
j − zj

2
sinh 2t

)−1
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olas Monodand
d(ut)⋆µ0

dµ0
(zj) =

(
cosh 2t+

z−1
j + zj

2
sinh 2t

)−1

,thus one 
he
ks that
D

(
d(at)⋆µ0

dµ0
(zj)

)
= i(zj − z−1

j ), and D

(
d(ut)⋆µ0

dµ0
(zj)

)
= −(zj + z−1

j ) .Repla
ing all this in (5), we �nd
H∗F̂ (ν)(v) = iS+F̂ (ν)(v) + iS−F̂ (ν)(v)

V ∗F̂ (ν)(v) = −S+F̂ (ν)(v) + S−F̂ (ν)(v) ,when
e the 
laim.(b) is a simpler form of this argument sin
e the Radon�Nikodým derivativesfor K are trivial.(
) The orthogonality relations imply that d̂n
j F = ∂n

j F̂ . �3.2 The Di�erential Group A
•

M
.A 
lassi�
ation of general (gC,K)-modules 
an be found in [9℄. We shall how-ever only need modules of the form M = HK where H is an irredu
ible unitaryrepresentation of G fa
toring through PSL2(R). They yield the following fourtypes of irredu
ible (gC,K)-modules:(a) Spheri
al : there is an element v ∈ M su
h that M is spanned by (Ek

±v)k≥0.Moreover, there is λ ∈ C with E−E+v
′ = λv′ for all v′ of weight zero;(b) Positive minimal weight : there is v ∈ M su
h that M is spanned by

(Ek
+v)k≥0 (in fa
t, sin
e H fa
tors through PSL2(R), only even weightso

ur );(b') Negative maximal weight : there is v ∈ M su
h that M is spanned by

(Ek
−v)k≥0 (again, only even weights o

ur);(
) The trivial module M = C is a parti
ular 
ase of (a).De�nition 3.3. Let M be a (gC,K)-module and let n ≥ 0. We de�ne An

Mto be the spa
e of all maps ψ : Zn+1 → M′ satisfying:
AI ψ is alternating;
AII E

∗
±ψ = 2iS∓ψ, where E∗

± a
t by the natural dual gC-stru
ture and theoperators S± are de�ned as in (3);
AIII If v ∈ M is of weight ℓ, then ψ(·)(v) is supported on the hyperplane

{ν : T (ν) = −ℓ/2}.The di�erential ∂n+1
A

: An
M

→ A
n+1
M

is de�ned as above in (4), and thusagain one 
he
ks:
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AIV ∂n+1-
o
y
les are supported on the union ∆(n) of the 
anoni
al hyper-planes.Proposition 3.2, together with the inje
tivity of the Fourier transforma-tion, implies that the 
omplex of equivariant bounded alternating measurable
H-valued 
o
hains on the 
ir
le 
an be viewed as a sub
omplex of A•

M for
M = HK .The following �niteness result for general irredu
ible (gC,K)-modules,spe
ialized to HK , will be the �nal ingredient in the proof of Theorem 1.1,Theorem 1.5 and Proposition 1.6.Proposition 3.4. Let M be an irredu
ible (gC,K)-module.(a) If M is of spheri
al type, then dimKer ∂3

A
≤ 1;(b) If M is of positive minimal weight or negative maximal weight, then non-zero elements of Ker ∂3

A

annot vanish at in�nity;(
) If M is the trivial (gC,K)-module C, then Ker ∂4

A
= 0.Proof. (a) Sin
e M is spheri
al and irredu
ible, there is aK-invariant element

v ∈ MK su
h that M is spanned over C by (Ek
±v)k≥0. Moreover, there is

λ ∈ C with E−E+v
′ = λv′ for all v′ of weight zero. Fixing ω ∈ Ker∂3

A
,we shall show that ω(·)(v) vanishes if ω(1,−1, 0)(v) = 0; this will prove the
laim (a) be
ause of AII and the stru
ture of M just des
ribed.We de�ne the map α : Z → C by

