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SUPERRIGIDITY FOR IRREDUCIBLE LATTICES
AND GEOMETRIC SPLITTING

NICOLAS MONOD

1. Introduction

1.1. Superrigidity. In the early seventies, Margulis proved his celebrated super-
rigidity theorem for irreducible lattices in semisimple Lie and algebraic groups of
higher rank. One of the motivations for this result is that it implies arithmeticity :
a complete classification of higher rank lattices. In the case where the semisimple
group is not almost simple, superrigidity reads as follows (see [M1], page 2):

1. Theorem (Margulis). Let Γ be an irreducible lattice in G =
∏

α∈A Gα(kα),
where kα are local fields and Gα are connected simply connected semisimple kα-
groups without kα-anisotropic factors and |A| ≥ 2. Let k be a local field, H a con-
nected adjoint k-simple k-group and τ : Γ → H(k) a homomorphism with Zariski-
dense unbounded image.

Then τ extends to a continuous homomorphism τ̃ : G → H(k).

(We do not address the case where G is simple in this article.)
Our goal is to abandon completely the realm of algebraic (or Lie) groups and to

establish a generalization of this theorem for uniform lattices in products. There
will be no assumptions on the product group G. Instead of the algebraic group
H for the target, we shall consider general isometry groups of CAT(0) spaces.
An additional feature of our proof is that it is fully self-contained; this gives in
particular a new, rather elementary, and purely geometric proof of Margulis’ result
for uniform lattices in products as above. For instance, the idiosyncrasies of positive
characteristics (see Venkataramana [V]) vanish. Here is our setting:

(i) A lattice Γ in a product G = G1 × · · · × Gn of arbitrary locally compact
groups is said to be irreducible if the projection of Γ to each factor Gi is dense. In
the classical semisimple case of Theorem 1, this follows from the stronger notion of
algebraic irreducibility assumed therein.

Remark. This irreducibility assumption is not a restriction whatsoever: One verifies
that any lattice Γ < G is an irreducible lattice in the product G∗ < G of the closures
G∗

i < Gi of its projections to Gi. In particular, for any discrete cocompact subgroup
Γ < G, the theorems below apply and extend the Γ-actions to G∗.

(ii) We replace H(k) with the isometry group Is(X) of arbitrary complete
CAT(0) spaces X; also known as Hadamard spaces, these are quite general metric
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spaces satisfying a curvature inequality. In the classical case, X is the symmetric
space of H(k) when k is Archimedean, and the associated Bruhat-Tits building
otherwise. The Zariski density is a necessary assumption for Theorem 1 as stated;
before proposing two replacements for that assumption, we first state a result with-
out any further assumption, which is possible for proper spaces upon passing to the
geometric boundary ∂X:

2. Theorem. Let Γ be an irreducible uniform lattice in a product G = G1×· · ·×Gn

of locally compact σ-compact groups. Let Γ act by isometries on a proper CAT(0)
space X without global fixed point.

Then there is a non-empty closed Γ-invariant set C ⊆ ∂X on which the Γ-action
extends continuously to a G-action.

(See the text for a more precise statement; e.g., C arises for some i = 1, . . . , n
as the boundary of a Gi-space lying in X and the action on C factors through
G � Gi.)

We now turn to extending homomorphisms τ : Γ → H < Is(X) as in Margulis’
statement. We propose first, still for X proper, the following substitute for Zariski
density in simple adjoint groups.

3. Definition. A subgroup L < Is(X) is indecomposable if for every non-empty
L-invariant closed subset C ⊆ ∂X, the closureL acts faithfully on C andL is closed
in Homeo(C ) (for the topology of uniform convergence).

This always holds in the setting of Theorem 1. Indecomposability turns out
to be very natural; see Section 6.2. In particular, a non-trivial indecomposable
subgroup L cannot fix a point at infinity. In negative curvature, indecomposability
is essentially automatic upon passing to invariant subspaces.

4. Corollary. Let Γ be an irreducible uniform lattice in a product G = G1 × · · · ×
Gn of locally compact σ-compact groups. Let H < Is(X) be a closed subgroup,
where X is a proper CAT(0) space, and let τ : Γ → H be a homomorphism with
indecomposable unbounded image.

Then τ extends to a continuous homomorphism τ̃ : G → H.

This result immediately implies Margulis’ Theorem 1 for uniform lattices.
Furthermore, if we keep H = H(k), it shows similarly that for an irreducible

uniform lattice in a general product group G, all completely reducible linear rep-
resentations in finite-dimensional vector spaces over all local fields are completely
determined by the continuous linear representations of G. Specialising in the other
direction: even when G is an algebraic group, the above theorem yields a new family
of superrigidity results.

Remark. It is easy to verify (and inherent in the proofs) that the extended map τ̃
factors through some Gi. Similarly for Margulis’ Theorem 1 and Theorem 6 below.

Although the above results are set in the context of locally compact spaces, our
proof involves in an essential way infinite-dimensional CAT(0) spaces. Indeed,
the overall strategy is to induce the Γ-action to a G-action on a space of L2-maps
G/Γ → X and then to prove a splitting theorem for the latter. It turns out that
we can prove superrigidity also when X itself is infinite-dimensional; to this end,
we propose our second substitute for Zariski density in intrinsic geometric terms
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for any CAT(0) space X:

5. Definition. A subgroup L < Is(X) is reduced if there is no unbounded closed
convex subset Y � X such that gY is at a finite (Hausdorff) distance from Y for
all g ∈ L.

6. Theorem. Let Γ be an irreducible uniform lattice in a product G = G1×· · ·×Gn

of locally compact σ-compact groups. Let H < Is(X) be a closed subgroup, where
X is any complete CAT(0) space not isometric to a finite-dimensional Euclidean
space Rd. Let τ : Γ → H be a homomorphism with reduced unbounded image.

Then τ extends to a continuous homomorphism τ̃ : G → H.

(Continuous homomorphism and closed subgroup are to be defined suitably
when X is not locally compact.)

Remarks. (i) As stated, the above theorem does not hold for the very special case
X = Rd (see Section 6.5). Although Hilbert spaces, in particular Rd, are special
examples of complete CAT(0) spaces, their linear structure allows a more detailed
analysis; see [Sh].

(ii) It might be desirable to find a weaker condition than that the action is re-
duced (in light for instance of the completely general statement for commensurators
given in Appendix A). We point out that the key technical result in our approach
(Theorem 55 in Section 6.1) provides in complete generality a totally geodesic leaf-
wise isometric Γ-map (from an auxiliary G-space). This is often enough to deduce
superrigidity.

We have so far considered only uniform lattices. The non-uniform case raises
some difficulties, which can however be overcome under certain assumptions.

7. Theorem. Theorem 2, Corollary 4, Theorem 6, and in fact all results of this
paper hold more generally also for non-uniform lattices provided they are square-
integrable and weakly cocompact. This is notably the case (i) for all Kazhdan
Kac-Moody lattices [R2] and (ii) whenever G is a connected semisimple Lie group.

For a discussion of these concepts, more precise statements and proofs, see Ap-
pendix B.

1.2. Splitting. The geometry of infinite-dimensional CAT(0) spaces is in some
regards very different from their classical analogues; a first glimpse into the richness
of phenomena arising there is given by the study of unitary representations and
their cocycles – Kazhdan’s property (T) is perhaps one of the first instances. A
central issue is that the boundary ∂X does not reflect sufficiently the structure of
the isometries of X (the boundary may even be empty). Therefore, we introduce
the following notion, which coincides simply with the existence of a fixed point in
∂X when X is a proper CAT(0) space.

