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Abstract. We prove that the real cohomology of semi-simple Lie groups
admits boundary values, which are measurable cocycles on the Fursten-
berg boundary. This generalises known invariants such as the Maslov
index on Shilov boundaries, the Euler class on projective space, or the
hyperbolic ideal volume on spheres.

In rank one, this leads to an isomorphism between the cohomology of
the group and of this boundary model. In higher rank, additional classes
appear, which we determine completely.

1. Introduction

LetG be a connected semi-simple Lie group with finite center. The coho-
mology ofG (with trivial coefficients R) can be defined, and computed, by a
great variety of different methods. For instance, it is often called continuous
cohomology and denoted by H•c(G) when realised by continuous cochains
on G or on the associated symmetric space. Continuity can be replaced by
smoothness, or relaxed to local integrability, even to just measurability.

The van Est isomorphism identifies H•c(G) with relative Lie algebra co-
homology. This then leads to another identification with the cohomol-
ogy of a space, the so-called compact dual symmetric space. Yet another
model is the algebraic cohomology of Wigner [Wig70a, Wig70b]. We rec-
ommend the introductions of [AM13] and [WW15] for modern overviews
of these developments, which started in the 1950s but witness contempo-
rary progress. Classical textbooks are [Gui80, BW80].

Each model has advantages for different applications. The aim of this ar-
ticle is to introduce another viewpoint, placing ourselves on the Furstenberg
boundary G/P of G. This boundary classifies the topological dynamics of G
to some extent. It is a homogeneous projective variety for G which covers
all other such varieties, among which familiar Grassmannians supporting
classical characteristic classes. When viewed instead as a measurable G-
space, this Furstenberg boundary is also a central tool in rigidity theory
ever since Furstenberg and Margulis made striking use of it. In addition,
G/P is geometrically the space of Weyl chambers at infinity, and as such de-
scribes the generic part of the visual boundary at infinity of the symmetric
space of G.

Our first result shows that the situation is ideal for rank one groups:
1



2 NICOLAS MONOD

TheoremA. Let G be a connected semi-simple Lie group of rank one with finite
center. Let P < G be a parabolic subgroup. Then the continuous cohomology
H•c(G) is realised by the complex

0 −→ L(G/P )G −→ L((G/P )2)G −→ ·· · −→ L((G/P )n+1)G −→ ·· ·
of G-invariant measurable function classes on the Furstenberg boundary G/P .

This statement is fundamentally measurable: already forG = SL2(R), the
cocycles cannot be made continuous on G/P , the projective line.

Remark 1.1. The analogous result for non-trivial coefficients, even unitary,
does not hold. It does not hold either for trivial coefficients when G is
replaced by a lattice in G. Examples are given below.

This indicates that the theorem does not follow immediately from a “soft”
argument using appropriate (relatively) injective resolutions, or a Buchs-
baum criterion, in contrast to many other equivalent characterisations of
H•c(G).

Remark 1.2. In the rank one setting of Theorem A, Gromov showed that
every cohomology class admits bounded representatives [Gro82, §1.2]. This
implies that they can be realised by L∞-cocycles on G/P [BM99], though
it is not known whether that complex computes the cohomology of G.
Nonetheless, it can be deduced that every cohomology class admits a rep-
resentative on G/P which satisfies the cocycle equation everywhere, not just
a.e. as function class, see [Mon15], where we also observe that this fails on
certain projective varieties in higher rank. (This stands again in contrast
to the bar resolution, which admits Borel everywhere-cocycles by Thm. 5
in [Moo76].)

Return to a general semi-simple Lie group G and denote by H•m(G;P ) the
measurable cohomology on the Furstenberg boundary G/P . One reason to
expect a relation between H•m(G;P ) and the cohomology of G is that the lat-
ter can be realised by invariant differential forms on the symmetric space
of G: such forms are automatically harmonic, and suitable harmonic func-
tions have measurable boundary values on G/P by an appropriate Fatou
theorem. Notably the Knapp–Williamson theorem [KW71] establishes this
for all bounded harmonic functions, and the cohomology of semi-simple
Lie group is conjectured since the 1970s to admit bounded representa-
tives [Dup79].

It turns out, however, that in higher rank the result is more involved:
the isomorphism still holds outside of a certain range of values, and in that
exceptional range we can determine exactly the additional cohomology.

Theorem B. Let G be any connected semi-simple Lie group with finite center
and let P < G be a minimal parabolic subgroup. Then the cohomology Hq

m(G;P )
defined by the complex

0 −→ L(G/P )G −→ L((G/P )2)G −→ ·· · −→ L((G/P )q+1)G −→ ·· ·
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of G-invariant measurable function classes on the Furstenberg boundary G/P
coincides with the continuous cohomology Hq

c(G) of G outside the range 3 ≤ q ≤
rank(G) + 2.

