
On and Aroundthe Bounded Cohomology of SL2Mar Burger1 and Niolas Monod2

1 FIM, ETH Zentrum, Rämistrasse 101, CH-8092 Zürih, Switzerlande-mail: burger�math.ethz.h
2 Department of Mathematis, ETH Zentrum, Rämistrasse 101, CH-8092 Zürih,Switzerlande-mail: monod�math.ethz.hAbstrat In order to illustrate some of the mahinery of ontinuous bounded o-homology, we work out a ouple of onrete questions in the partiular ase of SL2.First we ompute, in degree two, the ontinuous bounded ohomology of SL2(R)with unitary irreduible oe�ients. Then we explore the onnetions between dilog-arithm funtions and the ontinuous bounded ohomology of SL2(R) and SL2(C).In partiular, we obtain that Rogers' dilogarithm is uniquely determined by theSpene�Abel funtional equation.1 IntrodutionAlthough the theory of bounded ohomology has reently found many appli-ations in various �elds (see for instane [3℄ or [13℄), for disrete groups itremains sarely aessible to omputation. As a matter of fat, almost allknown results assert either a omplete vanishing or yield intratable in�nitedimensional spaes. On the other hand, the low degree ontinuous boundedohomology H•

cb of a Lie group (with unitary oe�ients) an be desribedby means of the rih struture theory of the latter.Our �rst result in this paper derives from the investigation, in a partiularase, of the interplay between the in�nite dimensionality of the bounded o-homology groups of surfae groups and a onrete desription of the boundedohomology groups for SL2.Spetral DistributionLet Σ be a ompat orientable surfae di�erent from the sphere and thetorus. The fundamental group Γ = π1Σ is Gromov hyperboli and, as suh,
H2

b(Γ ) is in�nite dimensional, [7℄.Any hyperbolization Γ →֒ PSL2(R) of Σ indues an injetion
H2

b(Γ ) −→ H2
cb

(
PSL2(R), L2(PSL2(R)/Γ )

)
, (1)see [13, 11.1.5℄. On the other hand, the PSL2(R)-representation on the spae

L2(PSL2(R)/Γ ) deomposes into a diret sum of irreduible representations



20 Mar Burger and Niolas Monodin a way ditated by the topology and spetral theory of the surfae Σ withthe hosen hyperboli struture.In this situation, it is natural to ask how the in�nite dimensional spae
H2

b(Γ ) gets distributed over the spetral deomposition. This is a di�ultquestion. The �rst step is of ourse to understand whih irreduible repre-sentations of PSL2(R) arry bounded ohomology in degree two. Observethat, sine H2
cb

(
PSL2(R), L2(PSL2(R)/Γ )

) is in�nite dimensional (see (1)),the spetral distribution is bound to be very di�erent from the one onerningordinary ontinuous ohomology, in whih ase only a �nite number of uni-tary irreduible oe�ients result in non-zero, �nite dimensional ohomologygroups (see the Table below). In ontrast, we have:Theorem 1.1. (a) Let (π,H) be an irreduible unitary representation of
SL2(R):(i) dimH2

cb(SL2(R),H) = 1 if the representation (π,H) is spherial;(ii) H2
cb(SL2(R),H) = 0 in all other ases;(b) If LpC denotes the series of omplementary Lp representations, we have

H2
cb(SL2(R), LpC) 6= 0 for all 1 < p <∞.Exept for the Euler lass, whih orresponds to the trivial representation,the ohomology lasses above are all new � they vanish in usual ontinuousohomology. It is therefore worth mentioning that we an de�ne them witha very expliit formula (Proposition 4.1).We summarize below the present state of our knowledge for the list ofall irreduible unitary SL2(R)-representations fatoring through PSL2(R);for the reader's onveniene, we have realled on the left hand side the wellknown situation in ordinary ontinuous ohomology. We denote the trivialrepresentation by 11; the disrete series representations H(n) are indexed bythe minimal or maximal weight n ∈ 2Z.

H0

c H1

c H2

c H≥2

c H0

cb H1

cb H2

cb H3

cb H≥3

cb

11 R 0 R 0 R 0 R 0 ?Spherial 6= 11 0 0 0 0 0 0 R ? ?
H(2), H(−2) 0 R 0 0 0 0 0 ? ?
H(n), n 6= ±2 0 0 0 0 0 0 0 ? ?It would be interesting to investigate the spetral distribution of thebounded ohomology for rank one loally symmetri spaes of higher dimen-sion. On the other hand, ifΣ is a ompat (or �nite volume) loally symmetriirreduible spae of rank at least two, we have shown ([2℄, [3℄) that H2

b(Γ ),
Γ = π1(Σ), injets into the ordinary ohomology by proving preisely thatthere are no new lasses in the ontinuous bounded ohomology, with unitaryoe�ients, of the orresponding Lie groups.

∗ ∗ ∗



Bounded Cohomology of SL2 21We turn now to bounded ohomology in degree three. We observe �rst theonnetion between this ohomology group for SL2(C) and the Bloh�Wignerdilogarithm. For SL2(R), we show vanishing of this ohomology group andrelate it to Roger's dilogarithm.The Dilogarithm and SL2Reall that, modulo its �nite entre, SL2(C) is (the onneted omponent of)the group of isometries of Lobahevski��'s spae H3. It follows, via Dupont'sisomorphism [6℄, that the ontinuous ohomology group H3
c(SL2(C)) is gener-ated by the volume form of H3. Sine there is an upper bound to the volumeof all geodesi simplies in this spae, the volume form de�nes atually a lassin H3