8. Definition. Let G be a topological group with a continuous action by isometries
on a metric space X. The G-action on X is evanescent if there is an unbounded
set T ⊆ X such that for every compact set Q ⊆ G the set {d(gx, x) : g ∈ Q, x ∈ T}
is bounded.
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We can turn to our splitting theorem. Observe that there is no assumption
whatsoever on the topology of G or X:

9. Theorem. Let X be a complete CAT(0) space with a continuous G-action by
isometries, where G = G1 × · · · × Gn is any product of topological groups Gi.

Either the G-action is evanescent or there is a canonical non-empty closed convex
G-invariant subspace Z ⊆ X which splits G-equivariantly isometrically as a product
Z1 × · · · × Zn of Gi-spaces Zi.

(See Section 4.1 for the importance of evanescence.)
The special case where X is locally compact (which is not sufficient to prove

superrigidity) reads as follows.

10. Corollary. Let X be a proper CAT(0) space with a G-action by isometries,
where G = G1 × · · · × Gn is any product of groups Gi.

Either there is a G-fixed point in ∂X, or there is a non-empty closed convex G-
invariant subspace Z ⊆ X which splits G-equivariantly isometrically as a product
of Gi-spaces Zi. �

Under various additional assumptions, this special case was previously known;
when X is in fact a Riemannian manifold, it is Schroeder’s generalization [Sch]
of the splitting theorems proved by Lawson-Yau [LY] and Gromoll-Wolf [GW]
around 1970. The latter are of differential nature, and Schroeder’s proof relies
in an essential way on a Riemannian argument of Eberlein [E] using currents. How-
ever, there is a purely CAT(0) statement in [BH] (II.6.21 and II.6.25(3)); since the
argument therein requires extending geodesics indefinitely within every invariant
subspace, it is assumed in that reference that X has this property and that G
is cocompact or at least has full limit set. Similar particular cases are obtained
by Jost-Yau [JY3] using harmonic maps. In our situation, it is impossible to as-
sume anything on the space Z, but it turns out that no assumption is needed for
our proof. Nevertheless, we emphasize that the proof of the splitting Theorem 9
borrows arguments from [Sch] and from [BH, II.6].

1.3. Comments. Other applications of our methods to rigidity theory will be
exposed elsewhere; in particular, the special case of homomorphisms to algebraic
groups H(k) leads, following Margulis’ ideas, to an Arithmeticity vs. Non-
Linearity Alternative for irreducible lattices in suitable product groups [Md].

Aside from the results mentioned above, an important technical aspect is the
behaviour of evanescence under induction (Theorem 53 in Section 5.5 for a simpler
case, Appendix B in general). A very elementary but perhaps interesting tool for
infinite-dimensional spaces is a weakened topology Tc that we introduce; it is a
common generalization of the weak topology in Hilbert spaces and the topology
introduced in [MS1] for trees.

Related results. Margulis’ Theorem 1 has been followed by numerous related re-
sults. We refer e.g. to [Bu], [GP] and the references therein; to Zimmer’s non-linear
superrigidity [Z]; to the geometric superrigidity of Jost-Yau [JY1], [JY2], [J] and
Mok-Siu-Yeung [MSY]; to Shalom’s work [Sh]. Moreover, in the CAT(−1) setting,
the flexibility of bounded cohomology allows for very general conclusions [MS1],
[MS2], including cocycle superrigidity in the spirit of Zimmer. By contrast, the
present approach is more simple-minded: no boundary maps, no cohomology, no
harmonic maps, and of course no theory of algebraic groups.
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On the exposition. We seek a self-contained presentation; in order to illustrate
the new concepts that we introduce, we bring a number of examples or simple
propositions which are not needed for the proof of the main results. We are inspired
by various sources: Our first motivation is of course Margulis’ work. The idea of
inducing actions is classical in rigidity. Spaces of L2-maps appear notably in [KS].
Our general strategy is reminiscent of Shalom’s work for unitary representations
and cohomology [Sh].

2. Informal outline of the reasoning

Since our proof is flanked with many geometric generalities, we limn the general
argument in an attempt to highlight its simplicity:

2.1. Superrigidity. Consider a lattice Γ < G = G1×· · ·×Gn acting on a complete
CAT(0) space X. We construct an associated CAT(0) G-space Y by considering
the (right-) Γ-equivariant maps f : G → X, subject to an L2-condition. The
distance between f, f ′ ∈ Y is d2(f, f ′) def=

∫
G/Γ

d2(f(g), f ′(g)) dg and the G-action

is (hf)(g) def= f(h−1g).
The motivation for this new “induced” CAT(0) space Y is this: on the one hand,

there is a correspondence between properties of the Γ-action on X and of the G-
action on Y ; to wit, non-evanescence is preserved. On the other hand, even though
Y is a priori a more unwieldy space (typically not locally compact), the G-action
on it is subject to the splitting theorem.

We obtain a splitting Y ⊇ Z = Z1 × · · · × Zn into Gi-spaces. In particular, if
f, f ′ ∈ Zi, then for h ∈ Gj (j �= i) we have a Euclidean rectangle {f, f ′, hf, hf ′}.
It follows that d(f(g), f ′(g)) = d(f(h−1g), f ′(h−1g)) for almost all g ∈ G. If the
projection of Γ to Gi is dense, this implies by Γ-equivariance that d(f(g), f ′(g)) is
a.e. constant. Therefore, we obtain by evaluation isometric maps Zi → X compat-
ible with the Γ-actions. This is the main step in extending the Γ-action on X or
on ∂X to G.

2.2. Splitting. Consider a G-action on a complete CAT(0) space Y , where G =
G1×· · ·×Gn; we are motivated by the above “induced” spaces but work in complete
generality.

Reduce to the case n = 2. We show that either the G-action is evanescent or
there is a minimal non-empty closed convex G1-invariant subset Z1 ⊆ Y . The
main point here is a geometric analogue of the Banach-Alaoğlu theorem; we intro-
duce a weakened topology for which bounded closed convex sets are compact. A
compactness argument then produces the minimal set.

The standard “sandwich lemma” implies as in [Sch] and [BH, II.6] that the
collection of all such sets Z1 ⊆ Y has a foliated structure which is preserved by the
G-action. The decisive point to establish is that this foliation is a global isometric
splitting even though we lack any further assumptions. This is achieved by showing
that the holonomy consists of Clifford translations, hence is trivial.

3. Geometric preliminaries

3.1. Our general background reference is [BH] (see also [Ba], [J]). Let X be a
metric space with metric d. A map σ : I → X, where I ⊆ R is any interval, is
geodesic if it is isometric. The space X is geodesic if every pair of points is joined
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by some geodesic segment, and A ⊆ X is convex if it contains any geodesic segment
joining any two of its points. For any subsets A, B of a metric space X, we denote
by [A] the closed convex hull of A and [A, B] def= [A ∪ B]. We write B(x, r) for the
closed ball of radius r around x; if X is a geodesic space and r �= 0, then this is the
closure of the open ball B(x, r).

3.2. A CAT(0) space is a geodesic space X such that for any triangle x, c, c′ ∈ X
the midpoint m of any geodesic between c, c′ ∈ X satisfies the courbure négative
inequality of Bruhat-Tits [BH, II.1.9]:

(1) 2d2(m, x) ≤ d2(c′, x) + d2(c, x) − 1
2
d2(c′, c).

