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ABSTRACT. We prove the vanishing of the cup product of the bounded cohomology classes
associated to any two Brooks quasimorphisms on the free group. This is a consequence of the
vanishing of the square of a universal class for tree automorphism groups.

1. INTRODUCTION

Although bounded cohomology found a great variety of applications, it remains so mys-
terious that even for a (non-abelian) free group F of finite rank, we do not know much about
it.

More precisely, beyond the trivial case of H1
b(F, R) = 0, it is known that both H2

b(F, R)

and H3
b(F, R) are infinite-dimensional. However, Hn≥4

b (F, R) remains completely unknown;
in particular, we do not know whether H4

b(F, R) vanishes or not.

The first infinite family of non-trivial classes in H2
b(F, R) are provided by Brooks quasi-

morphisms [1] (anticipated by Johnson [7, 2.8] and Rhemtulla [12]); we recall their defini-
tion. Pick any reduced word w in a choice of free generators for F and consider the counting
function fw : F → R defined on g ∈ F by

fw(g) = ]{occurrences of w in g} − ]{occurrences of w in g−1}.
If w is reduced to one letter (or trivial), then fw is a homomorphism. In all other cases, fw
is a quasimorphism and defines a non-trivial class βw ∈ H2

b(F, R) unless w is conjugated
to a power of a letter. The space spanned by all these βw is infinite-dimensional [1][8] and
is dense in H2

b(F, R) for a suitable topology of pointwise convergence [4, 5.7]. (Following
Brooks, we allow overlaps when counting occurrences, whilst other authors do not; see [5,
p. 251] for the density in our setting.)

The aim of this note is to show that the cup product of any two elements in this dense
sub-space vanishes in H4

b(F, R).

Theorem 1. Let βw, βw′ ∈ H2
b(F, R) be the bounded cohomology classes associated to two Brooks

quasimorphisms on F.
Then βw ` βw′ = 0 in H4

b(F, R).

We were informed by N. Heuer that he independently obtained a similar result [6] by
methods completely different from ours.

We can give a rather transparent proof of Theorem 1 by realizing bounded cohomology
with the aligned chains that we introduced in [2]. This simplifies the combinatorics and allows
us to exhibit a natural explicit coboundary for the cup product.

Moreover, we can carry out this task at once for all w, w′ simultaneously — by working
instead with the universal class [ω] that we now proceed to define (similar constructions
were considered in [10, §2], in [11, 7.11] and in [3, §9]).
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Let T = (V, E) be a locally finite tree with Serre’s conventions, which means in particular
that an element of E represents an oriented edge and that E is endowed with a fixed-point-
free involution e 7→ e reversing the orientation. We denote by P the set of paths, namely
sequences p = (e1, . . . , en) of successive edges ei ∈ E without backtracking. The reverse
path is p = (en, . . . , e1) and n is the length of p. Given two vertices x, y we denote by [x, y]
the path connecting them. The path module Ralt[P] is the Aut(T)-module of all elements of
the free vector space R[P] that change sign when replacing a path by its reverse. We define
an Aut(T)-equivariant map ϑ : V2 → Ralt[P] by setting

ϑ(x0, x1)(p) = ±1

if p (respectively p) is contained as a sub-path in [x0, x1], and 0 in all other cases. We define

ω = dϑ : V3 → Ralt[P]

as the coboundary of ϑ. We recall here that d will always be the usual alternating sum of
the maps omitting the individual variables; we refer to the preliminaries below for explicit
values of ω.

In order to view ω as a cocycle in bounded cohomology, we need to specify a norm on
Ralt[P]; of course, ϑ should be unbounded for this norm since otherwise the class of ω would
be trivial. The specific norm is however not too relevant; one property we want is that, when
restricted to the free vector space on the set of paths of length n, it is equivalent to the `1-
norm ‖ · ‖n,1. One explicit choice is the norm ‖ · ‖path = ∑n≥1

1
n!‖ · ‖n,1 whose normalisation

factor 1/n! is an arbitrary way to ensure uniform boundedness statements in the proofs.
Furthermore, we write P for the completion of Ralt[P]. Indeed, even though our argu-

ments will be explicit and finitary, the general tools of continuous bounded cohomology
work best with Banach spaces.

Suppose given a choice of free generators for the free group F. The corresponding Cayley
graph for F is then a tree T; moreover, there is a natural embedding of F into the automor-
phism group of the tree T. We view ω as a cocycle for the continuous bounded cohomology
H∗cb of the locally compact group Aut(T).