cb(SL2(C)). The latter ohomology spae an be omputed (see Theo-rem 2.1) using measurable bounded oyles on the spae of ideal simplies,i.e. on the spae of geodesi simplies with all four verties on the sphere atin�nity ∂H3 ∼= Ĉ.It is well known that the volume of suh a simplex is essentially givenby the Bloh�Wigner dilogarithm of the rossratio of the four points in Ĉ.In this realisation, the Spene�Abel funtional equation for the dilogarithmorresponds simply to the oyle equation for volume. S. Bloh has shown [1℄that the funtional equation essentially determines the dilogarithm amongmeasurable funtions; we shall rephrase his result as:Theorem 1.2. There is a natural isomorphism H3
cb(SL2(C)) ∼= H3

c(SL2(C)).Remark 1.3. It is essential for this reformulation that Bloh's result is validin the generality of measurable funtions.Rogers' dilogarithm is another relative of the lassial Euler dilogarithm(see Set. 5.1). It appears that Rogers' dilogarithm is onneted to SL2(R),but in a slightly di�erent way. Using the orresponding version of the Spene�Abel funtional equation and, denoting by ∧ to the natural up produt inontinuous bounded ohomology, we show:Proposition 1.4. H2
cb(SL2(R)) ∧ H2

cb(SL2(R)) = 0.Further, the methods that we introdue for the spetral distribution allowus to show:Theorem 1.5. H3
cb(SL2(R)) = 0.This statement ontains a uniqueness statement similar to Bloh's; indeed,our proof yields as a by-produt:Proposition 1.6. Rogers' dilogarithm is the only integrable funtion L :

]0, 1[→ C satisfying both the Spene�Abel funtional equation
L

(
y − x

1 − x

)
− L (y) + L (x) − L

(
x

y

)
+ L

(
x(1 − y)

y(1 − x)

)
= 0 (2)



22 Mar Burger and Niolas Monodand the symmetry L(1 − x) = ζ(2) − L(x) for all 0 < x < y < 1, where ζdenotes the Riemann ζ funtion.(Aording to Gelfand and MaPherson [8, 4.1.2℄, there is no availablereferene for the uniqueness of Rogers' dilogarithm.)2 Notations and ConventionsThroughout the paper, we write G = SL2(R). We onsider the ation of Gby frational linear transformations on the upper half plane H2 ⊆ C anddenote by K the stabilizer SO(2) of the point i. This ation fators throughthe double overing G → PSL2(R) and extends to the geometri boundary
∂H2 = R̂= R ∪ {∞}. We denote by P the stabilizer of ∞, whih is thesubgroup of upper triangular matries in G; one has G = KP . We shallrepeteadly use that, up to null-sets, the diagonal G-ation on the artesianprodut R̂3 has exatly two orbits.The matrix ( 1 i

i 1 ) onjugates G to SU(1, 1) within SL2(C). Under thisonjugation, the inverse of the stereographi projetion
ρ : S

1 ⊆ C −→ R̂, ρ(z) =
z + i

iz + 1intertwines the G-ation on R̂ ∼= G/P with the homographi SU(1, 1)-ationon the unit irle in C. To avoid onfusion, we use the notation g⋆s forthe ation of g ∈ G on s ∈ S
1 obtained in this way. Oasionally, it willbe onvenient to use for S

1 the additive parametrisation R/2πZ. With thisnotation, one has (ku)⋆s= s+ 2u for ku =
(

cos u sin u
− sin u cos u

), u ∈ R/2πZ.We shall assume all ontinuous unitary representations to have separablerange. For the omplete lassi�ation of the irreduible ontinuous unitaryrepresentations of G, we refer to [10℄ or [11℄ (see also Set. 3.2). A repre-sentation is alled spherial if it has a (non-zero) K-invariant vetor. Asfar as bounded ohomology is onerned, it is enough � as we shall reallbelow � to onsider the representations whih fator through the projetion
SL2(R) → PSL2(R). Irreduible representations of this kind are either spheri-al or belong to the disrete series. In Set. 4.1, we shall reall the onstrutionof the spherial representations.Let g be the Lie algebra of G and gC its omplexi�ation. If (π,H) is aontinuous unitary G-representation, we denote by HK the spae of K-�nitevetors. Besides the K-ation, HK has also a struture of gC-module (if HK isirreduible or more generally admissible, the (gC,K)-struture turns it intoa Harish-Chandra module, see [14℄).If S is a standard measure spae and H a separable Hilbert spae, L∞

(
S,H

)denotes the spae of measurable essentially bounded H-valued funtion lasses;



Bounded Cohomology of SL2 23observe that weak and strong measurability oinide here. Given a regularation of a loally ompat group H on S (so that H-ation on L∞(S) isweak-∗-ontinuous, [3℄)and a ontinuous unitary H-representation on H, weonsider the orresponding representation on L∞
(
S,H

). We borrow Zimmer'snotion of amenability for H-ations on S, see [15℄.For the general theory of ontinuous bounded ohomology, we refer to [3℄and [13℄. We reall the followingTheorem 2.1 ([3℄, [13℄). Let H be a loally ompat seond ountable group,
(π,H) a ontinuous unitary H-representation and S an amenable regular H-spae. Then the ohomology of the omplex

0 −→ L∞(S,H)H d1

−−−→ L∞
(
S2,H

)H d2

−−−→ L∞
(
S3,H

)H d3

−−−→ · · ·is anonially isometrially isomorphi to the ontinuous bounded ohomology
H•

cb(H,H). The same is true for the subomplex of alternating ohains. �The above maps dn : L∞
(
Sn,H

)
→ L∞

(
Sn+1,H

) are the usual Alexander�Spanier oboundaries dn =
∑n

j=0(−1)jdn
j , wherein dn

j omits the jth variable.We shall mostly use the following partiular ase of the theorem:Corollary 2.2. For every ontinuous unitary G-representation (π,H), theohomology of the omplex
0 −→ L∞(S1,H)G d1