Equivalently, the distances between any points in the sides of any geodesic triangle
are bounded by the corresponding distances in Euclidean triangles. In particular,
geodesics are unique: the segment from c to c′ is [c, c′]. Examples include all
symmetric spaces and Bruhat-Tits buildings; all simply connected manifolds of
non-positive sectional curvature; Hilbert spaces; simply connected Euclidean or
hyperbolic simplicial complexes satisfying certain local link conditions [BH, II.5.4].

As a simplification, notice that a complete metric space is CAT(0) if and only if
(i) any pair of points c, c′ admits a midpoint m and (ii) for any such m and any x
the inequality (1) holds.

Here is an example of an application of the CAT(0) inequalities. Let x, x′, y, y′ ∈
X. For 0 < ε < 1 let xε, x

′
ε be the points of [x, x′] at distance εd(x, x′) of x,

respectively of x′. Then
(2)
d2(xε, y) + d2(x′

ε, y
′) ≤ d2(x, y) + d2(x′, y′) + 2εd(x, x′)

(
d(y, y′)− (1− ε)d(x, x′)

)
.

This type of inequalities was first proved by Reshetnyak [Rk] (we refer to [KS, 2.1.3]
for a derivation of (2) from (1)).

3.3. The circumradius of a bounded set A ⊆ X is the infimum � of all r > 0 such
that A ⊆ B(x, r) for some x ∈ X. If X is CAT(0) and complete, then this infimum
is achieved and (for A �= ∅) there is a unique point c ∈ X such that A ⊆ B(c, �);
this point is called the circumcentre of A. If in addition A is convex and closed,
then c ∈ A.

11. Lemma. Let X be a complete CAT(0) space, E ⊆ E′ ⊆ X two non-empty
bounded closed convex sets, c, c′ the corresponding circumcentres and �, �′ the cir-
cumradii.

Then d(c′, c) ≤
√

2
√

�′2 − �2.

Proof. If c = c′, there is nothing to prove. Otherwise, the midpoint m of [c′, c] is
not the circumcentre of E and thus there is x ∈ E with d(m, x) > �. Replacing
this in (1) gives 2�2 + d2(c′, c)/2 < �′

2 + �2, as required. �

3.4. If A ⊆ X is a non-empty closed convex subset of the complete CAT(0) space
X, then there is a nearest point projection map pA : X → A which does not increase
distances.

Another consequence of (1) is the Sandwich Lemma (see [BH, II.2.12]): assume
that C, C ′ ⊆ X are two non-empty closed convex subsets such that the function
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d(x, C) is constant on x ∈ C ′ and likewise d(x, C ′) on C; denote this (common)
constant by d0. Then there is a canonical isometry

ϕ : C × [0, d0]
∼=−−→ [C, C ′] ⊆ X

such that
ϕ|C×{0} = IdC and ϕ|C×{d0} = pC′ |C .

In the particular case where C, C ′ are geodesic segments, we say that they determine
a Euclidean rectangle.

Similar arguments apply to the following setting: an isometry g : X → X such
that D

def= d(gx, x) is independent of x is called a Clifford translation [BH, II.6.14].
If D > 0, then there is an isometry X ∼= X ′×R intertwining g with the translation
by D along R. More generally, any complete CAT(0) space X splits canonically
as X ∼= X ′ × V , where V is a (possibly trivial or finite-dimensional) Hilbert space
and X ′ does not admit any Clifford translation. Moreover, Is(X) preserves this
splitting. For all this, see [BH, II.6.15].

3.5. Let G be a topological group acting on a metric space X by isometries. The
following are equivalent:

(i) for all x ∈ X the map G → X, g �→ gx is continuous at e ∈ G;
(ii) the action map G × X → X is continuous.
When this happens, we say that the action is continuous. When X is proper, we

always endow its isometry group Is(X) with the compact-open topology; in that
case, Is(X) is a locally compact second countable topological group and the above
conditions are equivalent to the continuity of the homomorphism G → Is(X). For
X general, we do not topologize Is(X) but still call a homomorphism G → Is(X)
continuous when the G-action is so, and a subgroup H < Is(X) is said to be closed
if its orbits in X are so. A standard argument implies:

12. Lemma. Let G be a locally compact second countable group with an action
by isometries on a complete separable metric space X. If for all x ∈ X the map
G → X, g �→ gx is measurable, then the action is continuous. �

We call a subset L ⊆ G bounded if for some (or equivalently any) x ∈ X the
set Lx is bounded in X; when X is proper, this coincides with the usual definition
in which a subset of a locally compact group G is bounded when it has compact
closure.

3.6. The boundary at infinity ∂X of a complete CAT(0) space X can be defined
as the set of equivalence classes of geodesic rays in X, where two rays are equivalent
(asymptotic) if they remain at bounded distance from each other. The bordification
X

def= X � ∂X can be identified with the inverse limit of the closed balls B(x, r)
as r → ∞ under the maps pB(x,r), wherein x ∈ X is any basepoint; the resulting
topology is called the cone topology [BH, II.8]. When X is proper, X is a second
countable compact space (hence metrizable) and the action map Is(X)×X →X is
continuous.

3.7. Let X be a metric space. Unless otherwise stated, every topological epithet
will always refer to the topology T induced by the metric d. One can define a
weaker topology Tw by letting Tw be the weakest topology on X such that for
all x, y ∈ X the map z �→ d(x, z) − d(y, z) is continuous. This topology is always
Hausdorff; we shall however be more interested in the following.
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13. Definition. Let X be a metric space. We define the topology Tc to be the
weakest topology on X for which all T -closed convex sets are Tc-closed.

Here is the main property of Tc.

14. Theorem. Let X be a complete CAT(0) space and C ⊆ X a bounded closed
convex subset. Then C is compact 1 for the topology Tc.

This is a common generalization of the two quite different cases of Hilbert spaces
in the weak topology and of trees in the topology considered in [MS1]; see the
examples below.

Proof of the theorem. We need to prove that for any family F of Tc-closed sets
F ⊆ X such that {F ∩ C : F ∈ F} has the finite intersection property, the
intersection of all F ∩ C is non-empty. By Alexander’s sub-base theorem, it is
enough to consider a family F consisting of closed convex sets F . We may assume
F ⊆ C upon replacing each F by F∩C. Let A be the set of non-empty finite subsets
A ⊆ F , ordered by inclusion. To any A ∈ A we associate the circumradius �A

of
⋂

A and its circumcentre cA ∈
⋂

A . Notice that {�A }A ∈A is a non-increasing
net since A ⊆ B implies ⋂

B ⊆
⋂

A ⊆ B(cA , �A )

and thus �B ≤ �A . On the other hand this net is non-negative, therefore converges
and thus is a Cauchy net. Applying Lemma 11 to the sets

⋂
B ⊆

⋂
A we deduce

that {cA }A ∈A is a Cauchy net and hence converges to a limit c ∈ X. For every
A ∈ A, all points cB with A ⊆ B belong to

⋂
A ; therefore the limit c is still in⋂

A . It follows that c is in ⋂
A ∈A

⋂
A =

⋂
F∈F

F,

as was to be shown. �
15. Remark. Lemma 11 can also be used to explain the following (probably well-
known) fact. Let F be a non-expanding map of a complete CAT(0) space X. If F
has bounded orbits, then its (closed convex) fixed set is non-empty. Indeed, pick
any x ∈ X; let Cn

def= [{F k(x) : k ≥ n}] and let cn be its circumcentre, �n its
circumradius. Since {Cn} is decreasing, Lemma 11 implies that {cn} has a limit c.
Since Cn+1 ⊆ [F (Cn)], we have Cn+1 ⊆ B(F (cn), �n). Applying again Lemma 11,
it follows that F (cn) converges to c, which is thus fixed.