α(x) = ω(x,−x, 0)(v) ,so that α(1) = 0 by the assumption on ω and α(0) = 0 by AI. The prop-erties AI, AIII and AIV imply that α determines linearly ω(·)(v), so that itis su�
ient to show the vanishing of α. Implementing the de�nition of α in
S+S−ω(x,−x, 0)(v) = λ′ω(x,−x, 0)(v), where λ′ = −λ/4 (see AII), we �nd

(x+ 1)2α(x + 1) + (x− 1)2α(x − 1)

=(x− 1)
(
ω(x− 1,−x, 1) + ω(x,−x+ 1,−1)

)
+ (2x2 − λ′)α(x)

− (x+ 1)
(
ω(x+ 1,−x,−1) + ω(x,−x− 1, 1)

)
.For x = 1, this redu
es (by AI and AIV) to 4α(2) = (2 − λ′)α(1), hen
e

α(2) = 0. For x ≥ 2, the ω terms vanish be
ause of AIV, so that we have
(x+ 1)2α(x + 1) = (2x2 − λ′)α(x) − (x− 1)2α(x− 1) .This propagates by indu
tion the vanishing from x = 1, 2 to all x ≥ 3. Thenegative values are handled with the formula α(−x) = −α(x), whi
h followsfrom AI.(b) We give the proof for an even positive minimal weight 2ℓ; the 
ase ofnegative weights is analogous and the 
ase of odd weights is trivial be
ause
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olas Monodof AIII. Let ω be a 
o
y
le ω ∈ Ker ∂3
A
. We �x a v ∈ M su
h that M is spannedby (Ek

+v)k≥0 (thus v is of minimal weight) and de�ne the map β : Z → C by
β(x) = ω(x,−ℓ− x, 0)(v) .We suppose that ω vanishes at in�nity; then so does β. On the other hand,as for point (a), it is enough to show β = 0.Now we use E−(v) = 0: writing out S+ω(x,−ℓ−x−1, 0)(v) = 0, we have

(x+ 1)β(x + 1) = (x+ ℓ)β(x) − ω(x,−ℓ− x, 1)(v) .Therefore, ω being supported on ∆(n), the positivity of ℓ implies that forall x ≥ 1 we have x,−ℓ−x 6= 0 and hen
e (x+1)β(x+1) = (x+ℓ)β(x). Sin
e
x + ℓ ≥ x + 1 > 0, the vanishing at in�nity implies β(x) = 0 for all x ≥ 1.The alternation of ω implies β(x) = −β(−ℓ−x), so that we remain only withthe 
ase −ℓ < x ≤ 0, whi
h we settle by des
ending indu
tion starting from
β(0) = 0 (by AI). If 1 − ℓ < x < 0, then S+ω(x− 1,−ℓ− x, 0)(v) = 0 reads

xβ(x) + (1 − ℓ− x)β(x − 1) + ω(x− 1,−ℓ− x, 1) = 0 .The �rst term vanishes by the indu
tion hypothesis and the third be
ause of
x 6= 1,−ℓ and AIV. Therefore β(x− 1) = 0 sin
e x 6= 1 − ℓ. For the last step
x = 1 − ℓ, we have β(x) = −β(−1), whi
h is already done if 1 − ℓ 6= −1 andfollows from this formula if 1 − ℓ = −1.(
) Noti
e �rst that Ker ∂4

A
is invariant under the linear map σ de�ned by

σω(ν) = ω(−ν). Therefore we have a de
omposition Ker ∂4
A

= Z+ ⊕ Z−a

ording to the eigenvalues ±1 of σ. Now, for ω ∈ Z+ ∪ Z−, we de�ne
ψ : Z2 → C by

ψ(x, y) = ω(x, y,−x− y, 0) .We remark (by AI) that ψ is alternating and vanishes if x or y is zero.As before, it is enough for point (
) to prove that ψ vanishes everywhere. Forsimpli
ity, we write the operators S± as Sǫ for ǫ ∈ {−1, 1}. Now if
x 6= 0, y 6= 0, x+ y + ǫ 6= 0 , (7)then the 
ondition AIV redu
es Sǫω = 0 to