−−−→ L∞
(
(S1)2,H

)G d2

−−−→ L∞
(
(S1)3,H

)G d3

−−−→ · · ·is anonially isometrially isomorphi to H•
cb(G,H). The same is true forthe subomplex of alternating ohains. �3 A Di�erential GroupIn this setion, we introdue a graded di�erential group (A•

M
, ∂) into whihwe shall translate questions about measurable oyles on the irle by meansof the Fourier transformation. The struture of A

•
M will be well suited to �ndobstrutions to the existene of oyles.We use the multipliative parametrisation S

1 = {z ∈ C : |z| = 1}, so that
C[z] is identi�ed with the algebra of trigonometri polynomials. For n ≥ 0,we denote by µn the normalized Haar measure on (S1)n+1. If ν ∈ Zn+1, wedenote by χν the harater χν(z) = zν0

0 · · · zνn
n for z ∈ (S1)n+1.3.1 Fourier Transformation with Coe�ientsLet (π,H) be a ontinuous unitary G-representation. Sine the inlusion

C[z] ⊗ · · · ⊗ C[z]⊗ HK −→ L1(S1)⊗̂ · · · ⊗̂L1(S1)⊗̂H



24 Mar Burger and Niolas Monodis dense and the dual of the right hand side is L∞
(
(S1)n+1,H

) by the Dunford�Pettis theorem [5, VI.8℄, we dedue by duality that the anonial map to thealgebrai dual of the left hand side is injetive. Denoting by H′
K the alge-brai dual of HK and by F(Zn+1,H′

K) the spae of all maps Zn+1 → H′
K weonlude that the Fourier transformation

L∞
(
(S1)n+1,H

) ̂
−−−−−→ F(Zn+1,H′

K)

F̂ (ν)(v) =

∫

(S1)n+1

〈F (z)|v〉χν(z) dµn(z)(where F ∈ L∞
(
(S1)n+1,H

), ν ∈ Zn+1, and v ∈ HK) is injetive.We de�ne the operators S± on F(Zn+1,H′
K) by

(S±ψ)(ν) =

n∑

j=0

(νj ± 1)ψ(ν ± ǫj) (ν ∈ Z
n+1) , (3)where (ǫj)

n
j=0 is the anonial basis of Zn+1. Further, de�ne

∂ = ∂n : F(Zn,H′
K) −→ F(Zn+1,H′

K)by ∂n =
∑n

j=0(−1)j∂n
j and

∂n
j ψ(ν) =

{
ψ(ν0, . . . , ν̂j, . . . , νn) if νj = 0,
0 otherwise . (4)One heks readily theLemma 3.1. For all n ≥ 0, the ∂n+1-oyles, i.e. funtions belonging to

Ker∂n+1, are supported on the union ∆(n) = {ν :
∏n

j=0 νj = 0} of theanonial hyperplanes in Zn+1. �One an also show that the resulting omplex is ayli, but we shall notneed this information.The dual gC-struture on F(Zn+1,H′
K) is given by

(X∗ψ)(ν)(v) = ψ(ν)(−dπ(X)v) (ψ ∈ F(Zn+1,H′
K), X ∈ gC) ,where dπ is the di�erential of π whih is well de�ned sine v ∈ HK is smooth.In order to state the following proposition, we de�ne E± ∈ gC by E± =(

1 ±i
±i −1

) and denote by T the map T : Zn+1 → Z, de�ned by T (ν0, . . . , νn) =∑n
j=0 νj . We reall that v ∈ HK is of weight ℓ ∈ Z if π(kt)v = eiℓtv. Thefollowing proposition will motivate the introdution of our group A•

M
:Proposition 3.2. The Fourier transformation L∞

(
(S1)•,H

)
→֒ F(Z•,H′

K)has the following properties:



Bounded Cohomology of SL2 25(a) If F ∈ L∞
(
(S1)•,H

) is G-equivariant, then E∗
±F̂ = 2iS∓F̂ ;(b) If F ∈ L∞

(
(S1)•,H

) is G-equivariant and v ∈ HK is of weight ℓ, then
F̂ (·)(v) is supported on the hyperplane {ν : T (ν) = −ℓ/2}. In partiular,
F̂ (·)(v) vanishes if ℓ is odd;() The Fourier transformation preserves alternation and intertwines theoboundary d with ∂.Proof. (a) For X ∈ gC and gt = exp(tX),

ĝtF (ν)(v) =

∫

(S1)n+1

〈F ((g−1
t )⋆z)|π(g−1

t )v〉χν(z) dµn(z) ,and thus the equivariane of F implies by produt di�erentiation
X∗F̂ (ν)(v) = D

∫

(S1)n+1

〈F ((g−1
t )⋆z)|v〉χν(z) dµn(z) ,where D is a shorthand for ∂

∂t

∣∣
t=0

. This beomes further
X∗F̂ (ν)(v) =

∫

(S1)n+1

〈F (z)|v〉D
(
χν((gt)⋆z)

d(gt)⋆µn

dµn
(z)
)
dµn(z) .Using now

D
(
χν((gt)⋆z)

)
=

n∑

j=0

νjχν−ǫj
(z)D((gt)⋆zj)and

D
(d(gt)⋆µn

dµn
(z)
)

=

n∑

j=0

D
(d(gt)⋆µ0

dµ0
(zj)

)
,we have

X∗F̂ (ν)(v) =

n∑

j=0

νj

∫

(S1)n+1

〈F (z)|v〉D((gt)⋆zj)χν−ǫj
(z) dµn(z) (5)

+
n∑

j=0

∫

(S1)n+1

〈F (z)|v〉χν(z)D
(d(gt)⋆µ0

dµ0
(zj)