Moreover, every path in T is labelled by a reduced word in F since T is a Cayley graph.
Thus, given a reduced word w, we can define an F-invariant bounded linear form λw on
Ralt[P], hence also on P , by specifying its values on individual paths as follows:

λw(p) =

 1 if w labels p,
−1 if w labels p,

0 otherwise.

This definition ensures that if g ∈ F labels [x0, x1], then

λw ◦ ϑ(x0, x1) = fw(g).

Therefore, we deduce immediately the following relation between the universal class [ω]
and individual quasimorphisms.

Proposition 2. Let βw ∈ H2
b(F, R) be the bounded cohomology class associated to a Brooks quasi-

morphism on F for the chosen generators. Then βw is the image of the class of ω under the map

H2
cb
(
Aut(T), P

) rest−−→ H2
b(F, P)

(λw)∗−−−→ H2
b(F, R),

where the first arrow is the restriction map and the second is induced by λw. �
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The cup product of two elements of H2
cb(Aut(T), P) is a class in H4

cb with values in the
tensor product module P ⊗P , which we can also (projectively) complete to P ⊗̂P (see
the preliminaries for the norm). The naturality of the cup product now implies:

Corollary 3. Given two reduced words w and w′, we keep all the above notation.
Then [ω]` [ω], viewed as a class with coefficients in P ⊗̂P , is mapped to βw ` βw′

H4
cb
(
Aut(T), P ⊗̂P

)
−→ H4

b(F, R)

under the restriction followed by (λw ⊗ λw′)∗. �

In view of Corollary 3, Theorem 1 is now an immediate consequence of the following
vanishing result for the square of the universal class [ω].

Theorem 4. Let T be a locally finite tree.
Then the class of ω`ω vanishes in H4

cb

(
Aut(T), P ⊗̂P

)
.

The remainder of this note is devoted to the proof of Theorem 4.

2. PRELIMINARIES

Recall that the cup product of two cochains α : Xp+1 → A and β : Xq+1 → B (on an
arbitrary set X) ranging in coefficient modules A and B is the cochain

α` β : Xp+q+1 −→ A⊗ B, (α` β)(x0, . . . , xp+q) = α(x0, . . . , xp)⊗ β(xp, . . . , xp+q)

ranging in A⊗ B. Thus, if A and B are normed vector spaces and if both α and β are bounded,
then α` β is bounded for any cross-norm on A⊗ B. We refer to [13] and recall that the projec-
tive cross-norm is defined for c ∈ A⊗ B by ‖c‖π = inf ∑n

i=1 ‖ai‖ · ‖bi‖, where the infimum
is over all decompositions c = ∑n

i=1 ai ⊗ bi. The corresponding completion is denoted by
A ⊗̂ B. Since ‖ · ‖π is the largest cross-norm, the vanishing result of Theorem 4 with respect
to ‖ · ‖π implies the corresponding vanishing for any other cross-norm.

We say that a path p is carried by a path q, and write p @ q, if either p or p is contained
in q as a sub-path. We attach a sign ±1 to these two cases, referred to as the orientation of p
relative to q. We define the interior Int(p) ⊆ V of a path p to consist of all the vertices of the
path except its two extremities.

Recall that any three vertices x0, x1, x2 ∈ V determine a center c ∈ V characterized as the
unique common vertex of all [xi, xj]. Given a path p, the definition of ω now shows that
ω(x)(p) = ±1 when p is carried by some [xi, xj] and c ∈ Int(p), and that ω(x)(p) vanishes
otherwise.

A path can contain at most n− 1 sub-paths of length n containing a given vertex in their
interior. Therefore, considering all three configurations and two orientations, we can bound
the norm of ω by

‖ω(x)‖path ≤ 3 · 2 · ∑
n≥1

1
n!
(n− 1) = 6,

witnessing that ω is indeed uniformly bounded.

Recall that a (q + 1)-tuple (x0, . . . , xq) ∈ Vq+1 is aligned if the vertices x0, . . . , xq are con-
tained in some geodesic segment of T. This tuple is furthermore said to be coherent if these
q + 1 vertices are distinct and in increasing order for one of the two linear orders induced
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on {x0, . . . , xq} by any such segment. We denote by Vq+1
coh ⊆ Vq+1 the set of coherent aligned

tuples.
Below, we shall be particularly interested in the above description of ω(x) specialized to

coherent triples x ∈ V3
coh. In that case, ω(x)(p) = ±1 if x1 ∈ Int(p) and p is carried by

[x0, x2], with the sign given by the orientation of p relative to [x0, x2], and vanishes in all
other cases.

