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Abstract. We present a contribution to the structure theory of locally compact groups.
The emphasis is on compactly generated locally compact groups which admit no in�nite
discrete quotient. It is shown that such a group possesses a characteristic cocompact sub-
group which is either connected or admits a non-compact non-discrete topologically simple
quotient. We also provide a description of characteristically simple groups and of groups all
of whose proper quotients are compact. We show that Noetherian locally compact groups
without in�nite discrete quotient admit a subnormal series with all subquotients compact,
compactly generated Abelian, or compactly generated topologically simple.

Two appendices introduce results and examples around the concept of quasi-product.
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1. Introduction

On structure theory. The structure of �nite groups can to a large extent be reduced to
�nite simple groups and the latter have famously been classi�ed (see e.g. [GLS94] sqq.).

For general locally compact groups, both the reduction to simple groups and the study
of the latter still constitute major challenges. The connected case has found a satisfactory
answer: Indeed, the solution to Hilbert's �fth problem (see [MZ55, 4.6]) reduces the question
to Lie theory upon discarding compact kernels. Lie groups are then described by investigating
separately the soluble groups and the simple factors, which are classi�ed since the time of
É. Cartan.

The contemporary structure problem therefore regards totally disconnected groups; there
is not yet even a conjectural picture of a structure theory. In fact, until recently, the only
structure theorem on totally disconnected locally compact groups was this single sentence in
van Dantzig's 1931 thesis:

�Een (gesloten) Cantorsche groep bevat willekeurig kleine open ondergroepen.�
(III � 1, TG 38 on page 18 in [vD31])

Recent progress, including statements on simple groups, is provided by the work of G. Willis
[Wil94, Wil07]. New examples of simple groups have appeared in the geometric context of
trees and of general buildings.

As results and examples for simple groups are being discovered, it becomes desirable to have
a reduction step to simple groups � in parallel to the known cases of �nite and connected
groups. However, any reasonable attempt at classi�cation must in one way or another exclude
discrete groups: the latter are widely considered to be unclassi�able; this opinion can be given
a mathematical content as e.g. in [TV99]. The discrete case also illustrates that there may
be no simple (in�nite) quotient, or even subquotient, at all.

The following trichotomy shows that, away from the unavoidable discrete situation, there
is a compelling �rst answer.

Theorem A. Let G be a compactly generated locally compact group. Then exactly one of the
following holds.

(i) G has an in�nite discrete quotient.
(ii) G has a cocompact normal subgroup that is connected and soluble.
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(iii) G has a cocompact normal subgroup that admits exactly n non-compact simple quo-
tients (and no non-trivial discrete quotient), where 0 < n <∞.

By a simple group, we mean a topologically simple group, i.e. a group all of whose Haus-
dor� quotients are trivial. Since a cocompact closed subgroup of a compactly generated locally
compact group is itself compactly generated [M�59], it follows that the n simple quotients ap-
pearing in (iii) of Theorem A are compactly generated. (We always implicitly endow quotient
groups with the quotient topology.)

The above theorem describes the upper structure of G. The �rst alternative can be made
more precise in combination with the well-known (and easy to establish) fact that an in�nite
�nitely generated group either admits an in�nite residually �nite quotient or has a �nite index
subgroup which admits an in�nite simple quotient. In some sense, Theorem A plays the rôle
of a non-discrete analogue of the latter fact; notice however that the �niteness of the number
n of simple sub-quotients in case (iii) above is particular to non-discrete groups. It turns out
that the above theorem is supplemented by the following description of the lower structure of
G, which does not seem to have any analogue in the discrete case.

Theorem B. Let G be a compactly generated locally compact group. Then one of the following
holds.

(i) G has an in�nite discrete normal subgroup.
(ii) G has a non-trivial closed normal subgroup which is compact-by-{connected soluble}.
(iii) G has exactly n non-trivial minimal closed normal subgroups, where 0 < n <∞.

The normal subgroups appearing in the above have no reason to be compactly generated
in general. On another hand, since any (Hausdor�) quotient of a compactly generated group
is itself compactly generated, it follows that Theorem B may be applied repeatedly to the
successive quotients that it provides. Such a process will of course not terminate after �nitely
many steps in general. However, if G satis�es additional �niteness conditions, this recursive
process may indeed reach an end in �nite time. In order to make this precise, we introduce the
following terminology. We call a topological group G Noetherian if it satis�es the ascending
chain condition on open subgroups. Obvious examples are provided by compact (e.g. �nite)
groups, connected groups and polycyclic groups. If G is locally compact, then G is Noetherian
if and only if every open subgroup is compactly generated. (Warning: the notion introduced
in [Gui73, � III] is more restrictive as it posits compact generation of all closed subgroups.)

Theorem C. Let G be a locally compact Noetherian group. Then G possesses an open normal
subgroup Gk and a �nite series of closed subnormal subgroups

1 = G0 �G1 �G2 � · · ·�Gk �G

such that, for each i ≤ k, the subquotient Gi/Gi−1 is either compact, or isomorphic to Z or
R, or topologically simple non-discrete and compactly generated.

In the special case of connected groups, the existence of the above decomposition follows
easily from the solution to Hilbert's �fth problem. In that case, the simple subquotients are
connected non-compact adjoint simple Lie group, while the presence of discrete free Abelian

groups accounts for possible central extensions of simple Lie groups such as S̃L2(R) (an ex-
ample going back to Schreier [Sch25, � 5 Beispiel 2]). No analogue of Theorem C seems to be
known for discrete Noetherian groups.
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Characteristically simple groups and quasi-products. By a characteristic subgroup
of a topological group G, we mean a closed subgroup which is preserved by every topological
group automorphism of G. A group admitting no non-trivial such subgroup is called charac-
teristically simple. This property is satis�ed by any minimal normal subgroup, for instance
those occurring in Theorem B.

In fact, our above results lead also to a description of characteristically simple groups, as
follows.

Corollary D. Let G be a compactly generated locally compact group. If G is characteristically
simple, then one of the following holds.

(i) G is discrete.
(ii) G is compact.
(iii) G ∼= Rn for some n.
(iv) G is a quasi-product with topologically simple pairwise isomorphic quasi-factors.

By de�nition, a topological groupG is called a quasi-product with quasi-factorsN1, . . . , Np

if Ni are closed normal subgroups such that the multiplication map

N1 × · · · ×Np −→ G

is injective with dense image. Usual direct products are obvious examples, but the situation is
much more complicated for general totally disconnected groups. The above de�nition degen-
erates in the commutative case; for instance, R is a quasi-product with quasi-factors Z and√

2Z. Several centrefree examples of quasi-products, including characteristically simple ones,
will be constructed in Appendix II. However, as of today we are not aware of any compactly
generated characteristically simple group which falls into Case (iv) of Corollary D without
being a genuine direct product. As we shall see in Appendix II, the existence of such an
example is equivalent to the existence of a compactly generated topologically simple locally
compact group admitting a proper dense normal subgroup.

Groups with every proper quotient compact. The �rst goal that we shall pursue in
this article is to describe the compactly generated locally compact groups which admit only
compact proper quotients. The non-compact groups satisfying this condition are sometimes
called just-non-compact. In the discrete case, the corresponding notion is that of just-
in�nite groups, namely discrete groups all of whose proper quotients are �nite. A description
of these was given by J. S. Wilson in a classical article ([Wil71], Proposition 1). Anticipating
on the terminology introduced below, we can epitomise our contribution to this question as
follows:

A just-non-compact group is either discrete or monolithic.

The most obvious case where a topological group has only compact quotients is when
it is quasi-simple, which means that it possesses a cocompact normal subgroup which is
topologically simple and contained in every non-trivial closed normal subgroup.

This situation extends readily to the following. We say that a topological group is mono-
lithic withmonolith L if the intersection of all non-trivial closed normal subgroups is itself a
non-trivial group L. Non-quasi-simple examples are provided by the standard wreath product
of a topologically simple group by a �nite transitive permutation group (see Construction 1
in [Wil71]). Notice that the monolith is necessarily characteristically simple.
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In the discrete case, groups with only �nite proper quotients can be very far from monolithic,
indeed residually �nite: examples are provided by all lattices in connected centrefree simple
Lie groups of rank at least two in view of a fundamental theorem of G. Margulis [Mar91];
for instance, PSL3(Z) (this particular case was already known to J. Mennicke [Men65]). The
following result shows that such examples do not exist in the non-discrete case.

Theorem E. Let G be a compactly generated non-compact locally compact group such that
every non-trivial closed normal subgroup is cocompact. Then one of the following holds.

(i) G is monolithic and its monolith is a quasi-product with �nitely many isomorphic
topologically simple groups as quasi-factors.

(ii) G is monolithic with monolith L ∼= Rn. Moreover G/L is isomorphic to a closed
irreducible subgroup of O(n). In particular G is an almost connected Lie group.

(iii) G is discrete and residually �nite.

We shall see in � 3 below that this theorem yields a topological simplicity corollary for locally
compact groups endowed with a BN -pair which supplements classical results by J. Tits [Tit64].

The proof of Theorem E relies on an analysis of �ltering families of closed normal subgroups
in totally disconnected locally compact groups, which is carried out in Proposition 2.5 below.
As a by-product, it yields in particular a characterisation of residually discrete groups (see
Corollary 4.1) and the following easier companion to Theorem E, where Res(G) denotes the
discrete residual of G, namely the intersection of all open normal subgroups.

Theorem F. Let G be a compactly generated locally compact group all of whose discrete
quotients are �nite. Then Res(G) is a cocompact characteristic closed subgroup of G without
non-trivial discrete quotient.

The cocompact subgroup Res(G) is compactly generated (see [M�59] or Lemma 2.1 below).
Since any compact totally disconnected group is a pro�nite group and, hence, admits numerous
discrete quotients, it follows that, under the hypotheses of Theorem F, any compact quotient
of the discrete residual is connected. Loosely speaking, the discrete residual is thus a sort of
cocompact core of the group G. As a consequence, we obtain the following.

Corollary G. Let G be a compactly generated totally disconnected locally compact group all
of whose discrete quotients are �nite. Then the discrete residual of G is cocompact and admits
no non-trivial discrete or compact quotient. �

Theorem A follows easily by combining Theorem E with the fact, due to R. Grigorchuk
and G. Willis, that any non-compact compactly generated locally compact group admits a
just-non-compact quotient (unpublished, see Proposition 5.2 below).

Acknowledgements. We are very grateful for the detailed comments provided by the anony-
mous referee.

2. Basic tools

Generalities on locally compact groups. In this preliminary section, we collect a number
of subsidiary facts on locally compact groups which will be used repeatedly in the sequel.
Unless speci�ed otherwise, all topological groups are assumed Hausdor�.

We will frequently invoke the following well-known statement without explicit reference.

Lemma 2.1. If a closed subgroup of a compactly generated locally compact group is cocompact,
then it is itself compactly generated.
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Proof. See [M�59], Corollary 2. �

We say that a subgroup H of a topological group G is topologically locally �nite if every
�nite subset of H is contained in a compact subgroup of G. Any locally compact group G
possesses a maximal normal topologically locally �nite subgroup which is closed and called
the LF-radical and denoted RadLF(G); another important fact is that any compact subset
of a locally compact topologically locally �nite group is contained in a compact subgroup. We
refer to [Pla65] and [Cap09, � 2] for details.

It is well known that the LF-radical is compact for connected groups:

Lemma 2.2. Every connected locally compact group admits a maximal compact normal sub-
group. Moreover, the corresponding quotient is a connected Lie group.