)
dµn(z) . (6)Now write E± = H ± iV with H =

(
1 0
0 −1

) and V = ( 0 1
1 0 ). The images of

at = exp(tH) and ut = exp(tV ) in SU(1, 1) under the onjugation by ( 1 i
i 1 )introdued in Set. 4 are respetively ( cosh t i sinh t

−i sinh t cosh t

) and ( cosh t sinh t
sinh t cosh t

). Usingthis, one omputes
D
(
(at)⋆zj

)
= i(1 + z2

j ) , and D
(
(ut)⋆zj

)
= 1 − z2

j .Computing the Radon�Nikodým derivatives yields
d(at)⋆µ0

dµ0
(zj) =

(
cosh 2t+ i

z−1
j − zj

2
sinh 2t

)−1



26 Mar Burger and Niolas Monodand
d(ut)⋆µ0

dµ0
(zj) =

(
cosh 2t+

z−1
j + zj

2
sinh 2t

)−1

,thus one heks that
D

(
d(at)⋆µ0

dµ0
(zj)

)
= i(zj − z−1

j ), and D

(
d(ut)⋆µ0

dµ0
(zj)

)
= −(zj + z−1

j ) .Replaing all this in (5), we �nd
H∗F̂ (ν)(v) = iS+F̂ (ν)(v) + iS−F̂ (ν)(v)

V ∗F̂ (ν)(v) = −S+F̂ (ν)(v) + S−F̂ (ν)(v) ,whene the laim.(b) is a simpler form of this argument sine the Radon�Nikodým derivativesfor K are trivial.() The orthogonality relations imply that d̂n
j F = ∂n

j F̂ . �3.2 The Di�erential Group A
•

M
.A lassi�ation of general (gC,K)-modules an be found in [9℄. We shall how-ever only need modules of the form M = HK where H is an irreduible unitaryrepresentation of G fatoring through PSL2(R). They yield the following fourtypes of irreduible (gC,K)-modules:(a) Spherial : there is an element v ∈ M suh that M is spanned by (Ek

±v)k≥0.Moreover, there is λ ∈ C with E−E+v
′ = λv′ for all v′ of weight zero;(b) Positive minimal weight : there is v ∈ M suh that M is spanned by

(Ek
+v)k≥0 (in fat, sine H fators through PSL2(R), only even weightsour );(b') Negative maximal weight : there is v ∈ M suh that M is spanned by

(Ek
−v)k≥0 (again, only even weights our);() The trivial module M = C is a partiular ase of (a).De�nition 3.3. Let M be a (gC,K)-module and let n ≥ 0. We de�ne An

Mto be the spae of all maps ψ : Zn+1 → M′ satisfying:
AI ψ is alternating;
AII E

∗
±ψ = 2iS∓ψ, where E∗

± at by the natural dual gC-struture and theoperators S± are de�ned as in (3);
AIII If v ∈ M is of weight ℓ, then ψ(·)(v) is supported on the hyperplane

{ν : T (ν) = −ℓ/2}.The di�erential ∂n+1
A

: An
M

→ A
n+1
M

is de�ned as above in (4), and thusagain one heks:
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AIV ∂n+1-oyles are supported on the union ∆(n) of the anonial hyper-planes.Proposition 3.2, together with the injetivity of the Fourier transforma-tion, implies that the omplex of equivariant bounded alternating measurable
H-valued ohains on the irle an be viewed as a subomplex of A•

M for
M = HK .The following �niteness result for general irreduible (gC,K)-modules,speialized to HK , will be the �nal ingredient in the proof of Theorem 1.1,Theorem 1.5 and Proposition 1.6.Proposition 3.4. Let M be an irreduible (gC,K)-module.(a) If M is of spherial type, then dimKer ∂3

A
≤ 1;(b) If M is of positive minimal weight or negative maximal weight, then non-zero elements of Ker ∂3

A
annot vanish at in�nity;() If M is the trivial (gC,K)-module C, then Ker ∂4

A
= 0.Proof. (a) Sine M is spherial and irreduible, there is aK-invariant element

v ∈ MK suh that M is spanned over C by (Ek
±v)k≥0. Moreover, there is

λ ∈ C with E−E+v
′ = λv′ for all v′ of weight zero. Fixing ω ∈ Ker∂3

A
,we shall show that ω(·)(v) vanishes if ω(1,−1, 0)(v) = 0; this will prove thelaim (a) beause of AII and the struture of M just desribed.We de�ne the map α : Z → C by

α(x) = ω(x,−x, 0)(v) ,so that α(1) = 0 by the assumption on ω and α(0) = 0 by AI. The prop-erties AI, AIII and AIV imply that α determines linearly ω(·)(v), so that itis su�ient to show the vanishing of α. Implementing the de�nition of α in
S+S−ω(x,−x, 0)(v) = λ′ω(x,−x, 0)(v), where λ′ = −λ/4 (see AII), we �nd

(x+ 1)2α(x + 1) + (x− 1)2α(x − 1)

=(x− 1)
(
ω(x− 1,−x, 1) + ω(x,−x+ 1,−1)

)
+ (2x2 − λ′)α(x)

− (x+ 1)
(
ω(x+ 1,−x,−1) + ω(x,−x− 1, 1)

)
.For x = 1, this redues (by AI and AIV) to 4α(2) = (2 − λ′)α(1), hene

α(2) = 0. For x ≥ 2, the ω terms vanish beause of AIV, so that we have
(x+ 1)2α(x + 1) = (2x2 − λ′)α(x) − (x− 1)2α(x− 1) .This propagates by indution the vanishing from x = 1, 2 to all x ≥ 3. Thenegative values are handled with the formula α(−x) = −α(x), whih followsfrom AI.(b) We give the proof for an even positive minimal weight 2ℓ; the ase ofnegative weights is analogous and the ase of odd weights is trivial beause