More precisely, writing r = rank(G):

• Hq
m(G;P ) �Hq

c(G)⊕∧q−1Rr for odd 3 ≤ q ≤ r + 1;
• Hq

m(G;P ) �Hq
c(G)⊕∧q−2Rr for even 4 ≤ q ≤ r + 2;

• Hq
m(G;P ) �Hq

c(G) in all other cases.

The proof shows that the difference between Hq
m(G;P ) and Hq

c(G) is given
by a canonical embedding of the even-dimensional cohomology H•c(A) of a
maximal split torus A of G, with dimensions shifted according to parity.
Since A is isomorphic to Rr , its cohomology is the exterior power ∧•Rr .

We see that Theorem A is a particular case of this statement since the
exceptional range is empty for r = 1 (taking the parity of q into account).

In order to illustrate the geometric meaning of the classes appearing in
the exceptional range for H•m(G;P ), we consider the simplest non-trivial ex-
ample. Let G = SL2(R) × SL2(R), so that r = 2; then G/P can be identified
with the product X = P1 × P1 of two projective lines. According to Theo-
rem B, the area form in R2∧R2 gives rise to a generator for H3

m(G;P ). That
is, we obtain a three-dimensional “volume” Ω on X which is projectively
invariant. The proof of Theorem B can be coerced into giving the following
explicit formula. Considering four points a,b,c,d ∈ X, assume for definite-
ness that the coordinates are in R with ai < bi < ci < di for i = 1,2. The
corresponding “volume” is then

Ω(a,b,c,d) =

log[a1,b1;c1,d1] log[b2, c2;d2, a2]− log[a2,b2;c2,d2] log[b1, c1;d1, a1],

wherein [. . .] denotes the cross-ratio. The fact that Ω is indeed a cocycle is
equivalent to the fact that the bivariate function

F(x1,x2) = logx1 log(1− x2)− logx2 log(1− x1) (0 < x1,x2 < 1)

satisfies Rogers’s [Rog07] form of the the Spence–Abel functional equation

F (y)−F (x) = F
(y − x

1− x

)
−F

(
x
y

)
+F

(
x(1− y)
y(1− x)

)
, (x,y ∈ (0,1)2)

where all operations on x = (x1,x2) and y = (y1, y2) are understood coordi-
natewise, and the symmetry F(x) = −F(1−x) (as verified by direct computa-
tion). By contrast, no non-zero univariate measurable function on (0,1) can
satisfy the corresponding requirements, as follows from [BM02b, §5] (and
shifting the symmetry by ζ(2) characterises Rogers’ s dilogarithm).

It was pointed out to me by Luc Pirio that already Rogers mentions the
bivariate F in [Rog07, pp. 178–179]; it would be interesting to write out the
invariants corresponding to all the other new cohomology classes provided
by the additional terms in Theorem B.
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Remark 1.3. The proof of Theorem B also shows that the comparison map
H•cb(G)→ H•c(G) from the continuous bounded cohomology is induced by
the inclusion maps L∞((G/P )n+1) → L((G/P )n+1), see the comment at the
end of the article. We hope that the theorem will be of some guidance
towards showing that this comparison map is an isomorphism, as conjec-
tured e.g. in [Mon06, Prob. A], and in particular the boundedness conjec-
tured by Dupont [Dup79].

Remark 1.4. It seems that the arguments used for the proof of Theorem B
could be adapted to apply to semi-simple algebraic groups over local fields,
although some changes are needed. For instance, we use below an elemen-
tary case of Kostant’s algebraic Borel–Weil–Bott theorem, which we verify
by diagonalizing an action on a Chevalley–Eilenberg complex. This is a
priori not defined in positive characteristic, but the dynamics of the ad-
joint action and its contracting properties could be a substitute. We also
use a measure-theoretical tameness of the space of compact subgroups that
needs to be justified otherwise in the non-Archimedean case. In any event,
the corresponding result is perhaps less interesting than for Lie groups
since the usual continuous cohomology of non-Archimedean semi-simple
groups vanishes anyway [Gar73, Cas74]. In relation to Remark 1.3, we con-
jecture that the continuous bounded cohomology (still with trivial coeffi-
cients R) of connected algebraic groups over non-Archimedean local fields
vanishes. The case of SL2 was recently established in [BM19].

Here are two illustrations for Remark 1.1.

Example 1.5. Let G = SL2(R). Then there is an irreducible continuous uni-
tary G-representation on a Hilbert space V , the representation of smallest
positive minimal weight, such that H1

c (G,V ) is non-trivial. A similar state-
ment holds when G is (the connected component of) the isometry group of
a real or complex hyperbolic space, see e.g. [CCJ+01] for a detailed geomet-
ric construction.

On the other hand, no non-trivial cocycle can be given by a G-invariant
element ω of L((G/P )2,V ). Indeed, the corresponding crossed homomor-
phism ω : G→ V (i.e. the corresponding inhomogeneous 1-cocycle) would
automatically be continuous, see Thm. 3 in [Moo76]. On the other hand,
the relation between ω and ω is that

ω(g,h) = gω(g−1h)

holds a.e.; in particular ω descends to G/P and hence has compact range.
But a non-trivial affine isometric action has always unbounded orbits, in-
deed in the present case it is even known that ω is proper.