(x+ y)ψ(x, y) = (x + ǫ)ψ(x+ ǫ, y) + (y + ǫ)ψ(x, y + ǫ) . (8)The simpler 
ase is when x and y are of the same sign. Indeed, if y < x < 0,we start with ψ(x, x) = ψ(0, y) = 0 and 
he
k by des
ending indu
tion on ythat ψ(x, y) is zero: if this is so for some y ≤ −1, then (ǫ = 1)
ψ(−1, y − 1) =

y

y − 2
ψ(−1, y) = 0 ,and thus by a additional indu
tion on y < x < −1

ψ(x, y − 1) =
x+ 1

x+ y − 1
ψ(x+ 1, y − 1) +

y

x+ y − 1
ψ(x, y) = 0 .
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ompletes the (main) indu
tion step and thus ψ(x, y) = 0 for all y < x <
0. By alternation, the same holds for x < y < 0; re
alling that ω ∈ Z+ ∪Z−,we dedu
e also that ψ(x, y) = 0 for all x, y > 0.The se
ond 
ase is when x and y are of opposite sign. Remark �rst thaton the line x + y = 0, the 
ondition (7) holds away from zero, and that ψvanishes. Therefore (8) yields

(x+ ǫ)ψ(x+ ǫ,−x) = (x− ǫ)ψ(x,−x+ ǫ) (∀x 6= 0) .On the line x+ y = ǫ, the 
ondition (7) holds for x 6= 0, ǫ. This implies �rstthat ψ(2ǫ, ǫ) = 0 (set x = ǫ) and then, by indu
tion, that ψ(x + ǫ,−x) = 0for all x with sign ǫ. The x of opposite sign (with ǫ kept �xed) are obtainedby alternation together with ω ∈ Z+ ∪ Z−.We have shown that ψ(x, y) = 0 holds on the two lines x+y = ǫ (ǫ = ±1).Now we may use (8) for every x < 0, y > 0 with x + y = h ≥ 2 in order todedu
e by indu
tion on h that ψ(x, y) vanishes. The remaining points in
x+ y ≤ −2 are taken 
are of by ψ(−x,−y) = ±ψ(x, y). �4 Constru
ting Co
y
lesApart from the trivial representation, there are two types of spheri
al irre-du
ible 
ontinuous unitary representations of G fa
toring through PSL2(R):the prin
ipal and 
omplementary series [10,11℄. They 
an be de�ned as fol-lows.4.1 Representation Spa
esConsider for σ ∈ C the 
hara
ter δσ of P de�ned by

δσ(p) = |a|σ , p =

(
a b
0 a−1

)
∈ P .For every σ 6= −1 one introdu
es the spa
e of 
ontinuous fun
tions

E(σ) =
{
F ∈ C(G) : F (px) = δσ+1(p)F (x) ∀x ∈ G, p ∈ P

}and endows it with the right regular G�a
tion. For σ pure imaginary, oneobtains the prin
ipal series representations by taking the 
ompletion P(σ)of E(σ) with respe
t to the G�invariant pre-Hilbertian stru
ture indu
ed bythe in
lusion E(σ) → L2(K) obtained by restri
ting fun
tions from G to K.For σ real with 0 < σ < 1, one gets the 
omplementary series repre-sentations by taking the 
ompletion C(σ) with respe
t to the G�invariantpre-Hilbertian stru
ture
〈f, g〉 =

π∫

−π

π∫

−π

f(ku)g(kv)

| sin(u − v)|1−σ
du dv , f, g ∈ E(σ) .
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olas MonodAs a small ex
ursion away from unitary representations, we shall also
onsider the Lp 
omplementary series for 1 < p <∞, whi
h is the 
ompletion
LpC of the spa
e E((2 − p)/p) for the norm indu
ed by the in
lusion E((2 −
p/)p) → Lp(K) as above, see [4, Chap. 6℄.4.2 Basi
 Constru
tionFor all a ∈ R and b ∈ C∗, we de�ne the odd exponential