Proof. The solution to Hilbert's �fth problem [MZ55, Theorem 4.6] provides a compact nor-
mal subgroup such that the quotient is a Lie group; now the statement follows from the
corresponding fact for connected Lie groups. �

As a further element of terminology, the quasi-centre of a topological group G is the
subset QZ (G) consisting of all those elements possessing an open centraliser. The subgroup
QZ (G) is topologically characteristic in G, but need not be closed. Since any element with a
discrete conjugacy class possesses an open centraliser, it follows that the quasi-centre contains
all discrete normal subgroups of G.

We shall use the following result of U²akov, for which we recall that a topological group is
called topologically FC if every conjugacy class has compact closure.

Theorem 2.3 (U²akov [U²a63]). Let G be a locally compact topologically FC-group. Then the
union of all compact subgroups of G forms a closed normal subgroup, which therefore coincides
with RadLF(G), and the corresponding quotient G/RadLF(G) is Abelian.

Moreover, if in addition G is compactly generated, then G is compact-by-Abelian. More
precisely, RadLF(G) is compact and G/RadLF(G) is isomorphic to Rn×Zm for some n,m ≥
0. �

The following consideration provides a necessary (and su�cient) condition for the group
considered in Theorem E to admit a non-trivial discrete normal subgroup.

Proposition 2.4. Let G be a compactly generated non-compact locally compact group such
that every non-trivial closed normal subgroup is cocompact. If G admits a non-trivial discrete
normal subgroup, then G is either discrete or Rn-by-�nite.

Proof. Let H � G be a non-trivial discrete normal subgroup. Then H is cocompact and,
hence, it is a cocompact lattice in the compactly generated group G. Therefore H is �nitely
generated. We deduce that the normal subgroup ZG(H) �G is open, since every element of
H has a discrete conjugacy class and, hence, an open centraliser. In particular, G is discrete
if ZG(H) is trivial and we can therefore assume that ZG(H) is cocompact.

The quotient ZG(H)/Z (H) is compact since it sits as open (hence closed) subgroup in
G/H. Hence, the centre of ZG(H) is cocompact for it contains Z (H). Thus Theorem 2.3 ap-
plies to ZG(H). We claim that the LF-radical of ZG(H) is trivial: otherwise, being normal in
G, it would be cocompact, hence compactly generated, thus compact (Lemma 2.3 in [Cap09])
and now �nally trivial after all since G is non-compact by hypothesis. In conclusion, ZG(H) is
isomorphic to Rn×Zm. In addition, n or m vanishes since the identity component of ZG(H)
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is normal in G and hence trivial or cocompact. We conclude by recalling that ZG(H) is open
and cocompact, thus of �nite index in G. �

Filters of closed normal subgroups. We continue with another general fact on compactly
generated groups, which was the starting point of this work. The argument was inspired by a
reading of Lemma 1.4.1 in [BM00]; it also plays a key rôle in the structure theory of isometry
groups of non-positively curved spaces developed in [CM09].

Proposition 2.5. Let G be a compactly generated totally disconnected locally compact group.
Then any identity neighbourhood V contains a compact normal subgroup QV such that any
�ltering family of non-discrete closed normal subgroups of the quotient G/QV has non-trivial
intersection.

Proof. Let g be a Schreier graph for G associated to a compact open subgroup U <
G contained in the given identity neighbourhood V (which exists by a classical result in
D. van Dantzig's 1931 thesis [vD31, III � 1, TG 38 page 18], see [Bou71, III � 4 No 6]). We
recall that g is obtained by de�ning the vertex set as G/U and drawing edges according to a
compact generating set which is a union of double cosets modulo U ; see [Mon01, � 11.3]. The
kernel of the G action on g is nothing but QV =

⋂
g∈G gUg

−1 which is compact and contained
in V .

Since we are interested in closed normal subgroups of the quotient G/QV , there is no loss of
generality in assuming QV trivial. In other words, we assume henceforth that G acts faithfully
on g. Let v0 be a vertex of g and denote by v⊥0 the set of neighbouring vertices. Since G is
vertex-transitive on g, it follows that for any normal subgroup N �G, the Nv0-action on v⊥0
de�nes a �nite permutation group FN < Sym(v⊥0 ) which, as an abstract permutation group,
is independent of the choice of v0. Therefore, if N is non-discrete, this permutation group
FN has to be non-trivial since U is open and g connected. Now a �ltering family F of non-
discrete normal subgroups yields a �ltering family of non-trivial �nite subgroups of Sym(v⊥0 ).
Thus the intersection of these �nite groups is non-trivial. Let g be a non-trivial element in
this intersection. For any N ∈ F , let Ng be the inverse image of {g} in Nv0 . Thus Ng is
a non-empty compact subset of N for each N ∈ F . Since the family F is �ltering, so are
{Nv0 | N ∈ F} and {Ng | N ∈ F}. The result follows, since a �ltering family of non-empty
closed subsets of the compact set Gv0 has a non-empty intersection. �

Minimal normal subgroups. With Proposition 2.5 at hand, we deduce the following. An
analogous result for the upper structure of totally disconnected groups will be established in
Section 5 below (see Proposition 5.4).

Proposition 2.6. Let G be a compactly generated totally disconnected locally compact group
which possesses no non-trivial compact or discrete normal subgroup. Then every non-trivial
closed normal subgroup of G contains a minimal one, and the set M of non-trivial minimal
closed normal subgroups is �nite. Furthermore, for any proper subset E ⊂ M , the subgroup
〈M |M ∈ E 〉 is properly contained in G.

Proof. In view of Proposition 2.5, any chain of non-trivial closed normal subgroups of G has
a minimal element. Thus Zorn's lemma ensures that the set M of minimal non-trivial closed
normal subgroups of G is non-empty, and that any non-trivial closed normal subgroup contains
an element of M .
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In order to establish that M is �nite, we use the following notation. For each subset E ⊆M
we set ME = 〈M |M ∈ E 〉; ME denotes its closure. The following argument was inspired by
the proof of Proposition 1.5.1 in [BM00].

We claim that if E is a proper subset of M , then ME is a proper subgroup of G. Indeed,
for all M ∈ E and M ′ ∈ M \ E we have [M,M ′] ⊆ M ∩M ′ = 1. Thus M ′ centralises ME .
In particular, if ME = G, then M ′ centralises G. Thus M ′ ≤ Z (G) is Abelian, and any
proper subgroup of M ′ is normal in G. Since M ′ is a minimal normal subgroup, it follows
thatM ′ has no proper closed subgroup. The only totally disconnected locally compact groups
with this property being the cyclic groups of prime order, we deduce that M ′ is �nite, which
contradicts the hypotheses. The claim stands proven.

Consider now the family

N = {MM \F | F ⊆M is �nite}

of closed normal subgroups of G. This family is �ltering. Furthermore the above claim shows
that MM \F is properly contained in G whenever F is non-empty. Since

⋂
N = 1, it follows

from Proposition 2.5 that N is �nite, and hence M is so, as desired. �

Just-non-compact groups.

Proof of Theorem E. We shall use repeatedly the fact that every normal subgroup of G has
trivial LF-radical, which is established as in the above proof of Proposition 2.4. In particular,
normal subgroups of G have no non-trivial compact normal subgroups.

We begin by treating the case where G is totally disconnected. Let L be the intersection
of all non-trivial closed normal subgroups. We distinguish two cases.

If L is trivial, then Proposition 2.5 shows that G admits a non-trivial discrete normal
subgroup. Thus Proposition 2.4 applies andG is discrete; in that case, Wilson's result ([Wil71],
Proposition 1) completes the proof.

Assume now that L is not trivial. Then it is cocompact whence compactly generated since
G is so. Notice that by de�nition L is characteristically simple. We further distinguish two
cases.

On the one hand, assume that the quasi-centre QZ (L) is non-trivial. Then it is dense in
L. Since L is compactly generated, the arguments of the proof of Theorem 4.8 in [BEW08]
(see Proposition 4.3 below) show that L possesses a compact open normal subgroup. Since
L has no non-trivial compact normal subgroup, we deduce that L is discrete. Now L is a
non-trivial discrete normal subgroup and we have already seen above how to �nish the proof
in that situation.

On the other hand, assume that the quasi-centre QZ (L) is trivial. In particular L possesses
no non-trivial discrete normal subgroup and we deduce from Proposition 2.6 that the set M
of non-trivial minimal closed normal subgroups of L is �nite and non-empty. Since L has no
non-trivial compact normal subgroup, no element of M is compact.

The group G acts on M by conjugation. Let E denote a G-orbit in M . Since ME =
〈M | M ∈ E 〉 is normal in G, it is dense in L. By Proposition 2.6, we infer that E = M . In
other words G acts transitively on M .

It now follows that L is a quasi-product with the elements of M as quasi-factors. In
particular, any normal subgroup M ′ of any M ∈ M is normalised by M and centralised by
each N ∈M di�erent from M . Since

∏
N∈M N is dense in L, we infer that M ′ is normal in
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L. Since M is a minimal normal subgroup of L, it follows that M is topologically simple and
(i) holds.

Now we turn to the case where G is not totally disconnected, hence its identity component
G◦ is cocompact. Since the maximal compact normal subgroup of Lemma 2.2 is trivial, G◦ is
a connected Lie group. Since its soluble radical is characteristic, it is trivial or cocompact.

In the former case, G◦ is semi-simple without compact factors. Since its isotypic factors are
characteristic, there is only one isotypic factor and we conclude that (i) holds.

If on the other hand the radical ofG◦ is cocompact, we deduce thatG admits a characteristic
cocompact connected soluble subgroup R�G. Let T be the last non-trivial term of the derived
series of R. If the identity component T ◦ is trivial, then T is a non-trivial discrete normal
subgroup of G and we may conclude by means of Proposition 2.4. Otherwise, the group R
possesses a characteristic connected Abelian subgroup T ◦, which is thus cocompact in G.

Since T ◦ has no non-trivial compact subgroup, we have T ◦ ∼= Rd for some d. The kernel of
the homomorphism G→ Out(T ◦) = Aut(T ◦) is a cocompact normal subgroup N containing
T ◦ in its centre, and such that N/T ◦ is compact. In particular N is a compactly generated
locally compact group in which every conjugacy class is relatively compact. In view of U²akov's
result (Theorem 2.3) and of the triviality of RadLF(N), the group N is of the form Rn×Zm.
In conclusion, since T ◦ is cocompact in N , we have T ◦ = N ∼= Rn. Considering once again the
map G → Aut(T ◦) ∼= GLn(R), we deduce that G/T ◦ is isomorphic to a compact subgroup
of GLn(R), which has to be irreducible since otherwise T ◦ would contain a non-cocompact
subgroup normalised by G. We conclude the proof of Theorem E by recalling that every
compact subgroup of GLn(R) is conjugated to a subgroup of O(n). �

3. Topological BN-pairs

By a celebrated lemma of Tits [Tit64], any group admitting a BN -pair of irreducible type
has the property that a normal subgroup acts either trivially or chamber-transitively on the
associated building. Tits used his transitivity lemma to show in loc. cit. that if G is perfect
and possesses a BN -pair with B soluble, then any non-trivial normal subgroup is contained
in Z =

⋂
g∈G gBg

−1. More generally, the same conclusion holds provided G is perfect and B
possesses a soluble normal subgroup U whose conjugates generate G. If G is endowed with
a group topology, the same arguments show that if G is topologically perfect and U is pro-
soluble, then G/Z is topologically simple. The following consequence of Theorem E does not
require any assumption on the normal subgroup structure of B.

Corollary 3.1. Let G be a topological group endowed with a BN -pair of irreducible type, such
that B < G is compact and open. Then G has a closed cocompact (topologically) characteristic
subgroup H containing Z =

⋂
g∈G gBg

−1, such that H/Z is topologically simple.

It follows in particular that G is topologically commensurable to a topologically simple group
since Z is compact and H cocompact.