Example 1.6. Let again G = SL2(R) and consider the fundamental group
Γ of a closed hyperbolic surface as a uniform lattice in G. Since the first
Betti number of the surface is non-zero, H1(Γ ) does not vanish. On the
other hand, every Γ -invariant measurable function on (G/P )2 is essentially
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constant (and hence trivial in cohomology). Indeed, this follows from the
double ergodicity which goes back already to [Gar83] in this setting.

We observe that the vector-valued double ergodicity introduced in [BM02a]
shows that this argument provides also an alternative proof for Exam-
ple 1.5.

On previous work. Various specific examples of cocycles have long been
known to admit privileged representatives on projective varieties associ-
ated to G, which are all quotients of the Furstenberg boundary. For in-
stance, in degree two, the Maslov index defined on the Langrangian Grass-
mannian [BG92, §C] or more generally on the Shilov boundary [CØ01] for
higher rank. In degree three, there is the Goncharov cocycle for the Borel
class of SLn(C), see [Gon93] and [BBI18, §2]. Another example, in even
degree n, is the Euler class defined on the projective space PRn, see [Smi,
Sul76]. We use Moore’s measurable cohomology [Moo76]. The spectral
sequence that we shall examine below has been used the special case of
SL2(C) by Bloch [Blo00, §7.4]. In bounded cohomology, cocycles on G/P can
be used completely generally because P is amenable, see [BM99] and [BM02a].
Back to usual cohomology, the case ofG = SO+(1,n) was considered in [Pie18].
For that case, Theorem A fixes an issue with the dimension shifting method
in [Pie18], because the lifting maps used in the proof cannot be chosen
equivariant. More conceptually, dimension shifting relies on long exact se-
quences and effaceability; whilst the latter holds for H•m(G;P ), the former
does not. This also accounts to the exceptional classes appearing in Theo-
rem B.

2. Notation and preliminaries

A major portion of the following paper is concerned with
laying firmer foundations for the theory of Borel cohomology,

in the belief that this will hasten defeat of the enemy.
Arthur Mason DuPre III [DuP68]

Given a standard measure space X and a Polish topological vector space
V , we denote by L(X,V ) the space of measurable function classes X → V .
Thus we only take into account the measure class on X, which is unique on
any homogeneous space for a locally compact group and hence will not be
apparent in our notation. The space L(X,V ) is in turn a Polish topologi-
cal vector space when endowed with the topology of convergence in mea-
sure, see [Moo76, §3]. For trivial coefficients, classical references are [DS58,
IV.11] and [Fre03, §245].

We shall need the following, established in [Moo76], Prop. 9:

Lemma 2.1. The functor L(X, ·) preserves the exactness of sequences of Polish
topological vector spaces. �
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(We recall that the above statement follows readily from the fact that
quotient maps of Polish topological vector spaces admit measurable cross-
sections.)

Given a second standard measure space Y , an appropriate Fubini theo-
rem (Thm. 1 in [Moo76]) shows that the obvious map gives a well-defined
isomorphism of topological vector spaces:

L (X,L(Y ,V )) � L(X ×Y ,V ) � L (Y ,L(X,V )) .

LetG be a locally compact second countable group. IfX is endowed with
a non-singular G-action and V is a (jointly continuous) G-module, then so
is L(X,V ) [Moo76, §3]. This is the case more generally given a measurable
cocycle fromG×X to the automorphisms of V . An example of this situation
is when H < G a closed subgroup and V an H-module. We then have such
a G-module L(G/H,V ), see Prop. 17 in [Moo76].

The measurable cohomology H•m(G,V ) is defined in [Moo76] using the
inhomogeneous standard resolution, where cochains for Hn

m(G,V ) are L
function classes ω : Gn→ V . There is a well-known isomorphism with the
homogeneous resolution, where cochains are G-invariant function classes
ω : Gn+1→ V . (Invariant for the usual action means “equivariant” as maps
to V .) Using a Fubini isomorphism, the correspondance between ω and ω
is given a.e. by

ω(g0, g1, . . . , gn) = g0ω(g−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn).

We further recall that the homogeneous (Alexander–Kolmogorov–Spanier)
differentials are defined by the usual alternating sums

dω(g0, . . . , gn+1) =
n+1∑
j=0

(−1)jω(g0, . . . , ĝj , . . . , gn+1)

where ĝj signifies that the variable gj has been omitted.
The measurable cohomology satisfies the following version of the Eckmann–

Shapiro lemma, see Thm. 6 in [Moo76].

Proposition 2.2. LetG be a locally compact second countable group andH < G
a closed subgroup. For every Polish H-module V and every n ≥ 0 there is a
natural isomorphism

Hn
m(H,V ) � Hn

m (G,L(G/H,V )) . �

We need a basic vanishing result for compact groups:

Lemma 2.3. Let K be a compact metrisable group, X a standard measure space
and endow L(X) with the trivial K-representation. Then Hq

m(K,L(X)) vanishes
for all q > 0.