{a}b
o =

{
ab if a ≥ 0

−(−a)b if a < 0 ,and extend it by {∞}
b
o = ∞. We aim at the followingProposition 4.1. For σ ∈ C r {−1}, there is a G-equivariant 
o
y
le

ω : R̂ × R̂ × R̂ −→ E(σ)de�ned almost everywhere by
ω(x, y, z)(g) = {gx− gy}

(σ+1)/2
o + {gy − gz}

(σ+1)/2
o + {gz − gx}

(σ+1)/2
o .(a) If σ is pure imaginary, then the 
o
y
le ω represents a non-trivial 
lassin H2

cb(G,P(σ)).(b) If 0 < σ < 1, then ω represents a non-trivial 
lass in H2
cb(G,C(σ)).(
) If 1 < p <∞ and σ = (2− p)/p, then ω represents a non-trivial 
lass in

H2
cb(G,LpC).More formally, we de�ne for every σ ∈ C r {−1} the fun
tion

F (σ) : R × R −→ Ĉ = C ∪ {∞}by
F (σ)(s, t) =

{
2 sin( s−t

2 )

cos( s−t
2 ) − sin( s+t

2 )

}(σ+1)/2

o

,with the 
onvention F (σ)(s, t) = 0 if both s and t are in π/2+2πZ. Hen
eforth,we freely view F (σ) as a fun
tion on S
1 × S

1.Lemma 4.2. For all distin
t s, t ∈ S
1 r {π/2}(a) F (σ)(s, t) = {x− y}

(σ+1)/2
o for x = tan 2s+π

4 , y = tan 2t+π
4 ;(b) F (σ)(s, t) = −F (σ)(t, s) (where −∞ = ∞);(
) F (σ)(p⋆s, p⋆t) = δσ+1(p)F

(σ)(s, t) for all p ∈ P .Up to a multiple, the two properties (b) and (
) determine F (σ) entirely on
s, t 6= π/2 (without further regularity assumptions).
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 identities. The unique-ness statement is due to the transitivity of P on pairs of distin
t points of
S

1
r{π/2} in a given order with respe
t to π/2; the pairs with reversed orderare taken 
are of by (b). �Now, for every s 6= t we de�ne

F
(σ)
s,t : S

1 −→ Ĉ

u 7−→ F
(σ)
s,t (u) = F (σ)(s+ 2u, t+ 2u) .Noti
e that F (σ)

s,t is of period π.Lemma 4.3. For all distin
t s, t ∈ S
1 r {π/2}(a) If ℜ(σ) > −1, then F

(σ)
s,t is in�nite on {π−2s

4 , π−2t
4 } + πZ (while it is�nite and analyti
 outside this set);(b) If σ is pure imaginary, then for 1 ≤ p ≤ ∞ we have

F
(σ)
s,t ∈ Lp(S1) ⇐⇒ p < 2 ;(
) For 1 < p < ∞ and σ = (2 − p)/p, the fun
tion F

(σ)
s,t does not belong to

LpC;(d) For all distin
t s, t ∈ S
1 r {π/2} and 0 < σ < 1, the fun
tion F

(σ)
s,t doesnot belong to C(σ).Proof. The �rst three points follow from elementary 
al
ulus. By the tran-sitivity properties of P and Lemma 4.2, it is enough to show (d) for a par-ti
ular pair of distin
t s, t. Therefore we set, say, f = F

(σ)
0,π so that f(u) =

{2/ cos2u}(σ+1)/2
o . We need to show that (u, v) 7→ f(u)f(v)| sin(u − v)|σ−1is not integrable in a neighborhood of the point (π/4, π/4). Now sin
e f be-haves around π/4 as X−(σ+1)/2 behaves around zero, this amounts to studythe expression
∫ ǫ

0

∫ ǫ

0

X−(σ+1)/2Y −(σ+1)/2

|X − Y |1−σ
dX dY , (ǫ > 0) .If this were 
onvergent, we 
ould 
hange to polar 
oordinates X = r cos η,