Proof. The assumption that B is compact open implies that G is locally compact and that
the building X associated with the given BN -pair is locally �nite. Since the kernel of this
action coincides with Z =

⋂
g∈G gBg

−1, we may and shall assume that G acts faithfully on X.
Since G acts chamber-transitively on X and since B is the stabiliser of some base chamber c0,
it follows that G is generated by the union of B with a �nite set of elements mapping c0 to
each of its neighbours. Thus G is compactly generated. By Tits' transitivity lemma [Tit64,
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Prop. 2.5], for any non-trivial normal subgroup N of G, we have G = N.B, whence N is
cocompact provided it is closed.

If X is �nite, then G is compact and we are done. Otherwise G is non-compact and non-
discrete, because B is then necessarily in�nite. We are thus in a position to apply Theorem E.
Since G is a subgroup of the totally disconnected group Aut(X), it follows that G is totally
disconnected and we deduce that G is monolithic with a quasi-product of topologically simple
groups as a monolith. The fact that the monolith has only one simple factor follows from
the fact that G acts faithfully, minimally and without �xed point at in�nity on a CAT(0)
realisation of X. Such a CAT(0) realisation is necessarily irreducible as a CAT(0) space
by [CH06] and [CM09, Theorem 1.10] ensures that no abstract normal subgroup of G splits
non-trivially as a direct product. �

4. Discrete quotients

Residually discrete groups. Any topological group admits a �ltering family of closed nor-
mal subgroups, consisting of all open normal subgroups. Specialising Proposition 2.5 to this
family yields the following fact.

Corollary 4.1. Let G be a compactly generated locally compact group. Then the following
assertions are equivalent.

(i) G is residually discrete.
(ii) G is a totally disconnected SIN-group.
(iii) The compact open normal subgroups form a basis of identity neighbourhoods.

Recall that a locally compact group is called a SIN-group if it possesses a basis of identity
neighbourhoods which are invariant by conjugation. Equivalently, SIN-groups are those for
which the left and right uniform structures coincide. A classical theorem of Freudenthal and
Weil ([Fre36] and [Wei40, � 32]; see also [Dix96, � 16.4.6]) states that a connected group is
SIN if and only if it is of the form K × Rn with K compact (connected) and n ≥ 0. This
complements nicely the above corollary, implying easily that any locally compact SIN-group is
an extension of a discrete group by a group K×Rn; the latter consequence is Theorem 2.13(1)
in [GM71].

Proof of Corollary 4.1. The implications (iii) ⇒ (i) and (iii) ⇒ (ii) are immediate.

(ii)⇒ (iii) Since G is totally disconnected, the compact open subgroups form a basis of identity
neighbourhoods [Bou71, III � 4 No 6]. By assumption, given any compact open subgroup
U < G, there is an identity neighbourhood V ⊆ U which is invariant by conjugation. The
subgroup generated by V is thus normal in G, open since it contains V and compact since it
is contained in U . Thus (iii) holds indeed.

(i) ⇒ (iii) Assume that G is residually discrete. Then G is totally disconnected and the
compact open subgroups form a basis of identity neighbourhoods. Let V < G be compact
and open and QV ⊆ V denote the compact normal subgroup provided by Proposition 2.5. By
assumption we have

⋂
F = 1, where F denotes the collection of all open normal subgroups

of G.
We claim that the quotient G/QV is residually discrete. Indeed, for any x ∈ G, the family

{(x·N)∩QV }N∈F is �ltering and its intersection coincides with {x}∩QV . Since QV is compact
and since open subgroups are closed, it follows that for each x 6∈ QV there exist �nitely many
elements N1, . . . , Nk ∈ F such that (

⋂k
i=1 x · Ni) ∩ QV = ∅. Since N0 =

⋂k
i=1Ni belongs
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to F , we have thus found an open normal subgroup N0 of G such that x 6∈ N0 · QV . The
projection of N0 · QV in the quotient G/QV is thus an open normal subgroup which avoids
the projection of x. This proves the claim.

Since the collection of all open normal subgroups of G/QV forms a �ltering family, Propo-
sition 2.5 now implies that G/QV possesses some discrete open normal subgroup. Therefore
G/QV is itself discrete and hence QV is open in G. This shows that any compact open sub-
group V contains a compact open normal subgroup QV . The desired conclusion follows. �

Remark 4.2. Notice that a pro�nite extension of a discrete group is not necessarily residually
discrete, as illustrated by the unrestricted wreath product (

∏
Z Z/2) o Z, where Z acts by

shifting indices. However, if a totally disconnected group G possesses a compact open normal
subgroup Q which is topologically �nitely generated, then G is residually discrete. Indeed,
the pro�nite group Q has then �nitely many subgroups of any given �nite index and, hence,
possesses a basis of identity neighbourhoods consisting of characteristic subgroups.

The discrete residual. We recall that the discrete residual of a topological group is the
intersection of all open normal subgroups. Notice that the quotient of a group by its discrete
residual is residually discrete.

Proof of Theorem F. Let R0 denote the discrete residual of G. Since G/R0 is residually dis-
crete, it follows from Corollary 4.1 that R0 is contained cocompactly in some open normal
subgroup of G. In view of the hypotheses, this shows that R0 is cocompact, whence compactly
generated.

Let R1 denote the discrete residual of R0. We have to show that R0 = R1. Since R1 is
characteristic in R0, it is normal in G. Observe that all subquotients of G/R1 considered below
are totally disconnected since the latter is an extension of the residually discrete groups R0/R1

and G/R0. We consider the canonical projection π : G → G/R1 and de�ne an intermediate
characteristic subgroup R1 ≤ L ≤ R0 by

L = π−1(RadLF(R0/R1)).

Since the group R0/R1 is residually discrete, it follows from Corollary 4.1 that its LF-radical
is open. In other words the subquotient R0/L is discrete. Since it is cocompact in G/L,
it is moreover �nitely generated. It follows that the normal subgroup Z := ZG/L(R0/L) is
open. By hypothesis, it has �nite index in G/L and contains R0/L. In particular, it has
cocompact centre and thus Z is compact-by-Zm for some m, as is checked e.g. as an easy
case of Theorem 2.3, recalling that Z is totally disconnected. In conclusion, Z has a compact
open characteristic subgroup; the latter has �nite index in G/L by assumption. Thus L is
cocompact in G, whence compactly generated. The topologically locally �nite group L/R1 is
thus compact (Lemma 2.3 in [Cap09]). In particular R1 itself is cocompact in G. Now G/R1

is a pro�nite group, thus residually discrete. This �nally implies that R0 = R1, as desired. �

Quasi-discrete groups. We end this section with an additional remark regarding the quasi-
centre. We shall say that a topological group is quasi-discrete if its quasi-centre is dense.
Examples of quasi-discrete groups include discrete groups as well as pro�nite groups which
are direct products of �nite groups. A connected group is quasi-discrete if and only if it is
Abelian. The following fact can be extracted from the proof of Theorem 4.8 in [BEW08]; since
the argument is short we include it for the sake of completeness.

Proposition 4.3. In any quasi-discrete compactly generated totally disconnected locally com-
pact group, the compact open normal subgroups form a basis of identity neighbourhoods.
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Thus a compactly generated totally disconnected locally compact group which is quasi-
discrete satis�es the equivalent conditions of Corollary 4.1.

Proof. Let G be as in the statement and U < G be any compact open subgroup. By compact
generation, there is a �nite set {g1, . . . , gn} that, together with U , generates G. Since G is
quasi-discrete, G = QZ (G) ·U and thus we can assume that each gi belongs to QZ (G). The
subgroup

⋂n
i=1 ZU (gi) < U is open and hence contains a �nite index open subgroup V which

is normalised by U . Thus V is a compact open normal subgroup of G contained in U . �

We �nish this subsection by recording two consequences of the latter for the sake of future
reference.

Corollary 4.4. Let G be a compactly generated locally compact group without non-trivial
compact normal subgroup. If G is quasi-discrete, then the identity component G◦ is open,
central and isomorphic to Rn for some n. Moreover, we have G = QZ (G).

Proof. We �rst observe that G◦ is central; indeed, it is centralised by the dense subgroup
QZ (G) since G◦ is contained in every open subgroup. By Lemma 2.2, the LF-radical of G◦ is
a compact normal subgroup of G, and is thus trivial by hypothesis; moreover, it follows that
G◦ is an Abelian Lie group without periodic element. Thus G◦ ∼= Rn for some n.

Since any quotient of a quasi-discrete group remains quasi-discrete, Proposition 4.3 implies
that the group of components G/G◦ admits some compact open normal subgroup V . It now
su�ces to prove V = 1 to establish the remaining statements.

Denote by N �G the G◦-by-V extension; it is compactly generated and has only compact
conjugacy classes since G◦ is central. In particular, Theorem 2.3 guarantees that RadLF(N)
is compact and that N/RadLF(N) is Abelian without compact subgroup. Since N is normal
in G, it follows that RadLF(N) is trivial and thus indeed N = G◦ as required. �

Corollary 4.5. Let G be a compactly generated totally disconnected locally compact group
admitting an open quasi-discrete subgroup. Then either G is compact or G possesses an in�nite
discrete quotient.

Proof. Let H be the given quasi-discrete open subgroup of G. Let h ∈ QZ (H) be an element
of the quasi-centre of H. Then ZH(h) is open in H, from which we infer that ZG(h) is open
in G and hence h ∈ QZ (G). In particular, the closure Z = QZ (G) is open in G.

If Z has in�nite index, then G/Z is an in�nite discrete quotient of G. Otherwise Z has
�nite index and is thus compactly generated. By Proposition 4.3, it follows that Z possesses
a compact open normal subgroup. Since Z has �nite index in G, we deduce that G itself
possesses a compact open normal subgroup. The desired conclusion follows. �

5. On structure theory

Quasi-simple quotients. Before undertaking the proof of Theorems A and B, we record
one additional consequence of Proposition 2.5. Before stating it, we recall from the introduc-
tion that a group is called quasi-simple if it possesses a cocompact normal subgroup which
is topologically simple and contained in every non-trivial closed normal subgroup of G; in
other words, a quasi-simple group is a monolithic group whose monolith is cocompact and
topologically simple.

Corollary 5.1. Let G be a compactly generated locally compact group and {Nv | v ∈ Σ} be
a collection of pairwise distinct closed normal subgroups of G such that for each v ∈ Σ, the
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quotient G/Nv is quasi-simple, non-discrete and non-compact. Suppose that
⋂
v∈ΣNv = 1.

Then Σ is �nite.

Proof. We write Hv := G/Nv. By hypothesis each Hv is monolithic with simple cocompact
monolith, which we denote by Sv. We claim that G has no non-trivial compact normal
subgroup. Let indeed Q�G be a compact normal subgroup of G. By the assumptions made
on Hv, the image of Q in Hv is trivial for each v ∈ Σ. Thus Q ⊆

⋂
v∈ΣNv and hence Q is

trivial.
The same line of argument shows that G has no non-trivial soluble normal subgroup. In

particular, the identity component G◦ is a connected semi-simple Lie group with trivial centre
and no compact factor, see Lemma 2.2. Such a Lie group G◦ is the direct product of its simple
factors. Moreover, G has an open characteristic subgroup of �nite index which splits as a direct
product of the form G◦×D determining some compactly generated totally disconnected group
D, see e.g. (the proof of) Theorem 11.3.4 in [Mon01].

The identity component of each Hv coincides with the image of G◦ (since any quotient
of a totally disconnected group is totally disconnected). Thus, whenever Hv is not totally
disconnected, the hypothesis implies Sv = H◦v and Hv is a pro�nite extension of one of the
simple factors of G◦, and that each factor appears once.

At this point, we can and shall assume that G is totally disconnected.