The issue here is that the coefficient space L(X) is not locally convex.
Therefore, although it is known that Hq

m coincides with the continuous co-
homology in that setting (see e.g. Rem. 4.13 in [WW15]; I am grateful to
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Friedrich Wagemann for his explanations in this context), in general con-
tinuous cohomology of compact groups is not known to vanish for Polish
topological vector space modules, compare Question 4.2 in [AM13]. Nev-
ertheless the particular case of L(X) can be dealt with as follows.

Proof of Lemma 2.3. The statement is well-known for trivial coefficients in
R, see e.g. [AM13, Thm. A]. (If one knows already that it is equivalent to
work with H•c , then an integration argument applies, as was already known
in the first years of the theory [Hu52, Thm. 2.8].) Equivalently, the (aug-
mented) inhomogeneous resolution

0 −→ R −→ L(K) −→ L(K2) −→ ·· ·

is an exact sequence. It follows, by Lemma 2.1, that the sequence

0 −→ L(X) −→ L (X,L(K)) −→ L
(
X,L(K2)

)
−→ ·· ·

is also exact. Now we apply the Fubini isomorphisms

L (X,L(Kq)) � L (Kq,L(X))

and conclude that the (non-augmented) sequence defining Hq
m(K,L(X)) is

exact at all q > 0. �

Finally we return to a property of L that does not involve groups:

Lemma 2.4. Given any Polish topological vector space V , the homogeneous
cochain complex

0 −→ V −→ L(X,V ) −→ L(X2,V ) −→ ·· ·

is exact.

Proof. Contrary to more familiar (locally integrable) cases, we cannot con-
struct a homotopy by integrating over the first variable. An explicit proof
would consist in observing that the exactness in degree zero follows from
Fubini, while in higher degree a dimension shifting argument reduces it
inductively to degree zero for a more complicated V .

A lazier proof is as follows. The functor (sequence) that associates to
V the cohomology of 0 → L(X,V ) → L(X2,V ) → ·· · shares three proper-
ties with the measurable cohomology of the trivial group: it is just V in
degree zero; it takes short exact sequences to long exact sequences (by re-
peated applications of Lemma 2.1); and it is effaceable. It follows (Thm. 2
in [Moo76]) that this functor is isomorphic to the cohomology of the trivial
group, whence the statement. (Of course, the proof of the quoted statement
contains a similar inductive shifting as alluded to above). �

3. The cohomology of the minimal parabolic

We shall need the following result.



8 NICOLAS MONOD

Proposition 3.1. Let G be a connected semi-simple Lie group with finite center.
Choose a maximal R-split torus A < G and a minimal parabolic subgroup P < G
containing A. Then the restriction map

Hn
c (P ) −→Hn

c (A)

is an isomorphism for all n.
The same statement holds with a Borel subgroup in place of P .

Proof. Consider a Langlands decomposition P = MAN and the Borel sub-
group B = AN . We shall first prove that the restriction map

(∗) Hn
c (B) −→Hn

c (A)

is an isomorphism for all n.
Note that Hq

c(N ) is finite-dimensional for all q, for instance because of
the van Est isomorphism, see Cor. III §7.3 in [Gui80]. Hence it is Hausdorff,
see IX §3 in [BW80]. This allows for a version of the Lyndon–Hochschild–
Serre spectral sequence, see e.g. Thm. 9.1 in[Bla79]. This is a sequence with
second tableau

E
p,q
2 = Hp

c
(
A,Hq

c(N )
)

and abutting to H•c(B). We shall show that Ep,q2 vanishes for all q > 0; on the

other hand Ep,02 = Hp
c (A). Thus at least the (finite!) dimensions involved in

the restriction map (∗) match. This forces it to be an isomorphism because
this restriction is onto anyways: indeed, since A is a semi-direct factor of B,
the restriction admits the inflation Hn

c (A)→Hn
c (B) as a right inverse.

We turn to the vanishing of Ep,q2 for q > 0. We claim that the natural
representation of A on Hq

c(N ) does not contain the trivial A-representation
when q > 0.

This claim is probably well-known from Lie algebra cohomology (trans-
lating it with the van Est isomorphism). Indeed, for complex Lie algebras
it is an elementary case of Kostant’s algebraic Borel–Weil–Bott theorem,
namely the case of the trivial weight in Thm. 5.14 of [Kos61]. (In Kostant’s
notation, apply that theorem to λ = 0, ξσ = 0 and u = b, recalling that g
therein is the half-sum of positive roots, which is only fixed by the triv-
ial element σ of the Weyl group.) The real version has been studied by
Šilhan [Š04], but since we only need the case of the trivial weight, com-
plexification is not an issue.