28 Mar Burger and Niolas Monodof AIII. Let ω be a oyle ω ∈ Ker ∂3
A
. We �x a v ∈ M suh that M is spannedby (Ek

+v)k≥0 (thus v is of minimal weight) and de�ne the map β : Z → C by
β(x) = ω(x,−ℓ− x, 0)(v) .We suppose that ω vanishes at in�nity; then so does β. On the other hand,as for point (a), it is enough to show β = 0.Now we use E−(v) = 0: writing out S+ω(x,−ℓ−x−1, 0)(v) = 0, we have

(x+ 1)β(x + 1) = (x+ ℓ)β(x) − ω(x,−ℓ− x, 1)(v) .Therefore, ω being supported on ∆(n), the positivity of ℓ implies that forall x ≥ 1 we have x,−ℓ−x 6= 0 and hene (x+1)β(x+1) = (x+ℓ)β(x). Sine
x + ℓ ≥ x + 1 > 0, the vanishing at in�nity implies β(x) = 0 for all x ≥ 1.The alternation of ω implies β(x) = −β(−ℓ−x), so that we remain only withthe ase −ℓ < x ≤ 0, whih we settle by desending indution starting from
β(0) = 0 (by AI). If 1 − ℓ < x < 0, then S+ω(x− 1,−ℓ− x, 0)(v) = 0 reads

xβ(x) + (1 − ℓ− x)β(x − 1) + ω(x− 1,−ℓ− x, 1) = 0 .The �rst term vanishes by the indution hypothesis and the third beause of
x 6= 1,−ℓ and AIV. Therefore β(x− 1) = 0 sine x 6= 1 − ℓ. For the last step
x = 1 − ℓ, we have β(x) = −β(−1), whih is already done if 1 − ℓ 6= −1 andfollows from this formula if 1 − ℓ = −1.() Notie �rst that Ker ∂4

A
is invariant under the linear map σ de�ned by

σω(ν) = ω(−ν). Therefore we have a deomposition Ker ∂4
A

= Z+ ⊕ Z−aording to the eigenvalues ±1 of σ. Now, for ω ∈ Z+ ∪ Z−, we de�ne
ψ : Z2 → C by

ψ(x, y) = ω(x, y,−x− y, 0) .We remark (by AI) that ψ is alternating and vanishes if x or y is zero.As before, it is enough for point () to prove that ψ vanishes everywhere. Forsimpliity, we write the operators S± as Sǫ for ǫ ∈ {−1, 1}. Now if
x 6= 0, y 6= 0, x+ y + ǫ 6= 0 , (7)then the ondition AIV redues Sǫω = 0 to

(x+ y)ψ(x, y) = (x + ǫ)ψ(x+ ǫ, y) + (y + ǫ)ψ(x, y + ǫ) . (8)The simpler ase is when x and y are of the same sign. Indeed, if y < x < 0,we start with ψ(x, x) = ψ(0, y) = 0 and hek by desending indution on ythat ψ(x, y) is zero: if this is so for some y ≤ −1, then (ǫ = 1)
ψ(−1, y − 1) =

y

y − 2
ψ(−1, y) = 0 ,and thus by a additional indution on y < x < −1

ψ(x, y − 1) =
x+ 1

x+ y − 1
ψ(x+ 1, y − 1) +

y

x+ y − 1
ψ(x, y) = 0 .



Bounded Cohomology of SL2 29This ompletes the (main) indution step and thus ψ(x, y) = 0 for all y < x <
0. By alternation, the same holds for x < y < 0; realling that ω ∈ Z+ ∪Z−,we dedue also that ψ(x, y) = 0 for all x, y > 0.The seond ase is when x and y are of opposite sign. Remark �rst thaton the line x + y = 0, the ondition (7) holds away from zero, and that ψvanishes. Therefore (8) yields

(x+ ǫ)ψ(x+ ǫ,−x) = (x− ǫ)ψ(x,−x+ ǫ) (∀x 6= 0) .On the line x+ y = ǫ, the ondition (7) holds for x 6= 0, ǫ. This implies �rstthat ψ(2ǫ, ǫ) = 0 (set x = ǫ) and then, by indution, that ψ(x + ǫ,−x) = 0for all x with sign ǫ. The x of opposite sign (with ǫ kept �xed) are obtainedby alternation together with ω ∈ Z+ ∪ Z−.We have shown that ψ(x, y) = 0 holds on the two lines x+y = ǫ (ǫ = ±1).Now we may use (8) for every x < 0, y > 0 with x + y = h ≥ 2 in order todedue by indution on h that ψ(x, y) vanishes. The remaining points in
x+ y ≤ −2 are taken are of by ψ(−x,−y) = ±ψ(x, y). �4 Construting CoylesApart from the trivial representation, there are two types of spherial irre-duible ontinuous unitary representations of G fatoring through PSL2(R):the prinipal and omplementary series [10,11℄. They an be de�ned as fol-lows.4.1 Representation SpaesConsider for σ ∈ C the harater δσ of P de�ned by

δσ(p) = |a|σ , p =

(
a b
0 a−1

)
∈ P .For every σ 6= −1 one introdues the spae of ontinuous funtions

E(σ) =
{
F ∈ C(G) : F (px) = δσ+1(p)F (x) ∀x ∈ G, p ∈ P

}and endows it with the right regular G�ation. For σ pure imaginary, oneobtains the prinipal series representations by taking the ompletion P(σ)of E(σ) with respet to the G�invariant pre-Hilbertian struture indued bythe inlusion E(σ) → L2(K) obtained by restriting funtions from G to K.For σ real with 0 < σ < 1, one gets the omplementary series repre-sentations by taking the ompletion C(σ) with respet to the G�invariantpre-Hilbertian struture
〈f, g〉 =

π∫

−π

π∫

−π

f(ku)g(kv)

| sin(u − v)|1−σ
du dv , f, g ∈ E(σ) .