In view of Proposition 2.4 and the assumption made on Hv, the group Sv is non-discrete
for each v ∈ Σ. In particular, it follows that Hv has trivial quasi-centre.

Since the image of QZ (G) in Hv is contained QZ (Hv), we deduce that QZ (G)Nv = Nv

for all v ∈ Σ. In other words, we have QZ (G) <
⋂
v∈ΣNv = 1 and we conclude that G has

trivial quasi-centre.
Let now F be the �lter of closed normal subgroups of G generated by {Nv | v ∈ Σ}. Since

G has no compact non-trivial normal subgroup and no non-trivial discrete normal subgroup
(as QZ (G) = 1), we deduce from Proposition 2.5 that F is �nite. Thus Σ is �nite as well, as
desired. �

Maximal normal subgroups. We shall need the following statement due to R. Grigorchuk
and G. Willis; since it is unpublished, we provide a proof for the reader's convenience.

Proposition 5.2. Let G be a totally disconnected compactly generated non-compact locally
compact group. Then G admits a non-compact quotient with every proper quotient compact.

Proof. By Zorn's lemma, it su�ces to prove that for any chain H of non-cocompact closed
normal subgroups H �G, the group M =

⋃
H∈H H is still non-cocompact. If not, then M is

compactly generated. Therefore, choosing a compact open subgroup U < G, the chain {H.U}
of groups is an open covering of M , whence there is H ∈H with H.U ⊇M . Then this H is
cocompact, which is absurd. �

Remark 5.3. In view of the structure theory of connected groups [MZ55], the above Propo-
sition holds also true in the non-totally-disconnected case.

The following is a dual companion to Proposition 2.6. Additional information in this direc-
tion will be provided in Proposition II.1 in Appendix II below.

Proposition 5.4. Let G be a compactly generated totally disconnected locally compact group
which possesses no in�nite discrete quotient, and let H = Res(G) be the discrete residual of
G. Then every proper closed normal subgroup of H is contained in a maximal one, and the
set N of proper maximal closed normal subgroups is �nite.
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Proof. By Theorem F, the discrete residual H is cocompact in G, hence compactly generated.
Furthermore it has no non-trivial �nite quotient. Since H is totally disconnected, any compact
quotient would be pro�nite, and we infer that H has no non-trivial compact quotient. Now
the same argument as in the proof of Proposition 5.2 using Zorn's lemma shows that every
proper closed normal subgroup of H is contained in a maximal one.

Let N denote the collection of all these. Any quotient H/N being topologically simple,
hence quasi-simple, the �niteness of N follows readily from Corollary 5.1. �

Upper and lower structure.

Proof of Theorem A. We assume throughout that G is non-compact since otherwise (ii) holds
trivially. Assume �rst that G is almost connected. In particular the neutral component G◦

coincides with the discrete residual of G. Let R denote the maximal connected soluble normal
subgroup of G; this soluble radical is indeed well de�ned even if G is not a Lie group as
proved by K. Iwasawa (Theorem 15 in [Iwa49]; see also [Pat88, (3.7)]. If R is cocompact
we are in case (ii) of the Theorem. Otherwise G is not amenable and using the structure
theory of connected groups (notably Theorem 4.6 in [MZ55]), we deduce that G◦/R possesses
a non-compact (Lie-)simple factor, so that all assertions of the case (iii) of the Theorem are
satis�ed.

We now assume that G is not almost connected. If G admits an in�nite discrete quotient we
are in case (i) of the Theorem. We assume henceforth that G has no in�nite discrete quotient.
In particular its discrete residual G+ is cocompact and admits neither non-trivial discrete
quotients nor disconnected compact quotients, see Corollary G. Moreover G+ is compactly
generated, non-compact and contains the identity component G◦.

Let S be the collection of all topologically simple quotients of G+. Applying Corollary 5.1 to
the quotient group G+/K, where K =

⋂
S∈S Ker(G+ → S), we deduce that S is �nite. Thus

the assertion (iii) of Theorem A will be established provided we show that S is non-empty.
To this end, it su�ces to prove that the group of components G+/G◦ admits some non-

compact topologically simple quotient. But this follows from Proposition 5.4 since any quotient
ofG+/G◦ is non-compact and since each topologically simple quotient is a�orded by a maximal
closed normal subgroup. �

Proof of Theorem B. We assume that assertions (i) and (ii) of the Theorem fail. Note that if
G is totally disconnected, then Proposition 2.6 �nishes the proof.

As is well known (see the proof of Corollary 5.1), the non-existence of non-trivial compact
(resp. connected soluble) normal subgroups implies that G possesses a characteristic open
subgroup of �nite index G+ < G which splits as a direct product of the form G+ = G◦ ×D,
where G◦ is a semi-simple Lie group and D is totally disconnected.

Notice that G/G◦ is a totally disconnected locally compact group which might possess
non-trivial �nite normal subgroups. In order to remedy this situation, we shall now exhibit a
closed normal subgroup G1 ≤ G containing G◦ as a �nite index subgroup and such that G/G1

has no non-trivial compact or discrete normal subgroup.
Let N be a closed normal subgroup of G containing G◦. Then N+ = N ∩ G+ is a �nite

index subgroup which decomposes as a direct product of the form N+ ∼= G◦ × (D ∩ N). If
the image of N in G/G◦ is compact (resp. discrete), then D∩N is a compact (resp. discrete)
normal subgroup of G, and must therefore be trivial, since otherwise assertion (ii) (resp. (i))
would hold true. We deduce that any compact (resp. discrete) normal subgroup of G/G◦ is
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�nite with order bounded above by [G : G+]. In particular, there is a maximal such normal
subgroup, and we denote by G1 its pre-image in G.

Since G1 ∩ D injects into G1/G
◦, it is a �nite normal subgroup of G and must therefore

be trivial. Moreover G+ = G◦D is closed in G. Thus D has closed image in G/G◦, whence
in G/G1 since the canonical projection G/G◦ → G/G1 is proper, as it has �nite kernel. This
implies that DG1 is closed in G. In other words 〈D ∪G1〉 is a characteristic closed subgroup
of �nite index in G which is isomorphic to G1 ×D.

It follows at once that there is a canonical one-to-one correspondence between the closed
normal subgroups of G contained in D and the closed normal subgroups of G/G1 contained
in DG1/G1.

Now G/G1 is a compactly generated totally disconnected locally compact group without
non-trivial compact or discrete normal subgroup, and Proposition 2.6 guarantees that the set
M1 of its non-trivial minimal closed normal subgroups is �nite and non-empty. Moreover, an
element of M1 does not possess any non-trivial �nite index closed normal subgroup and must
therefore be contained in DG1/G1. Similarly, any minimal closed normal subgroup of G must
be contained in G+.

Since any minimal closed normal subgroup of G is either connected or totally disconnected,
and since the connected ones are nothing but (regrouping of) simple factors of G◦, we �nally
obtain a canonical one-to-one correspondence between M1 and the set of non-trivial minimal
closed normal subgroups of G which are totally disconnected. The desired conclusion follows
since, as observed above, the set M1 is �nite and non-empty. �

Proof of Corollary D. Assume G is not discrete. The discrete residual Res(G) is characteristic.
If Res(G) = 1 then G is residually discrete and hence, its LF-radical is open by Corollary 4.1.
Since the LF-radical is characteristic and G is not discrete, we deduce that G is topologically
locally �nite, hence compact since it is compactly generated.

We assume henceforth that Res(G) = G and that G is not compact. The above argument
shows moreover that G has trivial LF-radical and trivial quasi-centre.

If G is not totally disconnected, then it is connected. If this is the case, the LF-radical of G
is compact (see Lemma 2.2) hence trivial, and we deduce that G is a Lie group. In this case,
the standard structure theory of connected Lie groups allows one to show that either G ∼= Rn

or G is a direct product of pairwise isomorphic simple Lie groups.
Assume �nally that G is totally disconnected. Then Proposition 2.6 guarantees that the set

M of non-trivial minimal closed normal subgroups of G is �nite and non-empty. Moreover,
since for any proper subset E ⊂M , the subgroup 〈M |M ∈ E 〉 is properly contained in G, it
follows that Aut(G) acts transitively on M .

Now we conclude as in the proof of Theorem E that G is a quasi-product with the elements
of M as topologically simple quasi-factors. �

6. Composition series with topologically simple subquotients

We start with an elementary decomposition result on quasi-products.

Lemma 6.1. Let G be a locally compact group which is a quasi-product with in�nite topologi-
cally simple quasi-factors M1, . . . ,Mn. Then G admits a sequence of closed normal subgroups

1 = Z0 < G1 < Z1 < G2 < Z2 < · · · < Zn−1 < Gn = G,

where for each i = 1, . . . , n, the subgroup Gi is de�ned as Gi = Zi−1Mi, the subquotient
Gi/Zi−1 is topologically simple and Zi/Gi = Z (G/Gi).
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Proof. The requested properties of the normal series provide in fact a recursive de�nition for
the closed normal subgroups Zi and Gi. In particular all we need to show is that Zi−1 is a
maximal proper closed normal subgroup of Gi.

We �rst claim thatMj∩Gi−1 = 1 for all 1 ≤ i < j, where it is understood thatG0 = 1. Since
no Mj is Abelian, this amounts to showing that Gi−1 ≤ ZG(MiMi+1 . . .Mn). We proceed by
induction on i, the base case i = 1 being trivial. Now we need to show that Mi and Zi−1

are both contained in ZG(Mi+1 . . .Mn). This is clear for Mi. By induction Mi . . .Mn maps
onto a dense normal subgroup of G/Gi−1. Since Zi−1/Gi−1 = Z (G/Gi−1) by de�nition, we
infer that [Zi−1,Mj ] ≤ Gi−1 for all j ≥ i. Of course we have also [Zi−1,Mj ] ≤ Mj since Mj

is normal. The intersection Gi−1 ∩Mj being trivial by induction, we infer that [Zi−1,Mj ] is
trivial as well. Thus Mi and Zi−1 are indeed both contained in ZG(Mi+1 . . .Mn), and so is
thus Gi. The claim stands proven.

Let now N be a closed normal subgroup G such that Zi−1 ≤ N < Gi. By the claim we
have Gi ∩Mj = 1 for all j > i, hence N ∩Mj = 1. Now if N ∩Mi 6= 1, then Mi < N since Mi

is topologically simple. In that case, we deduce that N contains Zi−1Mi, which contradicts
that N is properly contained in Gi. Thus we have N ∩Mi = 1. In particular we deduce that
N ≤ ZG(MiMi+1 . . .Mn). Since MiMi+1 . . .Mn maps densely into G/Gi−1, we deduce that
the image of N in G/Gi−1 is central. By de�nition, this means that N is contained in Zi−1,
thereby proving that Zi−1 is indeed maximal normal in Gi. �

Proof of Theorem C. In view of the structure theory of connected locally compact groups (see
Lemma 2.2) and of connected Lie groups, the desired result holds in the connected case.
Moreover, any homomorphic image of a Noetherian group is itself Noetherian. Therefore,
there is no loss of generality in replacing G by the group of components G/G◦. Equivalently,
we shall assume henceforth that G is totally disconnected.

We �rst claim that any closed normal subgroup of G is compactly generated. Indeed, given
such a subgroup N < G, pick any compact open subgroup U and consider the open subgroup
NU < G. Since N is a cocompact subgroup of NU , which is compactly generated as G is
Noetherian, we infer that N itself is compactly generated, as claimed. Notice that the same
property is shared by closed normal subgroups of any open subgroup of G.