=⇒ ω = 1.s
x0

s
x1

s
x2

-
p

3. A COHERENT RESOLUTION

Let E be any isometric Banach Aut(T)-module and recall that Hq
cb(Aut(T), E) can be com-

puted with the (non-augmented) complex `∞(Vq+1, E)Aut(T) of Aut(T)-equivariant elements
of the resolution

(i) 0 −→ E −→ `∞(V, E) −→ `∞(V2, E) −→ `∞(V3, E) −→ · · ·

(see e.g. [9, 4.5.2]). There is a natural restriction map to the complex `∞(Vq+1
coh , E) on coherent

tuples, but we warn the reader that the latter is not a resolution of E.

Example 5. Take E = R and fix a path p of length one. Then the map (x0, x1) 7→ |ϑ(x0, x1)(p)|
belongs to `∞(V2

coh) and cannot be a coboundary since it is not antisymmetric. On the other hand,
one checks readily that it is a cocycle in the complex `∞(V3

coh).

Recall that an element of `∞(Vq+1, E) is called alternating if any permutation σ of the vari-
ables corresponds to the multiplication by the signature sign(σ). We denote by τq the permu-

tation of {0, . . . , q} that reverses the order and observe that its signature is (−1)b
q+1

2 c, where
b·c denotes the integer part. Consider the Aut(T)-equivariant involution τ̂q of `∞(Vq+1

coh , E)
defined by τ̂q(α)(x) = sign(τq)α(xτq). Being an involution, it induces an eigenspace decom-
position

`∞(Vq+1
coh , E) = `∞

+(V
q+1
coh , E)⊕ `∞

−(V
q+1
coh , E)

which is preserved by Aut(T). Although `∞(Vq+1
coh , E) is not a resolution, we have:

Proposition 6. The sub-complex

(ii) 0 −→ E −→ `∞
+(V

1
coh, E) −→ `∞

+(V
2
coh, E) −→ `∞

+(V
3
coh, E) −→ · · ·

is a resolution. Moreover, the map

Aq ◦ rest : `∞(Vq+1, E) −→ `∞
+(V

q+1
coh , E)

from (i) to (ii) obtained by restriction followed by the projection Aq = (τ̂q + Id)/2 yields an isomor-
phism between Hq

cb(Aut(T), E) and the cohomology of the complex

(iii) 0 −→ `∞
+(V

1
coh, E)Aut(T) −→ `∞

+(V
2
coh, E)Aut(T) −→ `∞

+(V
3
coh, E)Aut(T) −→ · · ·
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Proof. Following [2], we denote by `∞
A (Vq+1, E) the sub-space of alternating maps defined

on aligned tuples. The restriction to coherent tuples thus induces an isomorphism

`∞
A (Vq+1, E) ∼= `∞

+(V
q+1
coh , E).

Therefore, the first statement is simply a reformulation of Corollary 8 of [2]. Moreover, as
observed there, the modules `∞

A (Vq+1, E) are relatively injective in the sense of bounded co-
homology because the Aut(T)-action on the set of aligned tuples is proper, see [9, 4.5.2].
More precisely, `∞

A (Vq+1, E) is a direct factor of the larger space without the alternation con-
dition, to which [9, 4.5.2] applies, and one concludes as in [9, 7.4.5] by an alternation map.

A direct computation using the relation sign(τq) · sign(τq+1) = (−1)q+1 shows that τ̂q is
a chain map. In particular, τ̂q automatically preserves the decomposition `∞

±(V
q+1
coh , E) and

Aq is a chain map as well. Now the second statement follows by general cohomological
principles (see e.g. §7.2 in [9]). �

4. A PRIMITIVE FOR THE SQUARE OF ω ON COHERENT TUPLES

We define an Aut(T)-equivariant map

B : V4
coh −→ Ralt[P]⊗ Ralt[P]

by setting, for any coherent 4-tuple x and any paths p1, p2 ∈ P,

B(x)(p1, p2) = ±1

whenever all the following hold:

• both p1 and p2 are carried by [x0, x3],
• the interior of p1 and of p2 are disjoint,
• xi ∈ Int(pi) for each i = 1, 2.