3.8. This section serves only to illustrate Tc.

16. Lemma. For any complete CAT(0) space X we have Tc ⊆ Tw ⊆ T .

Proof. We only need to show Tc ⊆ Tw. Let C � X be closed convex. The set

C ′ def=
⋂

x/∈C

{
z : d(x, z) − d(pC(x), z) ≥ 0

}
is Tw-closed. We claim that C ′ = C. On the one hand, C ⊆ C ′ because for all
z ∈ C we have d(pC(x), z) = d(pC(x), pC(z)) ≤ d(x, z) regardless of x. On the
other hand, if z /∈ C, then z is not in {z : d(x, z) − d(pC(x), z) ≥ 0} for x = z. �

1We follow the common usage to define compactness with the Borel-Lebesgue axiom regardless
of separation; this is called quasi-compact by Bourbaki’s collaborators [Bou1, I §9 no 1]. On the
other hand, our locally compact groups are always assumed to be Hausdorff.
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17. Lemma. If K ⊆ X is T -compact, then the restrictions of T and Tc to K
coincide.

Proof. It is enough to show that for all x ∈ K and all r > 0 there is a Tc-neigh-
bourhood U of x such that U ∩K ⊆ B(x, r). That ball, together with all B(y, r/2)
for every y ∈ K with d(x, y) ≥ r, covers K. Therefore there is a finite set F ⊆ K
of points y with d(x, y) ≥ r such that

⋃
y∈F B(y, r/2) covers K \ B(x, r). The set

U
def= X \

⋃
y∈F B(y, r/2) has the sought properties. �

The topology Tc is familiar in some particular cases.

18. Example. If X is a Hilbert space, then Tc and Tw both coincide with the
weak topology.

19. Example. If X is the standard infinite-dimensional (separable) real hyperbolic
space O(1,∞)/O(∞) (see e.g. [BIM]), then Tw and Tc coincide; moreover, they
are induced from the weak topology if we realize X with the ball model in a Hilbert
space.

20. Example. If X is a simplicial tree, then Tw and Tc coincide; moreover, they
coincide with the weak topology σ on trees introduced in [MS1].

However, the topology Tc is not all that straightforward in general. It seems
not to be Hausdorff for irreducible higher rank Bruhat-Tits buildings or symmetric
spaces. Indeed, those spaces appear to have the following stronger property of
convex irreducibility : they cannot be covered by finitely many convex (proper)
subsets. (Problem: Prove that statement.)

It is however Hausdorff in rank one and more generally for simply connected
manifolds of pinched negative curvature (as pointed out to us by I. Agol and
B. Bowditch); this can be verified using the convex hulls of sufficiently small sets
at infinity and controlling them as in [A, Thm. 3.3]. Yet it is unclear to us what
happens for infinite-dimensional complex hyperbolic spaces (compare Example 19).
Moreover, whilst in a Hilbert space all weakly compact sets are bounded, this is
not so even in the simplest examples of CAT(0) spaces.

21. Example. Let X be a simplicial tree consisting of countably many rays of finite
but unbounded length, all meeting at one vertex. Then the space X is Tc-compact
even though unbounded. Notice in addition that ∂X = ∅.

Let X be any complete CAT(0) space. We extend the topology Tc to X by
declaring that for any T -closed convex set C ⊆ X the (usual) closure C of C in X
is Tc-closed.

22. Remark. The (compact) topology that Tc determines onX through the realiza-
tion ofX as an inverse limit of closed balls is in general coarser than Tc, even when
restricted to X: already for Hilbert spaces, one obtains the weaker bounded weak
topology. These topologies coincide however when X is a tree or a real hyperbolic
space as in Example 19.

WhilstX is not Tc-compact when X is e.g. an infinite-dimensional Hilbert space,
we have:

23. Proposition. If the complete CAT(0) space X is Gromov-hyperbolic, then X
is Tc-compact.
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Proof. It suffices to show that for any nested family C of non-empty closed convex
sets C ⊆ X the intersection

⋂
C∈C C is non-empty. Fix x ∈ X. If {pC(x) : C ∈ C }

is bounded, we are done by Theorem 14. Otherwise, we claim that
⋂

C∈C C is a
single point of ∂X. Indeed, in view of the sequential model of ∂X [GH, p. 120],
it is enough to show that for any choices c ∈ C, c′ ∈ C ′, the Gromov product
(c|c′)x tends to infinity along C, C ′ ∈ C . This follows since (c|c′)x is comparable to
d([c, c′], x), which is bounded below by d(pC(x), x) or d(pC′(x), x). �
3.9. We will now analyse evanescence (Definition 8 of the Introduction); let G be
a topological group with a continuous action by isometries on a metric space X.

24. Definition. Let Q be a subset of G. Then a subset T ⊆ X such that {d(gx, x) :
g ∈ Q, x ∈ T} is bounded will be said to be Q-evanescent.

Thus, by Definition 8, the action is evanescent if and only if there is an unbounded
set T ⊆ X which is Q-evanescent for every compact set Q ⊆ G; we then call T
itself evanescent.

25. Lemma. Suppose that X is a CAT(0) space, let Q be compact in G and x0 ∈ X.
Then there exists no unbounded Q-evanescent set if and only if there is λ > 0 and
d0 ≥ 0 such that

sup
g∈Q

d(gx, x) ≥ λd(x, x0) − d0 ∀x ∈ X.

Proof. Sufficiency is obvious. Suppose conversely that the condition fails. Then for
every n ≥ 1 there is yn ∈ X such that d(gyn, yn) < d(yn, x0)/n! − n2 for all g ∈ Q.
Let xn be the point at distance n from x0 on [x0, yn]. A comparison argument
shows that

lim sup
n→∞

sup
g∈Q

d(gxn, xn) ≤ sup
g∈Q

d(gx0, x0)

and thus {xn} is a Q-evanescent sequence. �
26. Remark. It follows from this lemma that the G-action on X is evanescent if
and only if every compactly generated subgroup of G has a non-trivial fixed point
for its diagonal action on some (or equivalently any) asymptotic cone of X along a
free ultrafiltre (the base-point of an asymptotic cone is a trivial fixed point). We
shall not use this characterization.

27. Proposition. Suppose that X is a complete CAT(0) space.
(i) If there exists a G-fixed point in ∂X, then the G-action on X is evanescent.
(ii) The converse holds if X is proper.

Proof. If there exists a point ξ ∈ ∂X fixed by G, then any ray pointing to ξ is
an evanescent set. In case (ii), X = X � ∂X is compact and it follows that any
unbounded evanescent sequence has a subsequence converging to some ξ ∈ ∂X; the
definition of the cone topology onX shows that ξ is G-fixed. �

Another natural definition is as follows:

28. Definition. A continuous G-action on a metric space X is weakly evanescent
if for every compact Q ⊆ G there is an unbounded Q-evanescent set in X.

We point out that for both Definitions 8 and 28 it is enough to consider un-
bounded evanescent sequences. Whilst evanescence is in general stronger than weak
evanescence, we have the following.
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29. Proposition. Suppose that X is a complete CAT(0) space. Then weak evanes-
cence implies evanescence if either (i) X is proper; or (ii) if there is a countable
cofinal chain in the directed set of compact subsets of G.

30. Remark. The assumption in (ii) is satisfied if G is locally compact σ-compact
(since G is then a countable union of compact sets of non-empty interior); but it
also holds in other cases (e.g. if G is the additive group of a dual Banach space
endowed with the weak-* topology).