Let now Res(G) denote the discrete residual of G. Thus G/Res(G) is residually discrete
and Noetherian. Corollary 4.1 thus implies that the LF-radical of G/Res(G) is open, while
the above claim guarantees that it is compact. We denote by O the pre-image in G of
RadLF(G/Res(G)). Thus O is an open characteristic subgroup of G containing Res(G) as a
cocompact subgroup. In particular, the discrete quotients of O are all �nite. Now Theorem F
guarantees that Res(G) = Res(O) has no non-trivial discrete quotient.

Setting H = Res(G), we have thus far constructed a series 1 < H < O < G of characteristic
subgroups with O open and O/H compact. We shall now construct inductively a �nite
increasing sequence

1 = H0 < H1 < H2 < · · · < Hl = H < O

of normal subgroups of O satisfying the following conditions for all i = 1, . . . , l:

(a) If RadLF(H/Hi−1) is non-trivial, then RadLF(G/Hi) = 1.
(b) Hi/Hi−1 is either compact, or isomorphic to Zn for some n, or to a quasi-product

with topologically simple pairwise O-conjugate quasi-factors.
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Let j > 0 and assume that the �rst j − 1 terms H0, . . . ,Hj−1 of the desired series have
already been constructed, in such a way that properties (a) and (b) hold with i < j. We
proceed to de�ne Hj as follows.

If RadLF(H/Hj−1) is non-trivial, then we letHj be the pre-image inH of RadLF(H/Hj−1).
Properties (a) and (b) clearly hold for j = i in this case.

Assume now that RadLF(H/Hj−1) = 1 and that QZ (H/Hj−1) is non-trivial. Let M
denote the closure of QZ (H/Hj−1) in H/Hj−1. Thus M is characteristic and quasi-discrete.
Furthermore, the fact that RadLF(H/Hj−1) = 1 implies that M has no non-trivial compact
normal subgroup. Therefore Corollary 4.4 ensures that M = QZ (H/Hj−1) and that the
identity component M◦ is open and isomorphic to Rn for some n.

Since H is totally disconnected, it follows thatM◦ is trivial. ThusM is totally disconnected
as well, hence compact-by-discrete in view of Proposition 4.3. But M has no non-trivial
compact normal subgroup since RadLF(H/Hj−1) is trivial and it follows that M is discrete.
We claim that M is Abelian. Indeed, since M is discrete and �nitely generated, its centraliser
in H/Hj−1 is open. By assumption H has no non-trivial discrete quotient, and this property
is inherited by the quotient H/Hj−1. We deduce that ZH/Hj−1

(M) = H/Hj−1; in other words
M is central in H/Hj−1 hence Abelian, as claimed. Let M0 denote the unique maximal free
Abelian subgroup of M . Then M0 is non-trivial since M is not compact. We de�ne Hj to be
the pre-image of M0 in H. Then Hj is characteristic and again, properties (a) and (b) are
both satis�ed with i = j in this case.

It remains to de�ne Hj in the case where the LF-radical RadLF(H/Hj−1) and the quasi-
centre QZ (H/Hj−1) are both trivial. In that case, Proposition 2.6 guarantees that H/Hj−1

contains some non-trivial minimal closed normal subgroups of O/Hj−1, say M , provided
H/Hj−1 is non-trivial. Clearly M is characteristically simple, so that, by Corollary D, it is a
quasi-product with �nitely many topologically simple quasi-factors. Now O acts transitively
by conjugation on these quasi-factors, otherwise M would contain a proper closed normal
subgroup (see Proposition 2.6), contradicting minimality. It remains to de�ne Hj as the
pre-image of M in O.

Hence (a) and (b) hold with i = j in all cases.

We have thus constructed an ascending chain of subgroups 1 = H0 < H1 < H2 < · · · < H <
O which are all normal in O and we proceed to show that Hk = H for some large enough index
k. Suppose for a contradiction that this is not the case and set H∞ =

⋃∞
i=1Hi. Since H∞ is

normal in O, it is compactly generated (see the second paragraph of the present proof above).
Let V < H∞ be a compact open subgroup. Then the ascending chain V ·H1 < V ·H2 < · · ·
yields a covering of H∞ by open subgroups. The compact generation of H∞ thus implies
that V · Hk = H∞ for k large enough. In particular Hk is cocompact in H∞. Therefore
RadLF(H/Hk) is non-trivial. By property (a), this implies that RadLF(H/Hk+1) is trivial
and hence H∞ ⊆ Hk+1. This contradiction establishes the claim.

It only remains to show that the series of characteristic subgroups 1 = H0 < H1 < H2 <
· · · < Hl = H that we have constructed can be re�ned into a subnormal series satisfying
the desired conditions on the subquotients. By construction, it su�ces to re�ne the non-
compact non-Abelian subquotientsHi/Hi−1. Since these are quasi-products with �nitely many
topologically simple pairwise O-conjugate quasi-factors, we may replace O by an appropriate
closed normal subgroup of �nite index, say O′, in such a way that for all i, each topologically
simple quasi-factor of Hi/Hi−1 is normal in O′/Hi−1. Consider now the decomposition of
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Hi/Hi−1 provided by Lemma 6.1. Each term of this decomposition is normal in O′/Hi−1,
and must therefore be compactly generated. Therefore, the corresponding subquotients are
compactly generated. In particular, the Abelian subquotients are compact-by-Zk. Introducing
these intermediate terms in the series 1 = H0 < H1 < H2 < · · · < Hl = H < O′ < O < G, we
obtain a re�nement which has all the desired properties. �

Appendix I. The adjoint closure and asymptotically central sequences

On the Braconnier topology. Let G be a locally compact group and Aut(G) denote the
group of all homeomorphic automorphisms of G. There is a natural topology, sometimes called
the Braconnier topology, turning Aut(G) into a Hausdor� topological group; it is de�ned
by the sub-base of identity neighbourhoods

A(K,U) :=
{
α ∈ Aut(G) | ∀x ∈ K, α(x)x−1 ∈ U and α−1(x)x−1 ∈ U

}
,

where K ⊆ G is compact and U ⊆ G is an identity neighbourhood (see Chap. IV � 1 in [Bra48]
or [HR79, Theorem 26.5]).

In other words, this topology is the common re�nement of the compact-open topology for
automorphisms and their inverses; recall in addition that a topological group has canonical
uniform structures so that the compact-open topology coincides with the topology of uniform
convergence on compact sets ([Bra48] p. 59 or [Kel75] � 7.11).

In fact, the Braconnier topology coincides with the restriction of the g-topology on the
group of all homeomorphisms of G introduced by Arens [Are46], itself hailing from Birkho�'s
C-convergence [Bir34, � 11]. It can alternatively be de�ned by restricting the compact-open
topology for the Alexandro� compacti�cation, an idea originating with van Dantzig and van
der Waerden [vDvdW28, � 6].

Braconnier shows by an example that the compact-open topology itself is in general too
coarse to turn Aut(G) into a topological group [Bra48, pp. 57�58]. We shall establish below a
basic dispensation from this fact for the adjoint representation (Proposition I.1). Meanwhile,
we recall that the Braconnier topology coincides with the compact-open topology when G
is compact (Lemma 1 in [Are46]) and when G is locally connected (Theorem 4 in [Are46]).
There are of course non-locally-connected connected groups: the solenoids of Vietoris [Vie27,
II] and van Dantzig [vD30, � 2 Satz 1]. Nevertheless, using notably the solution to Hilbert's
�fth problem, S.P. Wang showed that the two topologies still coincide for all connected and
indeed almost connected locally compact groups [Wan69, Corollary 4.2]. Finally, the topologies
coincide for G discrete and G = Qn

p , see [Bra48, p. 58].

We emphasise that the Braconnier topology on Aut(G) need not be locally compact,
see [HR79, � 26.18.k]. A criterion ensuring that Aut(G) is locally compact will be presented
in Theorem I.6 below in the case of totally disconnected groups.

Nevertheless, Aut(G) is a Polish (hence Baire) group when G is second countable. Indeed,
it is by de�nition closed (even for the weaker pointwise topology) in the group of homeomor-
phisms of G endowed with Arens' g-topology; the latter is second countable (see e.g. [GP57,
5.4]) and complete for the bilateral uniform structure [Are46, Theorem 6]. Notice that this
complete uniformisation is not the usual left or right uniform structure, which is known to be
sometimes incomplete at least for the group of homeomorphisms (Arens, loc. cit.).

The Baire property implies for instance that Aut(G) is discrete when countable, which was
observed in [Pla77, Satz 2] for G itself discrete.
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Adjoint representation. Given a closed normal subgroup N < G, the conjugation action
of G on N yields a map G → Aut(N) which is continuous (see [HR79, Theorem 26.7]).
In particular, the natural map Ad : G → Aut(G) induced by the conjugation action is a
continuous homomorphism. We endow the group Ad(G) < Aut(G) with the Braconnier
topology. Thus, a sub-base of identity neighbourhoods is given by the image in Ad(G) of all
subsets of G of the form

B(K,U) :=
{
g ∈ G | [g,K] ⊆ U and [g−1,K] ⊆ U

}
,

where (K,U) runs over all pairs of compact subsets and identity neighbourhoods of G.

As an abstract group, Ad(G) is isomorphic to G/Z (G); we emphasise however that the
latter is endowed with the generally �ner quotient topology.

Proposition I.1. Let G be a locally compact group such that the group of components G/G◦

is unimodular.
Then the Braconnier topology on Ad(G) coincides with the compact-open topology.

Proof. Let {gα}α be a net in G such that Ad(gα) converges to the identity in the compact-open
topology. According to the result of S.P. Wang quoted earlier in this section, the automor-
phisms Ad(gα)|G◦ of the identity component G◦ converge to the identity for the Braconnier
topology on Aut(G◦). According to Proposition 2.3 in [Wan69], it now su�ces to prove that
the induced automorphisms on G/G◦ also converge to the identity for the Braconnier topology
on Aut(G/G◦). Therefore, we can suppose henceforth that G is totally disconnected.

By assumption, {gα} eventually penetrates every set of the form

B′(K ′, U ′) := {g ∈ G | [g,K ′] ⊆ U ′},

where K ′ ⊆ G is compact and U ′ ⊆ G is a neighbourhood of e ∈ G. Thus it su�ces to show
that for all K ⊆ G compact and U ⊆ G identity neighbourhood, there is K ′ and U ′ with

B′(K ′, U ′) ⊆ B(K,U).

Since G is totally disconnected, there is a compact open subgroup U ′ < G contained in U .
Set K ′ = K ∪ U ′ and �x any g ∈ B′(K ′, U ′). We need to show that [g−1,K] ⊆ U .

First, notice that [g−1,K] = g−1[g,K]−1g. Next, [g,K] and hence also [g,K]−1 is in U ′.
Finally, [g, U ′] ⊆ U ′ means that gU ′g−1 ⊆ U ′; by unimodularity, it follows that g normalises
U ′. We conclude that [g−1,K] ⊆ U ′ ⊆ U , as was to be shown. �

A locally compact group G for which the map Ad : G → Ad(G) is closed will be called
Ad-closed. In that case, Ad(G) is isomorphic to G/Z (G) as a topological group and thus
in particular it is locally compact.

The group G can fail to be Ad-closed even when it is a connected Lie group (Example I.3
below; see also e.g. [LW70, Zer76]). Perhaps more strikingly, G can fail to be Ad-closed even
when countable, discrete and Z/2Z-by-abelian [Wu71, 4.5].

Asymptotically central sequences. Let G be a locally compact group. A sequence {gn} of
elements of G is called asymptotically central if Ad(gn) converges to the identity in Ad(G).
Obvious examples are central sequences or sequences converging to e; we shall investigate the
existence of non-obvious ones (for an admittedly limited analogy, compare the property Γ
introduced for II1-factors by Murray and von Neumann, De�nition 6.1.1 in [MvN43]).
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The existence of suitably non-trivial asymptotically central sequences is related to the ques-
tion whether the Braconnier topology on G (strictly speaking, on G/Z (G)) coincides with
the initial topology, as follows.