30 Mar Burger and Niolas MonodAs a small exursion away from unitary representations, we shall alsoonsider the Lp omplementary series for 1 < p <∞, whih is the ompletion
LpC of the spae E((2 − p)/p) for the norm indued by the inlusion E((2 −
p/)p) → Lp(K) as above, see [4, Chap. 6℄.4.2 Basi ConstrutionFor all a ∈ R and b ∈ C∗, we de�ne the odd exponential

{a}b
o =

{
ab if a ≥ 0

−(−a)b if a < 0 ,and extend it by {∞}
b
o = ∞. We aim at the followingProposition 4.1. For σ ∈ C r {−1}, there is a G-equivariant oyle

ω : R̂ × R̂ × R̂ −→ E(σ)de�ned almost everywhere by
ω(x, y, z)(g) = {gx− gy}

(σ+1)/2
o + {gy − gz}

(σ+1)/2
o + {gz − gx}

(σ+1)/2
o .(a) If σ is pure imaginary, then the oyle ω represents a non-trivial lassin H2

cb(G,P(σ)).(b) If 0 < σ < 1, then ω represents a non-trivial lass in H2
cb(G,C(σ)).() If 1 < p <∞ and σ = (2− p)/p, then ω represents a non-trivial lass in

H2
cb(G,LpC).More formally, we de�ne for every σ ∈ C r {−1} the funtion

F (σ) : R × R −→ Ĉ = C ∪ {∞}by
F (σ)(s, t) =

{
2 sin( s−t

2 )

cos( s−t
2 ) − sin( s+t

2 )

}(σ+1)/2

o

,with the onvention F (σ)(s, t) = 0 if both s and t are in π/2+2πZ. Heneforth,we freely view F (σ) as a funtion on S
1 × S

1.Lemma 4.2. For all distint s, t ∈ S
1 r {π/2}(a) F (σ)(s, t) = {x− y}

(σ+1)/2
o for x = tan 2s+π

4 , y = tan 2t+π
4 ;(b) F (σ)(s, t) = −F (σ)(t, s) (where −∞ = ∞);() F (σ)(p⋆s, p⋆t) = δσ+1(p)F

(σ)(s, t) for all p ∈ P .Up to a multiple, the two properties (b) and () determine F (σ) entirely on
s, t 6= π/2 (without further regularity assumptions).



Bounded Cohomology of SL2 31Proof. The properties of F (σ) follow from trigonometri identities. The unique-ness statement is due to the transitivity of P on pairs of distint points of
S

1
r{π/2} in a given order with respet to π/2; the pairs with reversed orderare taken are of by (b). �Now, for every s 6= t we de�ne

F
(σ)
s,t : S

1 −→ Ĉ

u 7−→ F
(σ)
s,t (u) = F (σ)(s+ 2u, t+ 2u) .Notie that F (σ)

s,t is of period π.Lemma 4.3. For all distint s, t ∈ S
1 r {π/2}(a) If ℜ(σ) > −1, then F

(σ)
s,t is in�nite on {π−2s

4 , π−2t
4 } + πZ (while it is�nite and analyti outside this set);(b) If σ is pure imaginary, then for 1 ≤ p ≤ ∞ we have

F
(σ)
s,t ∈ Lp(S1) ⇐⇒ p < 2 ;() For 1 < p < ∞ and σ = (2 − p)/p, the funtion F

(σ)
s,t does not belong to

LpC;(d) For all distint s, t ∈ S
1 r {π/2} and 0 < σ < 1, the funtion F

(σ)
s,t doesnot belong to C(σ).Proof. The �rst three points follow from elementary alulus. By the tran-sitivity properties of P and Lemma 4.2, it is enough to show (d) for a par-tiular pair of distint s, t. Therefore we set, say, f = F

(σ)
0,π so that f(u) =

{2/ cos2u}(σ+1)/2
o . We need to show that (u, v) 7→ f(u)f(v)| sin(u − v)|σ−1is not integrable in a neighborhood of the point (π/4, π/4). Now sine f be-haves around π/4 as X−(σ+1)/2 behaves around zero, this amounts to studythe expression
∫ ǫ

0

∫ ǫ

0

X−(σ+1)/2Y −(σ+1)/2

|X − Y |1−σ
dX dY , (ǫ > 0) .If this were onvergent, we ould hange to polar oordinates X = r cos η,

Y = r sin η and dedue the onvergene of
∫ ǫ

0

1

r

∫ π/2

0

(1
2 sin 2η)−(σ+1)/2

| cos η − sin η|1−σ
dη dr,whih is an absurdum. �Now we ome to the major feature of the funtions F (σ)

s,t , namely thattheir singularities an be made to anel eah other in oboundary-like sums:



32 Mar Burger and Niolas MonodLemma 4.4. For all σ ∈ Cr{−1} with ℜ(σ) < 1 and all distint s, t, u ∈ S
1,there is a ontinuous funtion S