In any case, we sketch a proof valid over R of this elementary case of
Kostant’s statement: the A-representation on H•c(N ) can be realised by the
adjoint representation on the Chevalley–Eilenberg complex, which is the
dual of∧•n. SinceA is a split torus, this representation can be diagonalised.
Since n is the sum of root spaces of negative roots only, the zero weight does
not occur at the cochain level on ∧qn in non-zero degree q. More precisely,
any element in the interior of the positive Weyl chamber of A acts as a strict
contraction. It follows that the zero weight cannot occur for non-trivial
cocycles on the cohomology level either.
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The claim implies the desired vanishing of Ep,q2 because any abelian group
A satisfies H•c(A,V ) = 0 when V is a finite-dimensional representation not
containing the trivialA-representation; this follows e.g. from III §3.1 in [Gui80].

We now turn to the restriction map of the proposition, which factors
through (∗) as

Hn
c (P ) −→Hn

c (B) −→Hn
c (A).

As before, the restriction is onto since A is a semi-direct factor of P and
hence the inflation Hn

c (A) → Hn
c (P ) provides a right inverse. It suffices

therefore to show that the restriction Hn
c (P ) → Hn

c (B) is injective. Since
G has finite center, M is compact and hence the normal subgroup B of P =
MB is cocompact. This implies the injectivity of the restriction Hn

c (P ) →
Hn

c (B), either by a transfer argument or by an application of the Lyndon–
Hochschild–Serre spectral sequence, see Cor. III 5.2 in [Gui80]. �

We record that Proposition 3.1 also implies the following basic vanishing
result (which certainly admits simpler proofs).

Corollary 3.2. Let G be a connected semi-simple Lie group with finite center
and P < G a minimal parabolic subgroup P < G. Then the restriction map

Hn
c (G) −→Hn

c (P )

vanishes for all n > 0.

Proof. By Proposition 3.1, it suffices to show that the restriction to a maxi-
mal R-split torus A < P vanishes. We can assume G simple upon using the
Künneth formula (after killing the center). The image of this restriction
lies within the part of Hn

c (A) that is invariant under the normaliser of A
in G since conjugation acts trivially on the cohomology of the conjugating
group (see e.g. I.7 and III.3 in [Gui80]). In other words, we consider the
fixed points of the Weyl group action on Hn

c (A). By the van Est isomor-
phism, H•c(A) is the dual of the exterior algebra ∧•a. Since G is simple, the
Weyl group representation on a is irreducible, see [Bou81, V§4.7]. Using
an argument of Steinberg, this implies that the induced representation on
the dual of ∧•a has trivial fixed points, see Ex. 3 in [Bou81, V§2]. �

4. Modules with few points at infinity

Let G be a connected semi-simple Lie group with finite center and P < G
a minimal parabolic subgroup. Consider the homogeneous differential

d : L(G/P ) −→ L
(
(G/P )2

)
,

that is, the map given by (df )(x,y) = f (y)− f (x).

Proposition 4.1. The map

Hq
m (G,L(G/P )) −→Hq

m
(
G,L

(
(G/P )2

))
induced by d is an isomorphism when q is odd and vanishes when q is even.
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For the proof, we should clarify the meaning of the restriction H•c(P )→
H•c(A) occurring in Proposition 3.1 now that we are in the measurable con-
text of H•m. (Here A is a maximal R-split torus contained in P .) The ter-
minology comes from the fact that continuous cochains can indeed be re-
stricted to any subgroup. However, this does not make sense for measur-
able cochains up to null-sets, because subgroups are generally null-sets;
this is the case of A < P . In general, the restriction is induced by the “for-
getful” natural transformation (given by inclusion) between the functor of
P -invariants and the functor of A-invariants. Concretely, in the setting of
the proposition, the cohomology Hq

m(P ) can be realised by the complex of
P -invariants

0 −→ L(G)P −→ ·· · −→ L(Gq+1)P −→ ·· ·

Likewise, for Hq
m(A) we consider the complex L(Gq+1)A. Then the restric-

tion is induced by the inclusion maps

L(Gq+1)P −→ L(Gq+1)A.

Proof of Proposition 4.1. We shall work with an explicit formula for the in-
duction isomorphisms of Proposition 2.2 at the level of cochains. Namely,
we first realize the cohomology H•m(P ) by the complex of P -invariant homo-
geneous maps α′ ∈ L(Gq+1)P as above. Then the correspondingG-equivariant

map α in L
(
Gq+1,L(G/P )

)G
is given by

α(g0, . . . , gq)(gP ) = α′(g−1g0, . . . , g
−1gq).

This establishes a well-defined isomorphism of cochain spaces which com-
mutes with the homogeneous differential on the variables in G.