Proposition I.2. Let G be a second countable locally compact group. The following conditions
are equivalent.

(i) Ad(G) is locally compact.
(ii) The continuous homomorphism Ad : G→ Ad(G) is closed.
(iii) The map G/Z (G)→ Ad(G) is a topological group isomorphism.
(iv) The image in G/Z (G) of every asymptotically central sequence is relatively compact.

A su�cient condition for this is that G admits some compact open subgroup U such that
NG(U) is compact.

Proof. (i) ⇒ (ii) This is a well-known application of the Baire category principle, going back
at least to [Pon39, Theorem XIII].

(ii) ⇒ (iii) and (iii) ⇒ (iv) follow from the de�nitions.

(iv) ⇒ (i) Let {Kn} be an increasing sequence of compact subsets of G whose union covers
G and let {Un} be a decreasing family of sets providing a basis of neighbourhoods of e ∈ G.
Assuming for a contradiction that Ad(G) is not locally compact, none of the sets B(Kn, Un)
can have a relatively compact image in Ad(G). Therefore, we can choose for each n an element
gn in B(Kn, Un) but not in Kn.Z (G). By construction, the sequence {gn} is unbounded in
G/Z (G) but Ad(gn) converges to the identity, a contradiction.

Finally, notice that if U is a compact open subgroup of G, then NG(U) = B(U,U). This
shows that if NG(U) is compact, then Ad(G) admits Ad(B(U,U)) as a compact identity
neighbourhood. �

We recall from [KK44] that a σ-compact locally compact group G always possesses a com-
pact normal subgroup Q such that the quotient G/Q is metrisable. In particular, any com-
pactly generated locally compact group without non-trivial compact normal subgroup satis�es
the hypotheses of Proposition I.2.

The following construction provides examples of Lie groups which are not Ad-closed.

Example I.3. Let L ∼= R < R2 be a one-parameter subgroup with irrational slope and denote
by Z the image of L in the torus T2 = R2/Z2. Thus Z is a connected dense subgroup of
T2. Let us now choose a continuous faithful representation of T2 in O(4) and consider the
corresponding semi-direct product H = T2 n R4. We de�ne G = Z n R4. Thus G is a
connected subgroup of the Lie group O(4) n R4.

We claim that G is not Ad-closed. Indeed, let (zn) be an unbounded sequence of elements
of Z which converge to 1 in the torus T2. One veri�es easily that G is centrefree and that
the above sequence is asymptotically central in G. This yields the desired claim in view of
Proposition I.2.

An illustration of the relevance of the notion of Ad-closed groups is provided by the following.

Lemma I.4. Let G be a locally compact group and H < G be a closed subgroup. If H is
Ad-closed, then H.ZG(H) is closed in G.

Proof. Without loss of generality, we may assume that H.ZG(H) is dense in G. Then H
is normal and there is a continuous conjugation action α : G → Aut(H). Since H.ZG(H)
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is dense, it follows that Ad(H) is dense in α(G). Now Ad(H) being closed in Aut(H) by
hypothesis, we infer that α(G) = Ad(H). The result follows, since the pre-image of Ad(H) in
G is nothing but H.ZG(H). �

The adjoint closure. The closure of Ad(G) in Aut(G) will be called the adjoint closure of
G and will be denoted by Ad(G). We think of an automorphism in Ad(G) as �approximately
inner�. We point out that Ad(G) is normal in Aut(G) and hence in particular in Ad(G).

Basic properties of the adjoint closure are summarised in the following. Notice that Ad(G)
is not assumed locally compact except in the last item.

Lemma I.5. Let G be a locally compact group.

(i) If G is centrefree, then so is Ad(G).
(ii) If G is topologically simple, then so is Ad(G).
(iii) If G is totally disconnected, then so is Ad(G).
(iv) Suppose that Ad(G) is locally compact. If G is compactly generated, then so is Ad(G).

Proof. (i) Given α ∈ ZAut(G)(Ad(G)), we have α(g)xα(g)−1 = gxg−1 for all g, x ∈ G. Thus
α(g)−1g belongs to Z (G) and the result follows.

(ii) Let H < Ad(G) be a closed normal subgroup and let H0 = Ad−1(H) be the pre-image of
H in G. Then H0 is a closed normal subgroup of G and is thus trivial of the whole group.
If H0 = G, then H contains Ad(G) which is dense, thus H = G as well. If H0 = 1, then
H ∩Ad(G) = 1. This implies that [H,Ad(G)] ⊆ H ∩Ad(G) = 1. Thus H commutes with the
dense subgroup Ad(G) and is thus contained in the centre of Ad(G), which is trivial by the
assertion (i).

(iii) See [Bra48, IV � 2] or [HR79, Theorem 26.8].

(iv) Let U be a compact neighbourhood of the identity in Ad(G) and C ⊆ G a compact
generating set. Then U.Ad(C) generates Ad(G). �

Locally �nitely generated groups. We shall say that a totally disconnected locally com-
pact group G is locally �nitely generated if G admits some compact open subgroup that is
topologically �nitely generated, i.e. possesses a �nitely generated dense subgroup. Since any
two compact open subgroups of G are commensurable, it follows that G is locally �nitely gen-
erated if and only if any compact open subgroup is topologically �nitely generated. Examples
of such include p-adic analytic groups (see e.g. [DdSMS99, Theorem 8.36]), many complete
Kac�Moody groups over �nite �elds [CER08, Theorem 6.4] as well as several (but not all)
locally compact groups acting properly on locally �nite trees [Moz98].

An important property of �nitely generated pro�nite groups is that they admit a (countable)
basis of identity neighbourhoods consisting of characteristic subgroups, because they have only
�nitely many closed subgroups of any given index. Locally �nitely generated groups are thus
covered by the following result.

Theorem I.6. Let G be a totally disconnected compactly generated locally compact group. Sup-
pose that G admits an open subgroup U that has a basis of identity neighbourhoods consisting
of characteristic subgroups of U ( e.g. G is locally �nitely generated).

Then Aut(G) is locally compact.

The proof will use the following version of the Arzelà�Ascoli Theorem.
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Proposition I.7. Let G be a locally compact group and V ⊆ Aut(G) a subset such that

(i) V = V −1;
(ii) G has arbitrarily small V -invariant identity neighbourhoods;
(iii) V (x) is relatively compact in G for each x ∈ G.
Then V is relatively compact in Aut(G).

In the case where V is a compact subgroup of Aut(G), this is Theorem 4.1 in [GM67].

Proof of Proposition I.7. Point (ii) implies that V is equicontinuous (in fact, uniformly equicon-
tinuous). Therefore, we can apply Arzelà�Ascoli (in the generality of [Bou74], X � 2 No. 5)
and deduce that V has compact closure in the space of continuous maps G → G endowed
with the compact-open topology (which, as mentioned, coincides with the topology of compact
convergence). The closure of V remains in the space of continuous endomorphisms since the
latter is closed even pointwise. In view of the symmetry of the assumptions and of the fact
that composition is continuous in the compact-open topology [Dug66, XII.2.2], the closure of
V remains in Aut(G) and is compact for the Braconnier topology. �

Proof of Theorem I.6. Let U < G be an open subgroup admitting a basis of identity neigh-
bourhoods {Uα}α consisting of characteristic subgroups of U . We can assume U compact
upon intersecting with a compact open subgroup. Let C ⊆ G be a symmetric compact set
generating G and containing U . We shall prove that V := A(C,U) ⊆ Aut(G) satis�es the
assumptions of Proposition I.7; this then establishes the theorem.

The �rst assumption holds by de�nition. For the second, notice �rst that V normalises U
since U ⊆ C implies

V ⊆ A(U,U) = NAut(G)(U).
Assumption (ii) holds since the identity neighbourhoods Uα are characteristic, hence nor-
malised by NAut(G)(U).

In order to establish the last assumption, choose x ∈ G. Since C is generating and sym-
metric, there is an integer d such that x ∈ Cd. The de�nition of V shows that for any
automorphism n ∈ V , we have n(x) ∈ (U.C)d; this implies (iii). �

The adjoint closure of discrete groups. A particularly simple illustration of the concepts
introduced above is provided by discrete groups. The Braconnier topology on Aut(G) is
then the topology of pointwise convergence and coincides with pointwise convergence of the
inverse. The adjoint closure Ad(G) coincides therefore with the group Linn(G) of locally
inner automorphisms, i.e. automorphisms that coincide on every �nite set with some inner
automorphism. This concept was apparently �rst introduced (lokal~no vnutrennim) by
Gol'berg [Gb46, � 3 Opredelenie 5].

Here are a few elementary properties of the resulting correspondance G 7→ Ad(G) from
abstract (resp. countable) groups to topological (resp. Polish) groups.

Proposition I.8. Let G be a discrete group and A = Ad(G) = Linn(G) its adjoint closure.

(i) Ad(G) ≤ QZ (A). In particuylar A is quasi-discrete; it is discrete if and only if there
is a �nite set F ⊆ G with ZG(F ) = Z (G).

(ii) A is compact if and only if G is FC1.
(iii) A is locally compact if and only if there is a �nite set F ⊆ G such that the index

[ZG(F ) : ZG(F ′)] is �nite for every �nite F ′ ⊇ F in G.

1Recall that G is an FC-group if all its conjugacy classes are �nite.
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(iv) A is locally compact and compactly generated if and only if there is F as in (iii) and
F0 ⊆ G �nite such that F0 ∪ZG(F ) generates G.

Proof. All veri�cations are straightforward. One uses notably an elementary version of Propo-
sition I.7 stating that, for G discrete, a subset V ⊆ AutG has compact closure if and only if
V (x) is �nite for all x ∈ G. �

Discrete groups are a safe playground to experiment with intermediate topologies inbetween
the original topology and the Braconnier topology induced via the adjoint representation.
The following construction will lead to interesting examples, see Appendix II and especially
Example II.7.

Let N be a discrete group and U < N a subgroup such that

(i) ZU (g) has �nite index in U for all g ∈ N ;
(ii) the intersection of all N -conjugates of U is trivial.

In particular, the N -conjugates of U generate a completable group topology [Bou60, TG III,
� 3, No 4] and N injects into the resulting complete totally disconnected topological group M .

Proposition I.9.

(i) The group M is locally compact; in fact U has compact-open closure in M .
(ii) There is a (necessarily unique) continuous injective homomorphism M/Z (M) →

Ad(N) compatible with the maps N →M and N → Ad(N). In particular, the dense
image of N in M is normal and quasi-central (thus M is quasi-discrete).

(iii) If N is centrefree (resp. simple), then M/Z (M) is centrefree (resp. topologically
simple).

(iv) M/Z (M) = Ad(N) if and only if ZN (F ) ⊆ U for some �nite F ⊆ N .

Proof. The �rst assertion is due to the fact that the closure of U in M is a quotient of
the pro�nite completion of U . The second assertion follows from the fact that a system of
neighbourhoods of the identity for theM -topology onN is given by U∩V , where V ranges over
the Ad(N)-neighbourhoods of the identity. The third assertion follows by the same argument
as in the proof of Lemma I.5. For the last assertion, observe that M = Ad(N) if and only if
U is open in the Braconnier topology on N . �

Example I.10. Let Ω be a countably in�nite set, let N < Sym(Ω) be an in�nite (almost) simple
group of alternating �nitary permutations, i.e. permutations with �nite support. Choose
also an equivalence relation ∼ on Ω all of whose equivalence classes have �nite cardinality,
and let U < N be an in�nite subgroup preserving each equivalence class. For each g ∈ N ,
there is a �nite index subgroup U ′ < U such that g and U ′ have disjoint support. Therefore
ZU (g) has �nite index in U for all g ∈ N . Moreover the intersection of all N -conjugates of U
is trivial since N is almost simple.