1 → C whih oinides with F (σ)
s,t +F

(σ)
t,u +F

(σ)
u,soutside {(π − 2s)/4, (π − 2t)/4, (π − 2u)/4

}
+ πZ.Proof. We laim that for distint s, t ∈ S

1 r {π/2} the funtion
F

(σ)
s,π/2 + F

(σ)
π/2,tan by ontinuously extended (by zero) at the point 0 ∈ S

1. This immediatelyimplies the statement of the lemma beause of the transitivity properties of
P . Applying the stereographi projetion as in Lemma 4.2 (a) (whih sends
π/2 to ∞), we see that the laim follows from the fat that

lim
z→±∞,

x→x0,y→y0

(
{x− z}

(σ+1)/2
o + {z − y}

(σ+1)/2
o

)
= 0 ,where x0 = tan

(
(2s + π)/4

) and y0 = tan
(
(2t + π)/4

). In fat, writing theexpression in the limit as
{z − y}

σ+1
o − {z − x}

σ+1
o

{z − y}
(σ+1)/2
o + {z − x}

(σ+1)/2
o

,the above onvergene statement follows from ℜ(σ) < 1. �4.3 The Spetral DistributionWe have now olleted all the ingredients to establish Proposition 4.1 andTheorem 1.1. We realize the bounded ohomology of G as in Corollary 2.2(with alternating ohains).Proof of Proposition 4.1. Under the stereographi projetion ρ : S
1 → R̂,the oyle ω will be de�ned almost everywhere on (S1)3 by

ρ∗ω(s, t, u)(g) = F
(σ)
g⋆s,g⋆t(0) + F

(σ)
g⋆t,g⋆u(0) + F (σ)

g⋆u,g⋆s(0) .By Lemma 4.4 and Lemma 4.2 (), ρ∗ω ranges indeed in E(σ), so that it isbounded beause the transitivity properties of G fore it to have essentiallyonstant norm.The only point remaining to be justi�ed is non-triviality. If in any ofthe three settings the lass of ρ∗ω were trivial, we ould �nd an alternatingequivariant ohain α on S
1 × S

1 with ρ∗ω = dα. But the uniqueness state-ment of Lemma 4.2 would then imply, via Fubini's theorem and G = PK,that α(s, t)(pku) = δσ+1(p)F
(σ)
s,t (u) almost everywhere and up to a multi-ple. This would be inompatible with respetively Lemma 4.3 (b), () andLemma 4.3 (d). �



Bounded Cohomology of SL2 33Proof of Theorem 1.1. (ii) Let Z = {±I} be the kernel ofG→ H = PSL2(R).For every unitary representation (π,H) of G we have
H•

cb(G,H) ∼= H•
cb(G,HZ) ,see e.g. [13, 8.5.3℄. If H is irreduible, HZ an only be H or zero and thus

H•
cb(G,H) vanishes unless the representation π fators through G → H .Therefore, for point (b) in the theorem, we have only to onsider the dis-rete series. So assume that H is suh a representation; by Corollary 2.2, anylass of H2

cb(G,H) an be represented by a G-equivariant alternating boundedmeasurable oyle
ω : S

1 × S
1 × S

1 −→ H .Applying Proposition 3.2, we get a oyle for the orresponding di�erentialgroup A•
HK

of De�nition 3.3. By the Riemann�Lebesgue lemma, the orre-sponding funtion on Z3 must vanish at in�nity. Therefore, the seond pointof Proposition 3.4 fores this funtion to be zero. By injetivity of the Fouriertransformation, ω vanishes, too.(i) Given Corollary 2.2, the ase of the trivial representation H = C is justthe following well known fat: up to salar multiple, there is one and onlyone G-invariant alternating map (S1)3 → C, and it is given by the yliorientation oyle.So let H be a non-trivial irreduible unitary representation of spherialtype. The onjuntion of Proposition 3.2 with the �rst point of Proposition 3.4gives that the dimension of H2
cb(G,H) is at most one. Sine we are left withrepresentations of the prinipal and omplementary series, we an apply thetwo �rst points in Proposition 4.1. This ompletes the proof of Theorem 1.1.

�5 Above Degree TwoWe begin by olleting what we need from Set. 3:Proposition 5.1. There is no non-zero alternating integrable G-invariantoyle (S1)4 → C.Proof. Suppose there were suh a oyle; then by Proposition 3.2 its Fouriertransform would be a oyle in the group A3
C
as de�ned in De�nition 3.3.But Proposition 3.4 () would then fore it to vanish. �Remark 5.2. In view of the preise statement of the Proposition 3.4 and of theproof of Proposition 3.2, we see that we have established the Proposition 5.1not only for integrable funtions, but for the whole algebrai dual of the spaeof trigonometri polynomials.



34 Mar Burger and Niolas MonodNow we have already:Proof of Theorem 1.5. Aording to Corollary 2.2, every lass of H3
cb(G) anbe represented by an essentially bounded measurable alternating G-invariantoyle (S1)4 → C. Suh a oyle is integrable sine the measure on S

1 is�nite, so by Proposition 5.1 the oyle must be zero. �We observe the immediateCorollary 5.3. The spae H3
cb(G

′) is trivial for G′ = PSL2(R), GL2(R),
PGL2(R).Proof. As realled in the above proof of Theorem 1.1, H•

cb(PSL2(R)) oin-ides with H•
cb(SL2(R)). Sine PSL2(R) is a losed subgroup of �nite in-dex in PGL2(R), the restrition map H•

cb(PGL2(R)) → H•
cb(PSL2(R)) isinjetive ([3℄) and thus H3

cb vanishes also for the former. Finally, we have
H•

cb(PGL2(R)) = H•
cb(GL2(R)) sine the anonial map GL2(R) → PGL2(R)has amenable kernel, see e.g. [13, 8.5.3℄. �As for our interpretation of Bloh's result:Proof of Theorem 1.2. Write GC = SL2(C). In view of the disussion in theintrodution, we have only to justify that H3

cb(GC) ontains no other lassthan the lass determined by the volume form. Let us apply Theorem 2.1to H = GC and S = Ĉ with its H-ation oming from the identi�ation
Ĉ ∼= ∂H