Proof of the proposition. For case (i), observe that the family
{
(∂X)Q : Q compact

in G
}

has the finite intersection property so that we can use compactness of ∂X
and Proposition 27. In case (ii), one can choose an increasing sequence of compact
sets Qn ⊆ G such that any compact set in contained in Qn for n big enough. Let
Tn be unbounded and Qn-evanescent and let Kn ≥ 1 be a constant bounding the
numbers d(gx, x) of Definition 24. Fix any point x0 ∈ X and define a diagonal
sequence {xn} by picking first yn ∈ Tn with d(yn, x0) ≥ (nKn)2 and then letting
xn be the point at distance n of x on [x, yn]. A comparison argument as in the
proof of Lemma 25 shows that {xn} is evanescent. �

Evanescence behaves in a simple way with respect to direct products:

31. Proposition. Let G = G1 ×G2 be a product of topological groups and suppose
that X = X1×X2 is a product of two unbounded CAT(0) spaces Xi with continuous
Gi-action. Endow X with the product G-action.

(i) Both Gi-actions on X are evanescent.
(ii) The G-action on X is (weakly) evanescent if and only if at least one of the

Gi-actions on Xi is (weakly) evanescent.

Observe that (i) stands in contrast to the behaviour of Shalom’s notion of
(non-)uniformity [Sh].

Proof. For the first point, fix any x ∈ X1 and let T = {x} × X2. This set is
evanescent for G1, since for any compact Q ⊆ G1 the set Qx is bounded and G1

acts trivially on X2; likewise for G2. A similar argument shows that if, say, the
G1-action on X1 is (weakly) evanescent, then the G-action on X is so too. As for
the converse, assume {xn} is an unbounded Q-evanescent sequence in X for some
compact Q ⊆ G. Fix ai ∈ Xi and set x′

n = pX1×{a2}(xn), x′′
n = p{a1}×X2(x2).

Since pX1×{a2} is G1-equivariant and does not increase distances (and similarly
for p{a1}×X2), it is enough to show that either {x′

n} or {x′′
n} is unbounded. But

otherwise {xn} would itself be bounded. �
3.10. We recall that, following Kazhdan, a unitary or orthogonal representation
π is said almost to have non-zero invariant vectors if for every compact Q ⊆ G and
every ε > 0 there is a unit vector v such that

(3) sup
g∈Q

‖π(g)v − v‖ ≤ ε.

32. Proposition. Suppose that X is a Hilbert space. Then the G-action on X is
weakly evanescent if and only if the associated orthogonal representation almost has
non-zero invariant vectors.

Proof. The proof is a straightforward verification using e.g. sequences of the form
xn = nvn, where vn satisfies (3) for ε = 1/n. �
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33. Remark. In particular, one has the following well-known characterization when
G is as in Remark 30: π almost has non-zero invariant vectors if and only if there
is an asymptotically invariant sequence, i.e. a sequence {vn} with ‖vn‖ = 1 and
‖gvn − vn‖ → 0 uniformly for g on compact sets.

4. A general splitting theorem

This section addresses Theorem 9 of the Introduction.

4.1. Consider the very simplest product group: G = Z×Z, and the very simplest
non-proper CAT(0) space: a Hilbert space. Then, already, evanescence is the right
replacement for fixed points at infinity in the sense that Theorem 9 fails if we
formulate it in terms of ∂X. We give a more general counterexample:

34. Proposition. Let G1, G2 be any two locally compact separable groups without
Kazhdan’s property (T). Then there is an action of G = G1 × G2 by isometries on
a Hilbert space X such that:

(i) the G-action on ∂X has no fixed point;
(ii) no non-empty closed convex G-invariant subspace Z ⊆ X splits as a product

of Gi-spaces.

Proof. By Theorem 1 in [BV], each Gi admits an orthogonal representation πi

such that πi ⊗ πi almost has non-zero invariant vectors but πi is weakly mixing,
that is, has no finite-dimensional subrepresentation. Let σ be the G-representation
π1 ⊗ π1 ⊗ π2 ⊗ π2 and X the associated Hilbert space. Notice that πi ⊗ πi itself
is weakly mixing; this implies σGi = 0; see [BR]. On the other hand, one deduces
immediately with the definition (3) that σ almost has non-zero invariant vectors. As
a well-known consequence of the closed graph theorem (observed by Guichardet [G,
Théorème 1]), it follows that there is a non-trivial σ-cocycle b : G → X in the closure
of the space of coboundaries. We endow X with the corresponding continuous G-
action by (affine) isometries. Ad (i), observe that a fixed point in ∂X would give a
non-zero G-fixed vector for σ. Ad (ii), assume for a contradiction that Z ⊆ X splits
as Z1 ×Z2. For every x, y ∈ Zi, the vector x− y is fixed by σ(Gj) for j �= i, which
in view of σGj = 0 shows that both Zi are reduced to a single point. This point
being fixed by the affine G-action, b is trivial, contradicting the assumption. �

Notice that the action here is weakly evanescent by Proposition 32, hence evanes-
cent by Proposition 29. Also, the action is non-uniform in Shalom’s sense [Sh].

4.2. We undertake now the proof of Theorem 9 – the splitting theorem. First
observe that it is enough to consider the case n = 2. Indeed, the case n = 1 is
tautological; furthermore, assume that for n ≥ 3 we have a subspace Z splitting
equivariantly as Z = Z1×Z ′

1, where Z1 is a G1-space and Z ′
1 a G′

1 = G2×· · ·×Gn-
space. In order to apply induction, we just need to observe that the G′

1 action
on Z ′

1 cannot be evanescent unless the G-action on X is so; see Proposition 31
(Section 3.9).

We can from now on assume that the G-action on X is not evanescent. The
compactness established in Theorem 14, Section 3.7 allows us to get started with
the following.
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35. Proposition. Let X be a complete CAT(0) space with a continuous G-action
by isometries, where G = G1 × G2 is any product of two topological groups.

If the G-action is not evanescent, then there is a minimal non-empty closed
convex G1-invariant set in X.

Proof. Choose any point x ∈ X and let C be the set of non-empty closed convex
G1-invariant subsets of [G1x], ordered by reverse inclusion. By Hausdorff’s maximal
principle, there is a (non-empty) maximal totally ordered subset D ⊆ C . If the
intersection

⋂
D is non-empty, we are done; we assume for a contradiction that

it is empty and will show that the G-action on X is evanescent. The net d(D, x)
indexed by D ∈ D is non-decreasing; we shall prove that it converges to infinity.

Indeed, if not, it would have a limit d ∈ R and the family
{
D∩B(x, d) : D ∈ D

}
would be a nested collection of non-empty closed convex bounded sets with empty
intersection. This contradicts the Tc-compactness of Theorem 14. It follows that
the set {pD(x) : D ∈ D} is unbounded. It is now enough to show that for any
compact sets Qi ⊆ Gi the set

(4)
{
d(g1g2pD(x), pD(x)) : gi ∈ Qi, D ∈ D

}
is bounded. On the one hand, pD is G1-equivariant and thus

d(g1pD(x), pD(x)) = d(pD(g1x), pD(x)) ≤ d(g1x, x)

implies that the family d(g1pD(x), pD(x)) is bounded. On the other hand, for any
g2 ∈ G2 the function y �→ d(g2y, y) is constant on G1-orbits, so that by convexity
and continuity of the metric it is bounded by d(g2x, x) on y ∈ [G1x]. It follows now
from

d(g1g2pD(x), pD(x)) ≤ d(g1pD(x), pD(x)) + d(g2pD(x), pD(x))
that the collection (4) is bounded. �

36. Remark. In particular, any non-evanescent G-action admits a minimal non-
empty closed convex G-invariant set and actually any nested family of non-empty
closed convex G-invariant sets has non-empty intersection. See also Remarks 39.