Concretely, one could de�ne N as the group of all alternating �nitary permutation, which
is indeed simple, and de�ne U as the subgroup preserving all equivalence classes of a relation
∼ which is a partition into subsets of �xed size k > 1. The group U is then isomorphic to a
restricted direct sum of �nite alternating groups of degree k and M is a totally disconnected
locally compact group which is topologically simple, topologically locally �nite and quasi-
discrete. (Here M is centrefree because every asymptotically central sequence of N converges
pointwise to the identity.)
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We remark that the examples of topologically simple locally compact groups admitting a
dense normal subgroup which were constructed by G. Willis in [Wil07, � 3] all �t in this set-
up, and can all be obtained by taking various specializations of the groups N < Sym(Ω) and
U < N .

Remark I.11. The previous example takes advantage of the fact that the group of all �nitary
permuations of a countably in�nite set Ω is not Ad-closed. Notice however that its adjoint
closure, which incidentally coincides with the group Sym(Ω) of all permutations of Ω, is
however not locally compact. Proposition I.9 and Example I.10 thus correspond to completions
which are genuinely intermediate between Ad(N) and Ad(N). This is an instance of a general
scheme that we shall present below, see Proposition II.5.

Appendix II. Quasi-products and dense normal subgroups

For general locally compact groups, there is a naturally occurring structure that is weaker
than direct products. We establish its basic properties and give some examples. In order to
avoid some obvious degeneracies, it is good to have in mind the centrefree case.

De�nitions and the Galois connection. Let G be a topological group. We call a closed
normal subgroup N �G a quasi-factor of G if N.ZG(N) is dense in G. In other words, this
means that the G-action on N is �approximately inner� in the sense that the image of G in
Aut(N) is contained in the adjoint closure Ad(N).

If N is a quasi-factor, then N ∩ ZG(N) is contained in the centre of G. Thus, in the
centrefree case, quasi-factors provide an example of the following concept with p = 2:

We say that G is the quasi-product of the closed normal subgroups N1, . . . , Np if the
multiplication map

N1 × · · · ×Np −→ G

is injective with dense image. We call the groups Ni the quasi-factors of this quasi-product;
notice that Ni and Nj commute for all i 6= j and therefore each Ni is indeed a quasi-factor in
the earlier sense.

Given a quasi-product, one has a family of quotients G � Si de�ned by Si = G/ZG(Ni).
Notice that the image of Ni in Si is a dense normal subgroup; moreover, when G is centrefree,
Ni injects into Si. Therefore, we obtain an injection with dense image:

G/Z (G) −→ S1 × · · · × Sp.
(The relation between quasi-products and dense normal subgroups will be further investigated
below; see Example I.10.)

The map N 7→ ZG(N) is an antitone Galois connection on the set of closed normal sub-
groups of G and in particular also on the collection of quasi-factors. It turns out that this
correspondence behaves particularly well for certain groups appearing in the main results of
this article, as follows. Denote by Max (resp. Min) the set of all maximal (resp. minimal)
closed normal subgroups which are non-trivial.

Proposition II.1. Let G be a non-trivial compactly generated totally disconnected locally
compact group. Assume that G is centrefree and without non-trivial discrete quotient. If⋂

Max is trivial, then the following hold.

(i) Min and Max are �nite and non-empty.
(ii) The assignment N 7→ ZG(N) de�nes a bijective correspondence from Min to Max.
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(iii) Every element of Min ∪Max is a quasi-factor.
(iv) G is the quasi-product of its minimal normal subgroups.

This result provides in particular additional information on characteristically simple groups,
which supplements Corollary D. Indeed, the hypotheses of the proposition are in particular
ful�lled by characteristically simple groups falling in case (iv) of Corollary D (see also Propo-
sition 5.4).

Proof of Proposition II.1. Notice that G has no non-trivial compact quotient since every dis-
crete quotient is trivial. The set Max is non-empty since it has trivial intersection; its
�niteness follows from Theorem A. Moreover, G embeds in the product of simple groups∏
K∈MaxG/K, which implies that G has trivial quasi-centre and no non-trivial compact nor-

mal subgroup. Indeed, otherwise some G/K would be compact or quasi-discrete (as in the
proof of Corollary 5.1). In particular, Theorem B implies that Min is �nite and non-empty;
assertion (i) is established. Actually, we shall use below not only that Min is non-empty, but
that every non-trivial closed normal subgroup of G contains a minimal one, see Proposition 2.6.

For the duration of the proof, denote by MaxQF the subset of Max consisting of those
elements which are quasi-factors of G.

We claim that the map N 7→ ZG(N) de�nes a one-to-one correspondence of Min onto MaxQF.
Moreover, every element of Min ∪MaxQF is a quasi-factor.

Let N ∈ Min. By hypothesis there is some K ∈ Max which does not contain N . By
minimality of N we deduce that N ∩ K is trivial and hence [N,K] = 1. Therefore N.K is
dense inG by maximality ofK. In particular, N andK are both quasi-factors. Moreover, since
ZG(N) contains K, maximality implies K = ZG(N) because G is centrefree. In other words,
N 7→ ZG(N) de�nes a map Min → MaxQF. Since any minimal closed normal subgroup of
G di�erent from N commutes with N , it is contained in K. Therefore, the above map is an
injection of Min into MaxQF. It remains to show that it is surjective.

To this end, pick K ∈ MaxQF. Then ZG(K) is a non-trivial closed normal subgroup of
G. It therefore contains an element of Min, say N . By de�nition K is contained in ZG(N),
whence K = ZG(N) by maximality. The claim stands proven.

We claim that every element of Max \MaxQF contains every element of Min.

If K ∈ Max and N ∈ Min are such that N 6≤ K, then N and K commute and, hence,
K = ZG(N). Thus K ∈MaxQF by the previous claim.

We claim that
⋂
K∈MaxQF

K = 1.

Otherwise
⋂
K∈MaxQF

K would contain some N ∈ Min, which is also contained in every
L ∈ Max \MaxQF by the previous claim. This contradicts the hypothesis that

⋂
Max is

trivial.

We claim that G = [G,G].

By hypothesis G has no non-trivial discrete quotient. This property is clearly inherited by
any quotient of G. Therefore, the claim follows from the fact that the only totally disconnected
locally compact Abelian group with that property is the trivial group.

We claim that G = 〈N | N ∈Min〉.



26 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONOD

Set H = 〈N | N ∈Min〉 and A = G/H. It follows from the �rst claim above that every
element K ∈ MaxQF has dense image in A. In view of the third claim above, we infer that
A admits dense normal subgroups L1, . . . , Lp with trivial intersection. In view of Lemma II.2
below, it follows that A is nilpotent, hence trivial by the previous claim.

We claim that Max = MaxQF.

Indeed, every element of Max \MaxQF contains every element of Min. By the previous
claim, this implies that every element of Max \MaxQF coincides with G and thus fails to be
a non-trivial subgroup.

Now assertions (ii), (iii) and (iv) follow at once. �

Lemma II.2. Let A be a Hausdor� topological group containing p dense normal subgroups
L1, . . . , Lp such that

⋂p
i=1 Li = 1. Then A is nilpotent of degree ≤ p− 1

Proof. For each j = 1, . . . , p, we set Mj =
⋂p
i=j Li. In particular M1 is trivial and Mp = Lp.

Set Ai = A/Mi for all i = 1, . . . , p. We have a chain of continuous surjective maps

A ∼= A1 → A2 → · · · → Ap−1 → Ap ∼= 1.

Let i < p. Since Mi = Li ∩Mi+1, it follows that the respective images of Li and Mi+1 in
Ai commute. Since moreover Li is dense in A, it maps densely in Ai and we deduce that
the image of Mi+1 in Ai is central. In particular Ai is a central extension of Ai+1. It readily
follows that the upper central series of A terminates after at most p− 1 steps. �

On the non-Hausdor� quotients of a quasi-product. The following result describes
the algebraic structure of the generally non-Hausdor� quotient G/N1 · · ·Np (its topological
structure being trivial). It applies in particular to the case of totally disconnected groups that
are Noetherian.

Proposition II.3. Let G be a totally disconnected locally compact group that is a quasi-product
with quasi-factors N1, . . . , Np.

(i) If Ni possesses a maximal compact subgroup Ui for some i ∈ {1, . . . , p}, then for each
compact subgroup U < G containing Ui, the quotient U/Ui.(U ∩ZG(Ni)) is Abelian.

(ii) If Ni possesses a maximal compact subgroup Ui for each i ∈ {1, . . . , p}, then the quotient
G/Z (G).N1 · · ·Np is Abelian.

Proof. Let Ui < Ni be a maximal compact subgroup and let U < G be a compact open
subgroup containing Ui. Since U ∩ Ni is a compact subgroup of Ni containing Ui, we have
U ∩Ni = Ui by maximality. Let also Zi = ZG(Ni). We shall �rst show that U/Ui.(U ∩Zi) is
Abelian, which is the assertion (i).

In order to establish this, consider the open subgroup Hi := U.Ni. Since Ui is a maximal
compact subgroup of Ni, it follows that U is a maximal compact subgroup of Hi.

Notice that Hi ∩ Zi is centralised by a cocompact subgroup of Hi, namely Ni. Therefore
Hi∩Zi is a topologically FC-group, indeed the Hi-conjugacy class of every element is relatively
compact. By U²akov's result [U²a63] (see Theorem 2.3 above), the set Q of all its periodic
elements coincides with the LF-radical and the quotient (Hi ∩ Zi)/Q is torsion-free Abelian
(and discrete by total disconnectedness). Since Hi ∩ Zi is normal in Hi, it follows that Q is
normalised by U . Thus we can form the subgroup U ·Q of Hi, which is topologically locally
�nite and hence compact since U was maximal compact in Hi. This implies Q ≤ U and in
particular we have Q ≤ U ∩ Zi =: Vi.
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Since Vi is normalised by U and centralised by Ni, it is a compact normal subgroup of Hi

contained in Hi ∩ Zi. By de�nition, this implies that Vi is contained in Q. Thus Q = Vi and
the quotient (Hi ∩ Zi)/Vi is thus torsion-free Abelian.

Notice that Zi contains Nj for all j 6= i. Therefore Ni.Zi is dense in G and, since Hi is
open, it follows that Hi ∩ (Ni.Zi) = Ni.(Hi ∩Zi) is dense in Hi. Therefore the Abelian group
(Hi ∩ Zi)/Vi maps densely to Hi/Ni.Vi ∼= U/U ∩ (Ni.Vi) = U/(U ∩Ni).(U ∩ Zi). We deduce
that the latter is Abelian, as claimed.

Our next claim is that G/Ni.Zi is Abelian. Indeed, we have G = U.Ni.Zi since Ni.Zi is
dense. We deduce that G/Ni.Zi ∼= U/U ∩ (Ni.Zi), which may be viewed as a quotient of the
group U/(U ∩ Ni).(U ∩ Zi). The latter is known to be Abelian by (i), which con�rms the
present claim.

Suppose now that each Ni contains some maximal compact subgroup Ui. The above dis-
cussion shows that the derived group [G,G] is contained in the intersection N :=

⋂p
i=1Ni.Zi.

In other words the quotient G/N is Abelian, and it only remains to show that

N = N1 · · ·Np.Z (G).