Next, we recall that the Bruhat decomposition shows that there is a P -
orbit of full measure in G/P . Namely, the orbit Pw0P , where w0 is (a repre-
sentative inG of) the longest element of the Weyl group associated to A; see
e.g. Cor. 1.8 in [Hel01, IX§1]. Equivalently, there is a G-orbit of full mea-
sure for the diagonal action on (G/P )2. This orbit can be identified with
G/L, where L = P ∩ w0Pw

−1
0 . Since P and w0Pw

−1
0 are opposite, we have

L =MA, where M is a compact group centralising A.
Explicitly, the isomorphism ofG-modules between L

(
(G/P )2

)
and L(G/MA)

maps f to the function f̃ defined by f̃ (gMA) = f (gP ,gw0P ). We now write
again ω′ ↔ ω for the bijections on the cochain level that induce the induc-
tion isomorphism between Hq

m(MA) and Hq
m (G,L(G/MA)).

In summary, we have isomorphisms

Hq
m
(
G,L

(
(G/P )2

))
� Hq

m (G,L(G/MA)) � Hq
m(MA) � Hq

m(A)

where the last isomorphism follows from the compactness of M; note that
we can implement this isomorphism by the restriction from MA to A.
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Finally, it remains to identify the map Hq
m(P ) → Hq

m(A) induced by d
under all these isomorphisms. If we still denote it by d, then we compute

(dα′)(g0, . . . , gq) = α′(w−1
0 g0, . . . ,w

−1
0 gq)−α′(g0, . . . , gq).

On the other hand, right multiplication of any cochains onG isG-homotopic
to the identity (this well-known fact can be established e.g. as in [Gui80,
I§7]). Therefore, the above map has the same effect on cohomology as

α′(w−1
0 g0w0, . . . ,w

−1
0 gqw0)−α′(g0, . . . , gq),

which amounts to Adw0
res − res, wherein res denotes the restriction from

P to A and Adw0
refers to the Weyl group action on Hq

m(A). Since w0 is the
longest element, it acts by −1 on A. In particular, it acts trivially on Hq

m(A)
when q is even and by −1 when q is odd (e.g. because Hq

m(A) is isomorphic
to the dual of ∧qa). Thus, the map in the statement of the proposition
vanishes indeed when q is even. When q is odd, we find −2res, which is an
isomorphism by Proposition 3.1. �

Since we shall need it again, we single out the following observation
from the above proof. Note that now α is not assumed to be a cocycle,
although ω is.

Lemma 4.2. Let q be even and let

ω : Gq+1 −→ L
(
(G/P )2

)
be a cocycle in the homogeneous resolution for the right hand side in Proposi-
tion 4.1. Suppose that ω = dα for some G-equivariant map

α : Gq+1 −→ L(G/P ).

Then ω is trivial in cohomology.

Proof. The above calculations show that ω = dα, viewed as an element of
Hq

m(A), satisfies Adw0
ω = −ω. Since w0 acts as the identity on cohomology

for q even, this shows that ω is trivial. �

Finally, we record what happens to Proposition 4.1 in the elementary
case where we have even less points at infinity:

Proposition 4.3. The map

Hq
m(G) −→Hq

m (G,L(G/P ))

induced by the inclusion of constants R→ L(G/P ) vanishes for all q > 0.

Proof. A much simpler computation than above shows that the induction
isomorphism intertwines this map to the restriction from Hq

m(G) to Hq
m(P ).

The statement now follows from Corollary 3.2. �
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5. Modules with more points at infinity

Proposition 5.1. Let G be a connected semi-simple Lie group with finite center
and P < G a minimal parabolic subgroup. Then

Hq
m (G,L ((G/P )p)) = 0

when p ≥ 3 and q > 0.

Proof. We claim that the stabiliser in G of almost every point in (G/P )p is
compact; it suffices to prove the claim for p = 3.

Then shalt thou count to three, no more, no less. Three shall be the
number thou shalt count, and the number of the counting shall be three.

Book of Armaments, Chap. 2, verses 9–21

Consider a Langlands decomposition P = MAN , where N is the unipo-
tent radical of P and A is a maximal R-split torus of A contained in P . The
stabiliser of a point in (G/P )3 is the intersection of three minimal parabolics
P0, P1, P2.

As in the proof of Proposition 4.1, we recall that the Bruhat decomposi-
tion gives a P -orbit Pw0P of full measure in G/P , where w0 is the longest
element of the Weyl group. Moreover, this cell can be written as Nw0P ,
and actually N parametrizes this cell; see e.g. [Kna02, 8.45] or Cor. 1.9
in [Hel01, IX§1].

Upon conjugating, we may assume P0 = P and P1 = w0Pw
−1
0 ; therefore P2

can be parametrised by n ∈ N as P2 = nP1n
−1. Then P0 ∩ P1 = MA because

they are opposite parabolics, and

P0 ∩ P2 = nP0n
−1 ∩nP1n

−1 = nMAn−1.

Thus P0 ∩ P1 ∩ P2 = MA ∩ nMAn−1. The claim now follows from the fact
that, for generic n ∈ N , the intersection A∩ nAn−1 is trivial. Since A nor-
malizes N with A∩N trivial, the latter fact reduces to the fact that n has
trivial centraliser in A for generic n, which is apparent on the root space
decomposition.