4.3. We now know that the set Z2 of minimal non-empty closed convex G1-in-
variant sets in X is non-empty. We shall use repeatedly the following obvious

37. Lemma. If C ⊆ X is a minimal non-empty closed convex G1-invariant set,
then any convex G1-invariant continuous (or lower semi-continuous) function on
C is constant.

Proof. If f : C → R were to assume two distinct values s < t, then
{
x ∈ C : f(x) ≤

s
}

would be a strictly smaller non-empty closed convex G1-invariant set. �

Fix Z1 ∈ Z2 and let Z
def=

⋃
Z2 ⊆ X. Observe that each Zi has a natural

Gi-action. We can now consider the following setup, borrowed from [BH, pp. 239–
241]: For every C, C ′ ∈ Z2, the function d(x, C) is constant on C ′ by Lemma 37
since it is G1-invariant and likewise with C, C ′ interchanged. The Sandwich Lemma
(Section 3.4) yields a canonical isometry

(5) ϕ : C × [0, d(C, C ′)]
∼=−−→ [C, C ′] ⊆ X

such that

(6) ϕ|C×{0} = IdC and ϕ|C×{d(C,C′)} = pC′ |C .



794 NICOLAS MONOD

In particular, the distance d(C, C ′) defines indeed a metric on the set Z2, and this
metric is geodesic. Furthermore we have Z =

⊔
C∈Z2

C, and hence we obtain a
well-defined bijection α : Z −→ Z1 × Z2 by setting α(x) = (pZ1(x), Cx), wherein
Cx is the unique element of Z2 containing x.

4.4. At this point, the main remaining steps are to show that α is actually an
isometry and that it intertwines the G-actions; we need the following key fact.

38. Proposition. For all C1, C2, C3 ∈ Z2 we have pC1 ◦ pC3 ◦ pC2 |C1 = IdC1 .

Proof. First we point out that if all three sets Ci were just geodesic lines, then
this proposition would be a well-known general fact holding for any three parallel
lines in any metric space; see [BH, II.2.15]. However, in our case, it is not even
necessary that Ci should contain any line. Thus, denote by ϑ : C1 → C1 the above
map pC1 ◦pC3 ◦pC2 |C1 . The properties of the isometry ϕ in (5) imply that pCj

|Ci
is

an isometry for all i, j; moreover, this isometry Ci → Cj is G1-equivariant because
Cj is G1-invariant. Therefore, ϑ is a G1-equivariant isometry. It follows that the
function x �→ d(ϑ(x), x) is a convex continuous G1-invariant function of x ∈ C1;
Lemma 37 implies that it is constant. Thus ϑ is a Clifford translation of C1. We
need to show that ϑ is trivial. But a non-trivial Clifford translation preserves the
image of a geodesic line σ : R → C1; indeed, recall that in fact in that case C1

would split for ϑ (Section 3.4; see [BH, II.6.15]) – though we will not need this.
We may now apply the general fact mentioned earlier ([BH, II.2.15]) to the three
lines σ, pC2 ◦σ and pC3 ◦σ. We deduce that ϑ translates σ(R) trivially. Therefore,
the constant d(ϑ(x), x) vanishes and ϑ = IdC1 as was to be shown. �
4.5. It follows now that α is isometric; for completeness (and because it contains a
misprint), we give the calculation of [BH, p. 241]. Let x, x′ ∈ Z; using twice that (6)
defines an isometry to the Cartesian product C × [0, d(C, C ′)] for all C, C ′ ∈ Z2,
we have

d2(x, x′) = d2(x, pCx
(x′)) + d2(Cx, Cx′) = d2(pZ1(x), pZ1 ◦ pCx

(x′)) + d2(Cx, Cx′).

Applying now Proposition 38 to Cx, Cx′ and Z1 we deduce pZ1 ◦ pCx
(x′) = pZ1(x

′),
so that d2(x, x′) = d2(pZ1(x), pZ1(x

′)) + d2(Cx, Cx′), and α is isometric as claimed;
it is onto by (6).

39. Remarks. Let H be a topological group with a continuous action by isometries
on a complete CAT(0) space X. (1) The above arguments show that the (possibly
empty) union of all minimal non-empty closed convex H-invariant subspaces C
splits as a product C × T ; we call T the space of components. (2) If the action is
non-evanescent, then there is a canonical minimal non-empty closed convex H-
invariant subspace C0 ⊆ X. Indeed, T is non-empty by Remark 36 and bounded
by non-evanescence; hence it has a circumcentre t and we let C0 = C × {t}.
4.6. It remains to check that α intertwines the G-action on Z with the product
action on Z1 ×Z2, and actually for the G1 factor this immediately follows from the
G1-equivariance of pZ1 . However, a priori, the bijection α transports the G-action
on Z to a G-action on Z1 × Z2 of the form

g1g2(pZ1(x), Cx) = (g1(g2 � pZ1(x)), g2Cx) (gi ∈ Gi, x ∈ Z),

where we only know that the assignment G2 × Z1 → Z1 defined by

(g2, z) �−→ g2 � z
def= pZ1(g2z)



SUPERRIGIDITY AND SPLITTING 795

determines a well-defined G2-action on Z1, which moreover commutes with the
G1-action. We need to show that g2� = IdZ1 for all g2 ∈ G2. As in the proof of
Proposition 38 (for ϑ), we deduce from Lemma 37 that g2� is a Clifford translation
of Z1; so if it were non-trivial it would preserve a line σ in Z1 and in particular fix
a point σ(∞) ∈ ∂X. Moreover, we would have gn

2 � σ(0) = σ(nλ) for some λ �= 0
and all n ∈ Z. Thus for all g1 ∈ G1 and all n ∈ Z we have

d(g1σ(nλ), σ(nλ)) = d(g1g
n
2 � σ(0), gn

2 � σ(0)) = d(g1σ(0), σ(0)),

which implies that g1 fixes σ(∞). On the other hand, G2 (not just G2�) fixes σ(∞)
since σ lies in Z1. Now there is a G-fixed point in ∂X, contradicting the assumption
according to Proposition 27 in Section 3.9.

Being isometric to a product of geodesic spaces, Z is itself geodesic and hence
convex in X. Likewise, it is closed in X because it is a product of complete spaces
(indeed, the uniform structure on Z2 is complete because it is in fact a product
uniform structure; alternatively, apply the hands-on argument in [BH, p. 240]).

40. Remark. It does not follow a priori from the above proof that Z2 is minimal.
However, we may preface the whole proof by replacing X with the canonical compo-
nent provided by Remarks 39. Therefore, in the non-evanescent case of Theorem 9,
we obtain in addition that each Zi is minimal.

This concludes the proof of Theorem 9 from the Introduction. �

5. Induction and its properties

5.1. We begin by defining general “Pythagorean integrals” of metric spaces; this
is not the only natural integral of metric spaces; see Remark 48 below.

41. Definition. Let (F , µ) be a standard Borel space with a probability measure
µ and let X be a metric space. We denote by L2(F , X) the space of all measurable
maps (up to null-sets) f : F → X with separable range and such that for some (and
hence any) x ∈ X the function g �→ d(f(g), x) is in L2(F ). We endow L2(F , X)
with the metric defined by

d(f, f ′) def=
(∫

F

d2(f(g), f ′(g)) dµ(g)
)1/2

.

42. Remarks. (i) The L2-condition is independent of x by the triangle inequality in
X since µ is finite. (ii) The triangle inequality in L2(F , X) follows by combining
the Cauchy-Schwarz inequality with the triangle inequality in X.