Let g ∈ N1.Z1 ∩N2.Z2 and write g = n1z1 = n2z2 with ni ∈ Ni and zi ∈ Zi. Then n−1
1 z2 =

z1n
−1
2 belongs to Z1 ∩Z2 since Ni ⊆ Zj for all i 6= j. Since Z1 ∩Z2 = ZG(N1.N2), we deduce

that g ∈ N1.N2.ZG(N1.N2). This shows that N1.Z1 ∩N2.Z2 ⊆ N1.N2.ZG(N1.N2). Since the
opposite inclusion obviously holds true, we have in fact N1.Z1 ∩N2.Z2 = N1.N2.ZG(N1.N2).
A straightforward induction now shows that

p⋂
i=1

Ni.Zi = N1 · · ·Np.ZG(N1 · · ·Np).

Since N1 · · ·Np is dense in G, we have ZG(N1 · · ·Np) = Z (G), from which the assertion (ii)
follows. �

Quasi-products with Ad-closed quasi-factors. The following gives a simple criterion for
a quasi-product to be direct.

Lemma II.4. Let G be a locally compact group that is a quasi-product with quasi-factors
N1, . . . , Np.

If N1, . . . , Np−1 are Ad-closed and centrefree, then G ∼= N1 × · · · ×Np.

Proof. We work by induction on p, starting by noticing that the statement is empty for p = 1.
Since [N1, Ni] ⊆ N1 ∩ Ni = 1 for i > 1, we deduce that N2 · · ·Np ⊆ ZG(N1). In particular
N1.ZG(N1) is dense in G. From Lemma I.4 and the fact that N1 has trivial centre, it follows
that G ∼= N1×ZG(N1). By projecting G onto ZG(N1), we deduce that the product N2 · · ·Np

is dense in ZG(N1). Thus ZG(N1) is the quasi-product of N2, . . . , Np. The desired result
follows by induction. �

It will be shown in the next subsection that, conversely, a group N which is not Ad-closed
may often be used to construct a non-trivial quasi-product having N as a quasi-factor, see
Example II.8 below.
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Non-direct quasi-products and dense analytic normal subgroups. We propose a gen-
eral scheme to construct quasi-products out of a pair of topological groupsM,N together with
a faithful continuousM -action by automorphisms on N . The intuition is thatM plays the role
of some adjoint completion of N appearing in a quasi-direct product with two quasi-factors
isomorphic to N . The precise set-up is as follows.

Let M,N be topological groups and α : M ↪→ Aut(N) an injective continuous represen-
tation. In complete generality, continuity shall mean that the map M × N → N is jointly
continuous; therefore, when considering locally compact groups, it su�ces to assume that α
is a continuous homomorphism for the Braconnier topology on Aut(N).

In order to formalise the idea that M is a generalisation of the Ad-closure Ad(N), we
assume throughout

Ad(N) ⊆ α(M) and α−1(Ad(N)) = M.

Thus α(M) is indeed intermediate in Ad(N) ⊆ α(M) ⊆ Ad(N). The trivial case, i.e. direct
product, of our construction will be characterised by α(M) = Ad(N). On the other hand,
already α(M) = Ad(N) will produce interesting examples.

We denote by α∆ : M ↪→ Aut(N × N) the diagonal action, which is still injective and
continuous. We form the semi-direct product

H := (N ×N) oα∆ M,

which is a topological group for the multiplication

(n1, n2,m)(n′1, n
′
2,m

′) = (n1α(m)(n′1), n2α(m)(n′2),mm′).

We observe that the set

Z :=
{

(n, n,m) : α(m) = Ad(n)−1
}

is a subgroup of H and we write G := H/Z. For convenience, we write N1 = N × 1 and
N2 = 1×N , which we view as subgroups of H.

Proposition II.5.

(i) Z is a closed normal subgroup of H (thus we consider G as a topological group).
(ii) The morphism Ni → G is a topological isomorphism onto its image, which is closed

and normal in G; we thus identify Ni and its image. The resulting quotients G/Ni

are topologically isomorphic to M .
(iii) The morphism N ×N → G has dense image; the latter is properly contained in G if

and only if α(M) 6= Ad(N). The kernel is the diagonal copy of Z (N) (in particular,
if N is centre-free, G is a quasi-product).

(iv) ZG(Ni) = N3−i; in particular, if N is centre-free, so is G.
(v) If N is topologically simple, then G is characteristically simple. Moreover, G cannot

be written non-trivially as a direct product unless α(M) = Ad(N).

Proof. (i) The fact that Z is closed follows from the fact that the diagonal in N ×N is closed
and that α is continuous. A computation shows that N×N centralises Z, whilstM normalises
it; hence Z is normal.

(ii) The morphism N1 → G is continuous and injective. Suppose that a net (nβ, 1, 1) ∈ N1

converges to some (n, n′,m) modulo Z. Then there are nets νβ ∈ N , µβ ∈ M with α(µβ) =
Ad(νβ)−1 such that (nβνβ, νβ, µβ) tends to (n, n′,m). Thus nβ converges in N (to nn′−1) and
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hence the morphism is indeed closed. The image is normal by de�nition and the case of N2 is
analogous.

It is straightforward to show that H = Ni.Z.M and that Ni.Z ∩ M = 1. Therefore
H/Ni.Z ∼= M , as claimed.

(iii) The density is equivalent to the density of Z.(N ×N) in H, which follows from the con-
ditions on α. The additional statement on the image follows from the canonical identi�cation
of coset sets

G/(N ×N) ∼= M/α−1(Ad(N)).
The description of the kernel is due to the fact that (N × N) ∩ Z consists of those (n, n, 1)
with Ad(n) = 1.

(iv) Suppose (n1, n2,m) ∈ H commutes with N1 modulo Z. Thus, for every x ∈ N1 there is
(ν, ν, µ) ∈ Z with

(n1α(m)(x), n2,m) = (xn1α(m)(ν), n2α(m)(ν),mµ).

The last two coordinates show that µ and ν are trivial. It follows that α(m)(x) = n−1
1 xn1.

Thus α(m) = Ad(n1)−1 and hence (n1, n2,m) belongs to N2.Z. The statement follows by
symmetry and using the description of the kernel of N ×N → G obtained above.

(v) We can assume that N has trivial centre. Notice that the involutory automorphism of
N×N de�ned by (u, v) 7→ (v, u) extends to a well de�ned automorphism of H which descends
to an automorphism ζ of G swapping the two factors of the product N1.N2.

Let now C < G be a (topologically) characteristic closed subgroup. Assume �rst that
C ∩N1 = 1. Then 1 = ζ(C ∩N1) = C ∩ ζ(N1) = C ∩N2. Thus C centralises N1.N2 and is
thus contained in Z (G) since N1.N2 is dense. Therefore we have C = 1 by (iv) in this case.

Assume now that C ∩N1 6= 1. Then N1 is contained in C since N is topologically simple
by hypothesis. Transforming by the involutory automorphism ζ shows that N2, and hence
also N1.N2, is then contained in C, which implies that C = G since C is closed and N1.N2 is
dense. Thus G is indeed characteristically simple, as desired.

The above arguments show moreover that Ni are minimal closed normal subgroups of G.
This implies that if G splits as a direct product G ∼= L1×L2 of closed normal subgroups, then,
upon renaming the factors, we have Ni < Li for i = 1, 2. It follows that Li < ZG(N3−i) = Ni

by (ii). Thus Ni = Li. In view of (iii), this implies that G does not split non-trivially as a
direct product of closed subgroups provided α(M) 6= Ad(N). �

Our goal is now to present some concrete situations with M and N locally compact.

Example II.6. Let M,N be totally disconnected locally compact groups and let ϕ : N →M2

be a continuous injective homomorphism whose image is dense and normal inM . In particular,
the conjugation action of M on ϕ(N) induces a homormorphism α : M → Aut(N); however
α need not be continuous in general. However α is indeed continuous in the following cases.

• N is discrete and ϕ(N) ≤ QZ (M).
• M = Ad(N) and ϕ = Ad.

Of course these two cases are not mutually exclusive. One is then in a position to invoke
Proposition II.5, which provides a totally disconnected locally compact group G that is a
quasi-direct product with two copies of N as quasi-factors.

2Of course ϕ(N) is only analytic when N is metrisable, but this is the standard situation to which the
subsection title refers.
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It is now easy to construct non-trivial quasi-products of totally disconnected groups by
exhibiting a group N satisfying the required conditions.

Example II.7. Let N be one of the discrete groups described in Example I.10. This example
yields a locally compact completion M and a continuous homomorphism α : M → Aut(N)
such that Ad(N) ≤ α(M) ≤ Ad(N). If N is simple, the group G provided by Proposition II.5
is characteristically simple. In this way, we obtain various examples of characteristically simple
locally compact groups which are quasi-products but do not split as direct products. Notice
however that in these examples N is not �nitely generated and the corresponding G is never
compactly generated.

Another way to satisfy the conditions of Example II.6 is to start with a group N which is not
Ad-closed, but whose adjoint closure M = Ad(N) is locally compact. We proceed to describe
a concrete example. Part of the interest of the example is that N will be compactly generated,
which implies that the associated groups M and G will be both compactly generated. Indeed,
consider a compact generating set Σ for N and U any compact open subgroup of M . Then
U ∪ ϕ(Σ) generates M , since 〈U ∪ ϕ(Σ)〉 is open and contains a dense subgroup. Thus M is
compactly generated, and so is H as well as all its quotients, including G.

Example II.8. Consider the semi-direct product

N = SL3

(
Fp((t))

)
o Z,

where the cyclic group Z is any in�nite cyclic subgroup of the Galois group Aut
(
Fp((t))

)
. Then

N is not Ad-closed, but Aut(N) is locally compact, as follows from Theorem I.6. Moreover,
the cyclic group Z normalises every characteristic subgroup of the compact open subgroup

SL3

(
Fp[[t]]

)
< SL3

(
Fp((t))

)
,

from which it easily follows that Z contains an unbounded asymptotically central sequence.
Notice furthermore that N is centrefree. The easiest way to see this is by noticing that

N acts minimally without �xed point at in�nity on the Bruhat�Tits building associated with
SL3

(
Fp((t))

)
(see [CM09, Theorem 1.10]). Thus Proposition II.5 may be applied. In conclusion,

we �nd that the group((
SL3

(
Fp((t))

)
o Z

)
×
(

SL3

(
Fp((t))

)
o Z

))
o Ad

(
SL3

(
Fp((t))

)
o Z

)
{

(z, z,Ad(z)−1) : z ∈ SL3

(
Fp((t))

)
o Z

}
provides an example of a compactly generated totally disconnected locally compact group with
trivial quasi-centre (in particular centrefree) which is a non-trivial quasi-product. However,
this example is not characteristically simple.

Open problems. Corollary D naturally suggests the following question.

Question II.9. Is there a compactly generated characteristically simple locally compact group
G that is a quasi-product with at least two simple quasi-factors, but which does not split non-
trivially as a direct product?

Finally, we mention two related problems.

Question II.10. Is there a compactly generated topologically simple locally compact group G
which contains a proper dense normal subgroup?
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Question II.11. Is there a compactly generated topologically simple locally compact group G
which is not Ad-closed?

As explained in Example II.8, a positive answer to the latter implies a positive answer to
both Questions II.9 and II.10. Moreover, Proposition II.1 implies that a positive answer to
Question II.9 also gives a positive answer to Question II.10.

On dense normal subgroups of topologically simple groups. We close this appendix
with the following result, due to N. Nikolov [Nik09, Proposition 2], which provides however
severe restrictions on possible non-Hausdor� quotients of topologically simple groups.

Proposition II.12. LetM be a compactly generated totally disconnected locally compact group
which is locally �nitely generated. Assume thatM has no non-trivial compact normal subgroup.
Then any dense normal subgroup contains the derived group [M,M ]. In particular, if M is
topologically simple, then it is abstractly simple if and only if it is abstractly perfect.

Proof. See [Nik09, Proposition 2]. The statement from loc. cit. requiresM to be topologically
simple, but only the absence of compact normal subgroups is used in the proof. �
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