Y = r sin η and dedu
e the 
onvergen
e of
∫ ǫ

0

1

r

∫ π/2

0

(1
2 sin 2η)−(σ+1)/2

| cos η − sin η|1−σ
dη dr,whi
h is an absurdum. �Now we 
ome to the major feature of the fun
tions F (σ)

s,t , namely thattheir singularities 
an be made to 
an
el ea
h other in 
oboundary-like sums:
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olas MonodLemma 4.4. For all σ ∈ Cr{−1} with ℜ(σ) < 1 and all distin
t s, t, u ∈ S
1,there is a 
ontinuous fun
tion S

1 → C whi
h 
oin
ides with F (σ)
s,t +F

(σ)
t,u +F

(σ)
u,soutside {(π − 2s)/4, (π − 2t)/4, (π − 2u)/4

}
+ πZ.Proof. We 
laim that for distin
t s, t ∈ S

1 r {π/2} the fun
tion
F

(σ)
s,π/2 + F

(σ)
π/2,t
an by 
ontinuously extended (by zero) at the point 0 ∈ S

1. This immediatelyimplies the statement of the lemma be
ause of the transitivity properties of
P . Applying the stereographi
 proje
tion as in Lemma 4.2 (a) (whi
h sends
π/2 to ∞), we see that the 
laim follows from the fa
t that

lim
z→±∞,

x→x0,y→y0

(
{x− z}

(σ+1)/2
o + {z − y}

(σ+1)/2
o

)
= 0 ,where x0 = tan

(
(2s + π)/4

) and y0 = tan
(
(2t + π)/4

). In fa
t, writing theexpression in the limit as
{z − y}

σ+1
o − {z − x}

σ+1
o

{z − y}
(σ+1)/2
o + {z − x}

(σ+1)/2
o

,the above 
onvergen
e statement follows from ℜ(σ) < 1. �4.3 The Spe
tral DistributionWe have now 
olle
ted all the ingredients to establish Proposition 4.1 andTheorem 1.1. We realize the bounded 
ohomology of G as in Corollary 2.2(with alternating 
o
hains).Proof of Proposition 4.1. Under the stereographi
 proje
tion ρ : S
1 → R̂,the 
o
y
le ω will be de�ned almost everywhere on (S1)3 by

ρ∗ω(s, t, u)(g) = F
(σ)
g⋆s,g⋆t(0) + F

(σ)
g⋆t,g⋆u(0) + F (σ)

g⋆u,g⋆s(0) .By Lemma 4.4 and Lemma 4.2 (
), ρ∗ω ranges indeed in E(σ), so that it isbounded be
ause the transitivity properties of G for
e it to have essentially
onstant norm.The only point remaining to be justi�ed is non-triviality. If in any ofthe three settings the 
lass of ρ∗ω were trivial, we 
ould �nd an alternatingequivariant 
o
hain α on S
1 × S

1 with ρ∗ω = dα. But the uniqueness state-ment of Lemma 4.2 would then imply, via Fubini's theorem and G = PK,that α(s, t)(pku) = δσ+1(p)F
(σ)
s,t (u) almost everywhere and up to a multi-ple. This would be in
ompatible with respe
tively Lemma 4.3 (b), (
) andLemma 4.3 (d). �



Bounded Cohomology of SL2 33Proof of Theorem 1.1. (ii) Let Z = {±I} be the kernel ofG→ H = PSL2(R).For every unitary representation (π,H) of G we have
H•

cb(G,H) ∼= H•
cb(G,HZ) ,see e.g. [13, 8.5.3℄. If H is irredu
ible, HZ 
an only be H or zero and thus

H•
cb(G,H) vanishes unless the representation π fa
tors through G → H .Therefore, for point (b) in the theorem, we have only to 
onsider the dis-
rete series. So assume that H is su
h a representation; by Corollary 2.2, any
lass of H2

cb(G,H) 
an be represented by a G-equivariant alternating boundedmeasurable 
o
y
le
ω : S