Such spaces were considered e.g. in [KS]. The following is straightforward:

43. Lemma. Suppose that X is complete and respectively separable. Then so is
L2(F , X). �

We now describe geodesic segments in L2(F , X); the following is a measure-
theoretical generalization of the case of ordinary products [BH, I.5.3].

44. Proposition. Let X be a complete metric space, L2(F , X) as in Definition 41
and I ⊆ R any interval. A continuous map σ : I → L2(F , X) is a geodesic if
and only if there is a measurable map α : F → R+ and a collection {σg}g∈F of
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geodesics σg : α(g)I → X such that∫
F

α(g)2 dµ(g) = 1, σ(t)(g) = σg(α(g)t)

for all t ∈ I and µ-a.e. g ∈ F ( i.e. α is a semi-density).

Proof. The condition is sufficient; conversely, suppose that σ is a geodesic. It
suffices to show that there is a dense subset J ⊆ I such that for a.e. g ∈ F , the
map σ(·)(g) coincides on J with a linearly reparametrized geodesic I → X. Indeed,
if α(g) denotes the reparametrization factor and σg the corresponding geodesic, we
obtain (sufficiency) a geodesic I → L2(F , X) which coincides with σ on J , hence
equals σ by continuity. In order to exhibit J , it is enough to prove that for every
s < u in I and t = (s + u)/2 we have

(7) d(σ(s)(g), σ(u)(g)) = 2d(σ(s)(g), σ(t)(g)) = 2d(σ(t)(g), σ(u)(g))

for µ-a.e g. The triangle inequality and (a + b)2 ≤ 2a2 + 2b2 give

d2(σ(s)(g), σ(u)(g)) ≤ 2d2(σ(s)(g), σ(t)(g)) + 2d2(σ(t)(g), σ(u)(g))

µ-a.e., with equality if and only if (7) holds. Integrating, we find

d2(σ(s), σ(u)) ≤ 2d2(σ(s), σ(t)) + 2d2(σ(t), σ(u))

with equality if and only if (7) holds µ-a.e. But equality does hold here since σ is
geodesic. �

45. Remark. The above definitions and the general facts of this section hold more
generally for the integral of a measurable field of metric spaces Xg over F . The
only difference is that one must fix a choice of a section of base-points in order to
define the L2-condition. With this addition, one may also consider infinite measure
spaces F . None of this will be needed or used; therefore we leave the details to the
reader.

5.2. We now specialize to the CAT(0) setting.

46. Lemma. Suppose that X is a complete CAT(0) space. Then L2(F , X) is also
a complete CAT(0) space.

Proof. The space L2(F , X) is geodesic by (the trivial part of) Proposition 44. We
need to check inequality (1) for x, c, c′ in L2(F , X) and m the midpoint of any
geodesic line from c to c′. By Proposition 44, m(g) is the midpoint of a geodesic
from c(g) to c′(g) for a.e. g ∈ F . Therefore, the inequality holds pointwise, and
thus we can integrate it since it is linear in the squares of the distances. �

47. Example. Let M be a Riemannian manifold of finite volume, and denote by
ω the associated volume form. For any x ∈ M , the space of all positive definite
symmetric bilinear forms on the tangent space TxM which also induce ω is a CAT(0)
space, since it is isomorphic to the symmetric space X associated to SLn(R), where
n = dim(M). Thus, if (F , µ) denotes the (normalized) probability space underlying
(M, ω), then the space of “L2-Riemannian metrics” on M inducing ω is isomorphic
to L2(F , X). Observe that it is endowed with a natural isometric action of the
space of volume-preserving diffeomorphisms of (M, ω) when M is compact.
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48. Remark. It follows from Proposition 44 that for X complete CAT(0) the bound-
ary of L2(F , X) can be easily described as what we call a join integral

∂L2(F , X) ∼=
∫ ∗

F

∂X,

where the right-hand side stands for the set of pairs (ϕ, α) consisting of a measurable
map ϕ : F → ∂X and a semi-density α on F ; we identify (ϕ, α) with (ϕ′, α′) when
α = α′ µ-a.e. and ϕ = ϕ′ (α2µ)-a.e. We point out to the interested reader that this
join integral behaves well with respect to Tits geometry ; indeed, our definition of
the right-hand side

∫ ∗
F makes sense for more general (fields of) spaces replacing ∂X

and can be endowed with a natural metric by means of integrating the spherical
cosine law. We shall not use any of this since the boundary of non-proper spaces
contains too little information for our purposes.

The next proposition establishes that for a CAT(0) space X, Euclidean rectangles
(cf. Section 3.4) in L2(F , X) decompose as a “field of parallelograms” in X over
F (of course, the latter need not be rectangles, as is shown by even the simplest
possible example of the decomposition R4 = R2 × R2, which corresponds to an
atomic µ).

49. Proposition. Suppose that X is complete CAT(0). Let I ⊆ R be an interval
and σ1, σ2 : I → L2(F , X) two geodesics determining a Euclidean rectangle. Let
σg

i and αi be as in Proposition 44 for σi, i = 1, 2. Then for almost every g ∈ F the
function d(σg

1(α1(g)t), σg
2(α2(g)t)) is constant on t ∈ I. Moreover, α1 = α2 µ-a.e.

Proof. The function d(σ1(t), σ2(t)) is constant on t ∈ I. On the other hand, the
functions d(σ1(α1(g)t), σ2(α2(g)t)) are convex and non-negative. Thus the first
part of the proposition follows from the general fact that an integral of the squares
of a family of convex non-negative functions on I parametrized by a finite measure
space is constant if and only if almost every function in the family is constant.

Since σ1, σ2 bound a Euclidean rectangle in L2(F , X), we may for any two
t1, t2 ∈ I apply this first part of the proposition to the two geodesics [σ1(t1), σ2(t1)],
[σ1(t2), σ2(t2)]. The conclusion is precisely that α1(g) = α2(g) holds for a.e. g ∈
F . �

5.3. For any f ∈ L2(F , X), where X is complete CAT(0), there is a unique point
x ∈ X minimising

∫
F d2(f(g), x) dµ(g); this point is called the barycentre of f .

Indeed, we may embed X isometrically into L2(F , X) by x �→ ψx, ψx(g) def= x.
Since the image is a closed convex subspace, the barycentre can be defined by the
nearest point projection of f to that image. In particular, it follows from this
definition that for the barycentres x, x′ of f, f ′ we have

d(x, x′) ≤ d(f, f ′).

The special case f ′ = ψy yields

d2(x, z) ≤
∫

F

d2(f(g), z) dµ(g) (∀ z ∈ X).

Actually, the first inequality can be strengthened to

(8) d(x, x′) ≤
∫

F

d(f(g), f ′(g)) dµ(g)
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(though we will only use this in Appendix A and with (F , µ) replaced by a finite
set). Indeed, for 0 < ε < 1 define xε, x

′
ε as in Section 3.2. Integrating (2) with

y = f(g), y′ = f ′(g) and using∫
F

(
d2(f(g), x) + d2(f ′(g), x′)

)
dµ(g) ≤

∫
F

(
d2(f(g), xε) + d2(f ′(g), x′

ε)
)

dµ(g)

yields (8) when ε goes to zero. Notice that (8) also reads

(9) d2(x, x′) ≤ d2(f, f ′) −
∫

F

(
d(f(g), f ′(g)) − d(x, x′)

)2

dµ(g).

More refined inequalities can be found in [KS, 2.5.2].