According to the claim, almost every G-orbit in (G/P )p is of the form
G/K for some compact subgroup K < G. There are at most countably
many conjugacy classes in G of such subgroups. Indeed, by Cartan’s fixed
point theorem we can assume that K belongs to some fixed maximal com-
pact subgroup K0, and even within a compact Lie group conjugacy has
countably many classes, see e.g. Cor. 1.7.27 in [Pal60]. Moreover, the G-
action on (G/P )p is smooth in the Borel sense since it has locally closed
orbits (see e.g. [Zim84, §3]). In conclusion, the Glimm–Effros theorem
(see Thm. 2.9 in [Eff65]) implies that there is a measurable G-isomorphism
between (G/P )p and a disjoint countable union of G-spaces of the form
G/Kj × Xj , where Kj < G is a compact subgroup and Xj is some measure
space with trivial G-action.
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It follows that L ((G/P )p) is the (unrestricted) product over j of the G-
modules L(G/Kj×Xj ). Therefore, to trivialize any class in Hq

m (G,L ((G/P )p)),

it suffices to show that each Hq
m
(
G,L(G/Kj ×Xj )

)
vanishes, recalling that

q > 0. Applying the induction isomorphism (Proposition 2.2), this amounts
to the vanishing of Hq

m
(
Kj ,L(Xj )

)
, which holds by virtue of Lemma 2.3. �

6. Proof of the theorems

We now undertake the proof of Theorem B, recalling that the latter con-
tains Theorem A.

For the remaining of the text, letG be a connected semi-simple Lie group
with finite center. Choose a maximal R-split torus A < G and a minimal
parabolic subgroup P < G containing A and consider the Langlands de-
composition P =MAN , where N is the unipotent radical of P .

The strategy is to work with the hypercohomology spectral sequence as-
sociated to the (augmented) complex of G-modules L ((G/P )q). Since we
will need explicit computations of higher differentials, we give a complete
description from scratch, as follows. Consider the bi-complex given for
p,q ≥ 0 by the G-invariants

Cp,q = L
(
Gp+1 × (G/P )q

)G
.

The two differential maps are given by the homogeneous differentials on
the variables in Gp+1 and (G/P )q+1 respectively, up to a sign convention.
To minimize confusion, we denote them by d↑, ~d respectively. Specifically,
given an element in Cp,q, we define its first differential in Cp+1,q under the
Fubini isomorphism by

d↑ : L
(
Gp+1,L ((G/P )q)

)G
−→ L

(
Gp+2,L ((G/P )q)

)G
Thus, this is the homogeneous resolution for

Hp
m (G,L ((G/P )q)) .

The second differential ~d is defined analogously on the variables in G/P by
considering the homogeneous differential

L
(
(G/P )q,L

(
Gp+1

))G
−→ L

(
(G/P )q+1,L

(
Gp+1

))G
but additionally it is affected with the sign (−1)p+1.

A bi-complex is a standard setup for first quadrant spectral sequences;
classical references compatible with our notations are [GM96, III.7] or [BT82,
III.14]. In particular we have two spectral sequences IE, IIE starting with
the second, respectively first, differential defined above.

The first computation is routine:

Proposition 6.1. These spectral sequences converge to zero.



14 NICOLAS MONOD

Proof. The point is that the first spectral sequence collapses immediately
(and the limits always coincide since they both compute the cohomology
of the total complex). Explicitly, IEp,q1 is by definition the cohomology of
the second differential

Cp,q−1 −→ Cp,q −→ Cp,q+1

as defined above (with the convention Cp,−1 = 0). Using the isomorphism
with the inhomogeneous model for fixed p, this amounts to

L
(
Gp,L((G/P )q−1)

)
−→ L (Gp,L((G/P )q)) −→ L

(
Gp,L((G/P )q+1)

)
(with still the homogeneous differential for q, up to a sign). By Lemma 2.4,
the sequence with homogeneous differential

0 −→ R −→ L(G/P ) −→ L
(
(G/P )2

)
−→ L

(
(G/P )3

)
−→ ·· ·

is exact. This then implies, by Lemma 2.1, that IEp,q1 is trivial for all q. �

From now on we only work with the second spectral sequence IIE, which
we simply denote by E. Recall that Ep,q1 is defined by the first differential,
but by convention p and q are permuted to that in view of our definitions
we have Ep,q1 = Hq

m (G,L ((G/P )p)). Recall also that the differential dr on page

r ≥ 1, which defines Er+1, maps Ep,qr to Ep+r,q−r+1
r and that d1 is induced by

~d.
The results of the previous sections give us the following information.

Proposition 6.2.
(i) Ep,q1 = 0 for all p ≥ 3 and q > 0.

(ii) E0,q
2 = E0,q

1 = Hq
m(G) for all q > 0.

(iii) Ep,q2 = 0 for p = 1,2 and all odd q.
(iv) E1,q

2 = E1,q
1 �Hq

m(P ) and E2,q
2 = E2,q

1 �Hq
m(A) for all even q.

(v) Ep+1,0
2 is the cohomology of the d↑-complex L

(
(G/P )p+1

)G
for all p > 0.