1 × S
1 × S

1 −→ H .Applying Proposition 3.2, we get a 
o
y
le for the 
orresponding di�erentialgroup A•
HK

of De�nition 3.3. By the Riemann�Lebesgue lemma, the 
orre-sponding fun
tion on Z3 must vanish at in�nity. Therefore, the se
ond pointof Proposition 3.4 for
es this fun
tion to be zero. By inje
tivity of the Fouriertransformation, ω vanishes, too.(i) Given Corollary 2.2, the 
ase of the trivial representation H = C is justthe following well known fa
t: up to s
alar multiple, there is one and onlyone G-invariant alternating map (S1)3 → C, and it is given by the 
y
li
orientation 
o
y
le.So let H be a non-trivial irredu
ible unitary representation of spheri
altype. The 
onjun
tion of Proposition 3.2 with the �rst point of Proposition 3.4gives that the dimension of H2
cb(G,H) is at most one. Sin
e we are left withrepresentations of the prin
ipal and 
omplementary series, we 
an apply thetwo �rst points in Proposition 4.1. This 
ompletes the proof of Theorem 1.1.

�5 Above Degree TwoWe begin by 
olle
ting what we need from Se
t. 3:Proposition 5.1. There is no non-zero alternating integrable G-invariant
o
y
le (S1)4 → C.Proof. Suppose there were su
h a 
o
y
le; then by Proposition 3.2 its Fouriertransform would be a 
o
y
le in the group A3
C
as de�ned in De�nition 3.3.But Proposition 3.4 (
) would then for
e it to vanish. �Remark 5.2. In view of the pre
ise statement of the Proposition 3.4 and of theproof of Proposition 3.2, we see that we have established the Proposition 5.1not only for integrable fun
tions, but for the whole algebrai
 dual of the spa
eof trigonometri
 polynomials.
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olas MonodNow we have already:Proof of Theorem 1.5. A

ording to Corollary 2.2, every 
lass of H3
cb(G) 
anbe represented by an essentially bounded measurable alternating G-invariant
o
y
le (S1)4 → C. Su
h a 
o
y
le is integrable sin
e the measure on S

1 is�nite, so by Proposition 5.1 the 
o
y
le must be zero. �We observe the immediateCorollary 5.3. The spa
e H3
cb(G

′) is trivial for G′ = PSL2(R), GL2(R),
PGL2(R).Proof. As re
alled in the above proof of Theorem 1.1, H•

cb(PSL2(R)) 
oin-
ides with H•
cb(SL2(R)). Sin
e PSL2(R) is a 
losed subgroup of �nite in-dex in PGL2(R), the restri
tion map H•

cb(PGL2(R)) → H•
cb(PSL2(R)) isinje
tive ([3℄) and thus H3

cb vanishes also for the former. Finally, we have
H•

cb(PGL2(R)) = H•
cb(GL2(R)) sin
e the 
anoni
al map GL2(R) → PGL2(R)has amenable kernel, see e.g. [13, 8.5.3℄. �As for our interpretation of Blo
h's result:Proof of Theorem 1.2. Write GC = SL2(C). In view of the dis
ussion in theintrodu
tion, we have only to justify that H3

cb(GC) 
ontains no other 
lassthan the 
lass determined by the volume form. Let us apply Theorem 2.1to H = GC and S = Ĉ with its H-a
tion 
oming from the identi�
ation
Ĉ ∼= ∂H

3. This a
tion is amenable sin
e Ĉ is an homogeneous spa
e withamenable isotropy [15, 4.3.2℄, the isotropy groups being minimal paraboli
.Now Blo
h's Theorem 7.4.4 in [1℄ states that there is only one measurable
GC-invariant 
o
y
le on Ĉ4 � and it is pre
isely given by the Blo
h�Wignerdilogarithm of the 
rossratio (we do not need this information here). �5.1 Rogers' DilogarithmRe
all that the 
lassi
al Euler dilogarithm Li2 is de�ned by

Li2(z) =

∞∑

n=1

zn

n2
(|z| ≤ 1)and 
an be extended to C r [1,∞[ by

Li2(z) = −

∫ z

0

log(1 − t)

t
dt .Rogers introdu
ed for 0 < x < 1 the following modi�
ation L2 of the diloga-rithm:

L2(x) = −
1

2

∫ x

0

( log t

1 − t
+

log(1 − t)

t

)
dt =

Li2(x) − Li2(1 − x) + Li2(1)

2
.Sin
e L2(1) = Li2(1) = ζ(2), there is the symmetry L2(1−x) = ζ(2)−L2(x).One veri�es by di�erentiation that L2 satis�es the fun
tional equation (2) ofProposition 1.6; various forms of this equation 
an be found e.g. in [12℄.
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e some notation. We denote by Sn the symmetri
 group on nelements 
onsidered with its a
tion on R̂n by permutation of the 
oordinates.Let Cn < Sn be the subgroup of 
y
li
 permutations. We denote by c : R̂4 → R̂the 
rossratio de�ned almost everywhere as
c(x1, x2, x3, x4) =

(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
.With the 
onvention ∞/∞ = 1, this de�nition makes sense for all quadruplesof distin
t points in R̂. Re
all that c is invariant under the diagonal a
tion of

G = PSL2(R). Endow R̂ with the orientation indu
ed by the natural order on
R and denote by D+

n the set of n-tuples of 
y
li
ly positively ordered distin
tpoints in R̂; then Cn preserves D+
n . We write ∆n for the set of points with atleast two identi
al 
oordinates, so that

R̂
n = ∆n ⊔

⊔

[π]∈Sn/Cn

πD
+
n , (9)where π ranges over a set of 
oset representatives. We remark that the image

c(D+
4 ) of D

+
4 under the 
rossratio is the open interval ]0, 1[. Indeed, sin
e

G is transitive on D
+
3 , it su�
es to noti
e that for all 0 < x < 1 one has

c(0, x, 1,∞) = x.Let now F : ]0, 1[→ C be an integrable fun
tion and write τF (x) =

F (1 − x). We de�ne ΩF : R̂
4 → C as follows. Set �rst ΩF (x) = F ◦ c(x) forall x ∈ D

+
4 , and observe that the 
ondition τF = −F is a
tually equivalentto the C4-alternation of ΩF . Indeed, denoting by σ any generator of C4, one
he
ks that

c ◦ σ = 1 − c .Therefore, if τF = −F , there is a unique extension of the de�nition of ΩFto an alternating map R̂4 → C be
ause of (9); ΩF must be zero on ∆4by alternation. Moreover, ΩF is G-invariant by de�nition, for the diagonal
G-a
tion 
ommutes with Sn. Writing out the 
rossratio, we have
dΩF (0, x, y, 1,∞)

= F

(
y − x

1 − x

)
− F (y) + F (x) − F

(
x

y

)
+ F

(
x(1 − y)

y(1 − x)

) (10)for all 0 < x < y < 1. Finally, sin
e the proje
tive measure on R̂ is �nite, theFubini�Lebesgue theorem together with the integrability of F implies that
ΩF is integrable on R̂4.Proof of Proposition 1.4. As we have already mentioned in the proof ofTheorem 1.1, there is up to s
alar multiple only one G-invariant alternating
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olas Monodmap (S1)3 → C, and it is given by the 
y
li
 orientation 
o
y
le ω de�nedon R̂3 r ∆3 by ω(πx) = sign(π) for π ∈ S3 and x ∈ D
+
3 . It is thereforeenough in view of Corollary 2.2 to show that ω ∧ ω is of the form dΩ forsome Ω in L∞(R̂4). Sin
e ω∧ω is lo
ally 
onstant on R̂5 r∆5, it is uniquelydetermined by its value on a �xed x = (x0, . . . , x4) ∈ D

+
5 . We 
ontend that

ω ∧ ω(x) = 1/3. To see this, we 
onsider the S5-a
tion on {0, . . . , 4} in orderto de�ne the subgroup B whi
h permutes blo
k-wise {0, 1} and {3, 4}:
B =