In that case, the sign ±1 is the product of the orientations of p1 and of p2 relative to [x0, x3].
All this is perhaps much more intuitive in a picture, drawn for two of the four orientation
possibilities:

=⇒ B = 1.s
x0

s
x1

s
x2

s
x3

-
p1 -

p2

=⇒ B = −1.s
x0

s
x1

s
x2

s
x3

-
p1 �

p2

In all other cases, we set B(x)(p1, p2) = 0.

Proposition 7. We have dB(x) = ω`ω(x) for every coherent 5-tuple x.

Proof. Let p1, p2 ∈ P. By definition,

ω`ω(x)(p1, p2) = ω(x0, x1, x2)(p1) ·ω(x2, x3, x4)(p2).
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Thus, ω`ω(x)(p1, p2) 6= 0 if and only if all the following hold:

(iv)
{

x1 ∈ Int(p1) and p1 @ [x0, x2],
x3 ∈ Int(p2) and p2 @ [x2, x4].

As for dB, we observe that dB(x)(p1, p2) = 0 unless possibly

(v)

 p1, p2 have disjoint interior and are carried by [x0, x4],
x1 or x2 ∈ Int(p1),
x2 or x3 ∈ Int(p2).

In the case when Conditions (v) are not satisfied, Conditions (iv) are not either; therefore in
that case dB and ω`ω agree since they both vanish.

Suppose now that Conditions (v) are satisfied. By symmetry, we can assume that the
orientation of p1 and p2 are compatible with the orientation of [x0, x4] (and hence of [x0, x3]
and of [x1, x4]). Since p1 and p2 have disjoint interior, x2 is contained in at most one of Int(p1)
or Int(p2); we can suppose that it is not contained in Int(p1), the other case being completely
analogous. We have now three cases:

First case: x1 ∈ Int(p1), x2 /∈ Int(p1) ∪ Int(p2) and x3 ∈ Int(p2).

s
x0

s
x1

s
x2

s
x3

s
x4

-
p1 -

p2

The value of ω`ω(x)(p1, p2) is +1, while the only non-zero summand in

dB(x)(p1, p2) = Σ4
i=0(−1)iB(. . . , x̂i, . . . )

is the one for i = 2, which is indeed also +1.

Second case: x1 ∈ Int(p1) and x2, x3 ∈ Int(p2).

s
x0

s
x1

s
x2

s
x3

s
x4

-
p1 -

p2

Condition (iv) is not satisfied and hence ω`ω vanishes. As for dB, only the summands for
i = 2 and i = 3 are non-zero and cancel out to give dB(x)(p1, p2) = 0.

Third case: x1 ∈ Int(p1), x2 ∈ Int(p2) and x3 /∈ Int(p2).

s
x0

s
x1

s
x2

s
x3

s
x4

-
p1 -

p2

Again, condition (v) is not satisfied and ω`ω vanishes. As for dB, only the summands for
i = 3 and i = 4 are non-zero and cancel out to give dB(x)(p1, p2) = 0. �
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5. PROOF OF THEOREM 4

We first verify that the primitive B is bounded.

Lemma 8. The map B is uniformly bounded on V4
coh with respect to the projective norm ‖ · ‖π.

Proof. Given a path p, denote by p the element p − p of Ralt[P]. Then ‖p‖path = 2/n! if p
has length n. Fix now x ∈ V4

coh. By definition of the projective cross-norm, we can bound
‖B(x)‖π by ∑(‖p1‖path · ‖p2‖path), where the sum runs over all pairs of paths (p1, p2) on
which B(x) does not vanish, but taking only one representative of the possible orientations.
Arguing as in our estimate for the norm of ω, we have at most (n1 − 1)(n2 − 1) such pairs
whenever we fix the length ni of each pi. We conclude that B(x) has norm at most

∑
n1,n2

4(n1 − 1)(n2 − 1)
n1!n2!

= 4

(
∑
n

n− 1
n!

)2

= 4.

�

At this point, we conclude that A3(B) belongs to `∞
+(V4

coh, P). Since A∗ is a chain map
(as pointed out in the proof of Proposition 6), we deduce from Proposition 7 that we have
A4(ω`ω) = dA3(B). Now Proposition 6 implies that the class of ω`ω vanishes, complet-
ing the proof of Theorem 4. �
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