3. This ation is amenable sine Ĉ is an homogeneous spae withamenable isotropy [15, 4.3.2℄, the isotropy groups being minimal paraboli.Now Bloh's Theorem 7.4.4 in [1℄ states that there is only one measurable
GC-invariant oyle on Ĉ4 � and it is preisely given by the Bloh�Wignerdilogarithm of the rossratio (we do not need this information here). �5.1 Rogers' DilogarithmReall that the lassial Euler dilogarithm Li2 is de�ned by

Li2(z) =

∞∑

n=1

zn

n2
(|z| ≤ 1)and an be extended to C r [1,∞[ by

Li2(z) = −

∫ z

0

log(1 − t)

t
dt .Rogers introdued for 0 < x < 1 the following modi�ation L2 of the diloga-rithm:

L2(x) = −
1

2

∫ x

0

( log t

1 − t
+

log(1 − t)

t

)
dt =

Li2(x) − Li2(1 − x) + Li2(1)

2
.Sine L2(1) = Li2(1) = ζ(2), there is the symmetry L2(1−x) = ζ(2)−L2(x).One veri�es by di�erentiation that L2 satis�es the funtional equation (2) ofProposition 1.6; various forms of this equation an be found e.g. in [12℄.



Bounded Cohomology of SL2 355.2 CrossratioLet us introdue some notation. We denote by Sn the symmetri group on nelements onsidered with its ation on R̂n by permutation of the oordinates.Let Cn < Sn be the subgroup of yli permutations. We denote by c : R̂4 → R̂the rossratio de�ned almost everywhere as
c(x1, x2, x3, x4) =

(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
.With the onvention ∞/∞ = 1, this de�nition makes sense for all quadruplesof distint points in R̂. Reall that c is invariant under the diagonal ation of

G = PSL2(R). Endow R̂ with the orientation indued by the natural order on
R and denote by D+

n the set of n-tuples of ylily positively ordered distintpoints in R̂; then Cn preserves D+
n . We write ∆n for the set of points with atleast two idential oordinates, so that

R̂
n = ∆n ⊔

⊔

[π]∈Sn/Cn

πD
+
n , (9)where π ranges over a set of oset representatives. We remark that the image

c(D+
4 ) of D

+
4 under the rossratio is the open interval ]0, 1[. Indeed, sine

G is transitive on D
+
3 , it su�es to notie that for all 0 < x < 1 one has

c(0, x, 1,∞) = x.Let now F : ]0, 1[→ C be an integrable funtion and write τF (x) =

F (1 − x). We de�ne ΩF : R̂
4 → C as follows. Set �rst ΩF (x) = F ◦ c(x) forall x ∈ D

+
4 , and observe that the ondition τF = −F is atually equivalentto the C4-alternation of ΩF . Indeed, denoting by σ any generator of C4, oneheks that

c ◦ σ = 1 − c .Therefore, if τF = −F , there is a unique extension of the de�nition of ΩFto an alternating map R̂4 → C beause of (9); ΩF must be zero on ∆4by alternation. Moreover, ΩF is G-invariant by de�nition, for the diagonal
G-ation ommutes with Sn. Writing out the rossratio, we have
dΩF (0, x, y, 1,∞)

= F

(
y − x

1 − x

)
− F (y) + F (x) − F

(
x

y

)
+ F

(
x(1 − y)

y(1 − x)

) (10)for all 0 < x < y < 1. Finally, sine the projetive measure on R̂ is �nite, theFubini�Lebesgue theorem together with the integrability of F implies that
ΩF is integrable on R̂4.Proof of Proposition 1.4. As we have already mentioned in the proof ofTheorem 1.1, there is up to salar multiple only one G-invariant alternating



36 Mar Burger and Niolas Monodmap (S1)3 → C, and it is given by the yli orientation oyle ω de�nedon R̂3 r ∆3 by ω(πx) = sign(π) for π ∈ S3 and x ∈ D
+
3 . It is thereforeenough in view of Corollary 2.2 to show that ω ∧ ω is of the form dΩ forsome Ω in L∞(R̂4). Sine ω∧ω is loally onstant on R̂5 r∆5, it is uniquelydetermined by its value on a �xed x = (x0, . . . , x4) ∈ D

+
5 . We ontend that

ω ∧ ω(x) = 1/3. To see this, we onsider the S5-ation on {0, . . . , 4} in orderto de�ne the subgroup B whih permutes blok-wise {0, 1} and {3, 4}:
B =

{
π ∈ StabS5

(2) : π({0, 1}) ∈
{
{0, 1}, {3, 4}

}}
.Now the number

sign(π)ω × ω(π−1x) := sign(π)ω(xπ(0), xπ(1), xπ(2))ω(xπ(2), xπ(3), xπ(4))depends only on the lass of π in B\S5/C5. There are three suh double osets,and one heks that the above number is positive for two of them, negativefor the third. Therefore,
ω ∧ ω(x) =

1

|S5|

∑

π∈S5

sign(π)ω × ω (π−1x) =
1

3
,as laimed. If we set now F = (1 − 2L2/ζ(2))/3, we have τF = −F and theabove onstrution yields an alternating integrable G-invariant funtion ΩF .We laim that dΩF = ω ∧ ω; indeed, by alternation we may restrit to D

+
5 ,and by G-invariane even to the points (0, x, y, 1,∞) for 0 < x < y < ∞.Now the Spene�Abel equation (2) applied to (10) yields

dΩF (0, x, y, 1,∞) =
1

3
= ω ∧ ω(0, x, y, 1,∞) ,�nishing the proof. �Proof of Proposition 1.6. If a funtion L has the two properties assumed, thensetting F ′ = (1 − 2L/ζ(2))/3 we would as above get dΩF ′ = ω ∧ ω, so that

d(ΩF −ΩF ′) = 0. Therefore, applying Proposition 5.1, we dedue ΩF = ΩF ′ .Sine the rossratio sends D
+
4 onto ]0, 1[, we onlude that F = F ′ whene
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