Proof. Point (i) is Proposition 5.1.
Point (ii) follows from Proposition 4.3.
For point (iii), fix q odd and consider the complex defining Ep,q2 for vari-

ous p:
0 −→ E

0,q
1 −→ E

1,q
1 −→ E

2,q
1 −→ E

3,q
1 −→ ·· ·

We have already noted that E0,q
1 → E

1,q
1 is the zero map and that E3,q

1 van-

ishes. Thus the point is equivalent to saying that E1,q
1 → E

2,q
1 is an isomor-

phism, which was established in Proposition 4.1.
Similarly, Proposition 4.1 implies point (iv) in even degree.
Finally, point (v) follows from E

p+1,0
1 = H0

m

(
G,L

(
(G/P )p+1

))
. �

The last ingredient that we need in order to understand the higher dif-
ferentials is:
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Proposition 6.3. The map d2 : E0,q+1
2 → E

2,q
2 vanishes for all even q.

(In the special case q = 0, our identifications above already imply that
both E0,1

2 and E2,0
2 vanish.)

Proof of Proposition 6.3. Let η ∈ Cq+1,0 be a cocycle representing an element
of E0,q+1

2 = E
0,q+1
1 = Hq+1

m (G). We recall how to obtain an element ω ∈ Cq,2

representing the image d2[η] in E2,q
2 = E2,q

1 �Hq
m(A):

The fact that [η] is in the kernel of E0,q+1
1 → E

1,q+1
1 means that ~dη is

a coboundary. Thus there is α ∈ Cq,1 such that d↑α = ~dη. Consider the
element ω = ~dα of Cq,2. This is a cocycle because the bi-complex structure
implies

d↑ω = d↑ ~dα = −~dd↑α = −~d ~dη = 0.

Now Lemma 4.2 shows that [ω] vanishes indeed in E2,q
1 . �

Summarising Propositions 6.2 and 6.3, the third page E3 vanishes except
possibly at the following coordinates:

• E0,q
3 = Hq

m(G) for all q > 0;

• Ep+1,0
3 is the cohomology of the d↑-complex L

(
(G/P )p+1

)G
for all p >

0;
• E1,q

3 �Hq
m(P ) and E2,q

3 �Hq
m(A) for all even q > 0.

Since the spectral sequence converges to zero, the most immediate conse-
quence is that d3 establishes an isomorphism between H2

m(G) and H2
m(G;P ).

Further consequences are that for every even q > 0:

• dq+1 gives embeddings of Hq
m(P ) into Hq+1

m (G;P ) and of Hq
m(A) into

Hq+2
m (G;P );

• dq+2 yields an isomorphism between Hq+1
m (G) and the cokernel of

Hq
m(P ) in Hq+1

m (G;P );
• dq+3 yields an isomorphism between Hq+2

m (G) and the cokernel of

Hq
m(A) in Hq+2

m (G;P ).

This completes the proof of Theorem B if we recall that Hq
m(P ) � Hq

m(A)
by Proposition 3.1. Indeed, since A � Rr , its cohomology is the exterior
power ∧•Rr (after identifying it with its dual). �

Finally, we justify a statement made in Remark 1.3, namely: the com-
parison map H•cb(G)→ H•c(G) from the continuous bounded cohomology is
induced by the inclusion maps L∞((G/P )n+1)→ L((G/P )n+1). Consider the
subspace Cp,qb ⊆ Cp,q of bounded function classes:

C
p,q
b = L∞

(
Gp+1 × (G/P )q

)G
.
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This gives us a sub-bi-complex of Cp,q and therefore the inclusions in-
duce morphisms of spectral sequences for both spectral sequences. The
first spectral sequence associated to Cp,qb collapses for reasons entirely par-
ralel to those indicated in Proposition 6.1, the technical ingredients of
Lemma 2.4 and Lemma 2.1 being replaced by analogues for bounded coho-
mology (spelled out explicitly e.g. as Lemma 8.2.5 and 7.5.5 in [Mon01]).
In the second spectral sequence for Cp,qb , which we denote by Ep,qb , we have

E
p,q
b,1 = Hq

cb (G,L∞ ((G/P )p)) .

It follows that Ep,qb,1 vanishes for all p > 0 and q > 0 because P is an amenable
group and hence L∞((G/P )p) is injective the relevant homological sense [Mon01,
Thm. 5.7.1]. We conclude that the differentials induce isomorphisms be-
tween Hn

cb(G) and the cohomology of the complex

· · · −→ L∞
(
(G/P )n+1

)G
−→ ·· ·

The existence of this isomorphism is well-known, but now we have the
additional information that it is induced by the differentials of Ep,qb , which
are compatible with our morphisms of spectral sequences. Therefore, this
isomorphism is indeed intertwined (via the inclusion maps) with the map
from Hn

m(G) to Hq
m(G;P ) provided by the spectral sequence Ep,q in the proof

of Theorem B, as claimed.
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