{
π ∈ StabS5

(2) : π({0, 1}) ∈
{
{0, 1}, {3, 4}

}}
.Now the number

sign(π)ω × ω(π−1x) := sign(π)ω(xπ(0), xπ(1), xπ(2))ω(xπ(2), xπ(3), xπ(4))depends only on the 
lass of π in B\S5/C5. There are three su
h double 
osets,and one 
he
ks that the above number is positive for two of them, negativefor the third. Therefore,
ω ∧ ω(x) =

1

|S5|

∑

π∈S5

sign(π)ω × ω (π−1x) =
1

3
,as 
laimed. If we set now F = (1 − 2L2/ζ(2))/3, we have τF = −F and theabove 
onstru
tion yields an alternating integrable G-invariant fun
tion ΩF .We 
laim that dΩF = ω ∧ ω; indeed, by alternation we may restri
t to D

+
5 ,and by G-invarian
e even to the points (0, x, y, 1,∞) for 0 < x < y < ∞.Now the Spen
e�Abel equation (2) applied to (10) yields

dΩF (0, x, y, 1,∞) =
1

3
= ω ∧ ω(0, x, y, 1,∞) ,�nishing the proof. �Proof of Proposition 1.6. If a fun
tion L has the two properties assumed, thensetting F ′ = (1 − 2L/ζ(2))/3 we would as above get dΩF ′ = ω ∧ ω, so that

d(ΩF −ΩF ′) = 0. Therefore, applying Proposition 5.1, we dedu
e ΩF = ΩF ′ .Sin
e the 
rossratio sends D
+
4 onto ]0, 1[, we 
on
lude that F = F ′ when
e

L = L2. �Referen
es1. S. Blo
h Higher regulators, algebrai
 K-theory, and zeta fun
tions of ellipti

urves manus
ript (1978), published as CRM Monograph 11 AMS, Providen
e(2000).2. M. Burger, N. Monod Bounded 
ohomology of latti
es in higher rank Lie groupsJ. Eur. Math. So
. 1 no. 2 (1999) 199�235.3. M. Burger, N. Monod Continuous bounded 
ohomology and appli
ations torigidity theory preprint (2000) to appear in Geom. Fun
t. Anal.



Bounded Cohomology of SL2 374. M. G. Cowling Unitary and uniformly bounded representations of some sim-ple Lie groups Harmoni
 analysis and group representations 49�128 Liguorieditore, Napoli (1982).5. N. Dunford, J. T. S
hwartz Linear operators, I: General theory Pure and Appl.Math. Vol. VII Inters
ien
e Publishers, New York, London (1958).6. J. L. Dupont, Bounds for 
hara
teristi
 numbers of �at bundles Algebrai
topology, Aarus 1978, Le
ture Notes in Mathemati
s 763 Springer Verlag(1979).7. D. B. A. Epstein, K. Fujiwara The se
ond bounded 
ohomology of word-hyperboli
 groups Topology 36 no. 6 (1997) 1275�1289.8. I. M. Gelfand, R. D. Ma
Pherson Geometry in Grassmannians and a general-ization of the dilogarithm Adv. in Math. 44 (1982) 279�312.9. R. E. Howe, E.-Ch. Tan Non-Abelian harmoni
 analysis Universitext, Springer-Verlag (1992).10. A. W. Knapp Representation theory of semisimple groups Prin
eton Math.Series 36 Prin
eton University Press, Prin
eton (1986).11. S. Lang SL2(R) Graduate Texts in Math. 105 Springer-Verlag (1985).12. L. Lewin The evolution of the ladder 
on
ept In: Stru
tural properties ofpolylogarithms Mathemati
al Surveys and Monographs 37 (1991) 1�10.13. N. Monod Continuous Bounded Cohomology of Lo
ally Compa
t Groups Le
-ture Notes in Mathemati
s 1758 Springer-Verlag (2001).14. D. A. Vogan Unitary representations of redu
tive Lie groups Annals of Math-emati
al Studies 118 Prin
eton University Press, Prin
eton, NJ (1987).15. R. J. Zimmer Ergodi
 theory and semisimple groups Monographs in Math. 81Birkhäuser, Basel (1984).