5.4. A particular case of Definition 41 arises as follows. Let G be a locally compact
second countable group, Γ < G a uniform lattice and X a metric space with a Γ-
action by isometries. Since Γ is cocompact and G second countable, one can find a
relatively compact Borel right fundamental domain F ⊆ G with the property that
for any compact C ⊆ G the set

(10)
{
η ∈ Γ : Fη ∩ C �= ∅

}
is finite; see Exercice 12 of [Bou3, VII §2] (just note that the scholar of Nancago
considers left fundamental domains). We shall from now on agree to consider only
such domains; we further endow G with a Haar measure µ normalized by µ(F ) = 1
and write dg for dµ(g).

50. Remark. We assumed G to be second countable so that its Borel structure is
standard; in addition, we will often assume X to be separable. We do however prove
the theorems of the Introduction in the full generality stated there by showing in
due time how to reduce to the current assumptions.

51. Definition. We denote by L[2](G, X)Γ the space of all measurable maps (up
to null-sets) f : G → X with separable range and such that (i) for all g ∈ G,
γ ∈ Γ one has f(gγ−1) = γf(g) and (ii) for some (hence any) x ∈ X, the function
g �→ d(f(g), x) is in L2(F ). We endow L[2](G, X)Γ with the metric defined by

(11) d(f, f ′) def=

(∫
G/Γ

d2(f(g), f ′(g)) dg

)1/2

.

There is a canonical isometry

(12) L[2](G, X)Γ ∼= L2(F , X)

given by restriction to F . Moreover, the choice of F is equivalent to the choice of
a Borel map χ : G → Γ such that

(13) χ−1(e) = F , χ(gγ−1) = γχ(g) (∀ γ ∈ Γ, a.e. g ∈ G).

The isomorphism F → G/Γ induces a G-action on F which is described by the
rule h.g = hgχ(hg) (the dot notation emphasizes the difference between the two
actions). Moreover, this action is measure-preserving since the existence of Γ forces
G to be unimodular. Observe that the inverse to the restriction map in (12) consists
of extending f ∈ L2(F , X) to a map

(14) fext : G → X, fext(g) def= χ(g)f(gχ(g)).

We will abuse notation in omitting the subscript ‘ext’.
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52. Lemma. Assume that X is complete and separable. Then there is a well-defined
continuous G-action by isometries on L[2](G, X)Γ defined by (hf)(g) def= f(h−1g),
where g, h ∈ G.

In other words, (14) and (13) show that the corresponding G-action on L2(F , X)
is

(15) (h.f)(g) = χ(h−1g)f(h−1.g)

and that the latter is well-defined. We call this the induced G-action.

Proof of the lemma. First we need to show that hf is still in L[2](G, X)Γ. Since
h−1F is relatively compact, the finiteness of (10) guarantees that there are γ1, . . . ,
γk in Γ such that the union of the Fγi covers h−1F . Fix a base-point x ∈ X.
Then ∫

F

d2(hf(g), x) dg =
∫

h−1F

d2(f(g), x) dg ≤
k∑

i=1

∫
Fγi

d2(f(g), x) dg.

But in view of f(gγi) = γ−1
i f(g), each term∫

Fγi

d2(f(g), x) dg =
∫

F

d2(γ−1
i f(g), x) dg =

∫
F

d2(f(g), γix) dg

is finite since f is in L[2](G, X)Γ. This action preserves the distance (11). Ad
continuity: By Lemma 12 in Section 3.5, it is enough to show that the map h �→ hf
is measurable for all f in L[2](G, X)Γ. This follows from the fact that the map
G × G → X, (g, h) �→ f(h−1g) is measurable. (Alternatively, for X CAT(0), one
can also show that continuous functions are dense using barycentres weighted by
continuous approximate units on G.) �

5.5. Some properties of the Γ-action on X are trivially equivalent to the cor-
responding property for the G-action on L[2](G, X)Γ; consider, for instance, the
existence of fixed points. Evanescence is more subtle; a very simple instance is
when X is a Hilbert space, in which case one has the following standard theorem:
if a unitary representation of the cocompact lattice Γ does not weakly contain the
trivial representation, then the induced G-representation does not either (this fol-
lows e.g. from the topological Frobenius reciprocity of [Bl]). The following is a
geometric generalization:

53. Theorem. Let G be a locally compact second countable group, Γ < G a uniform
lattice and X a complete separable CAT(0) space with a Γ-action by isometries. If
the G-action on L[2](G, X)Γ is evanescent, then the Γ-action on X is evanescent.

Observe that one cannot reduce this to a statement about asymptotic cones
through Remark 26; indeed, even when X = R, an asymptotic cone on L[2](G, X)Γ

is already a so-called non-standard hull of the Hilbert space L[2](G, X)Γ, whilst X
is its own asymptotic cone.

Instead, the general idea is to project an evanescent sequence of functions to the
space of constant functions. This does not quite work since one needs to spread out
the domain of these functions beyond any fundamental domain in order to capture
generators of Γ. The following proof is particularly simple thanks to Lemma 54; a
more general argument is given in Appendix B for certain non-uniform lattices.
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Proof of Theorem 53. The finiteness of the set in (10) implies in particular that
for every relatively compact Borel set E ⊆ G of positive measure and any f in
L[2](G, X)Γ the restriction f |E is in L2(E , X) (as in Lemma 52). Therefore we
may define a point xf,E ∈ X by taking the barycentre of f |E ; that is, xf,E ∈ X
minimises

∆E (f) def= inf
x∈X

∫
E

d2(x, f(g)) dg.

For every x ∈ X, define the element ψx of L[2](G, X)Γ by ψx(g) def= χ(g)x (extending
the notation of Section 5.3); finally, write fE

def= ψxf,E .
Fix a finite set S ⊆ Γ. We shall produce an unbounded S-evanescent set TS ⊆ X

for every unbounded Q-evanescent set T in L[2](G, X)Γ with Q ⊆ G a suitable
compact set. This shows that weak evanescence of the G-action on L[2](G, X)Γ

implies weak evanescence for the Γ-action on X; the statement for evanescence
follows by Proposition 29 and Remark 30 (Section 3.9).

Define a relatively compact set E and choose a compact set Q with

E
def=

⋃
γ∈S

γ−1Fγ ∪ F , Q ⊇ FE −1 ∪ S.

54. Lemma. The function ∆E is bounded on each Q-evanescent set in L[2](G, X)Γ.

Proof of the lemma. Let T be a Q-evanescent set. There is K such that d2(f, hf) ≤
K for all h ∈ FE −1 and all f ∈ T . Let f ∈ T ; we have

∆E (f) =
∫

E

d2(xf,E , f(g)) dg ≤
∫

F

∫
E

d2(f(ḡ), f(g)) dg dḡ

by the choice of xf,E . After the change of variable h = ḡg−1 this is∫
F

∫
ḡE −1

d2(f(ḡ), f(h−1ḡ)) dh dḡ ≤
∫

F

∫
FE −1

d2(f(ḡ), f(h−1ḡ)) dh dḡ,

which is just ∫
FE −1

∫
F

d2(f(ḡ), hf(ḡ)) dḡ dh =
∫

FE −1
d2(f, hf) dh.

This is bounded in terms of K and the measure of FE −1. �

Choose now an unbounded Q-evanescent set T in L[2](G, X)Γ and consider the
subset TS = {xf,E : f ∈ T} of X. We contend that TS is S-evanescent. First, we
check that TS is unbounded. Indeed, since F ⊆ E , for all f ∈ T ,

(16) d2(f, fE ) =
∫

F

d2(f(g), xf,E ) dg ≤ ∆E (f)

is bounded by Lemma 54, and therefore this first claim follows from the estimate

d(xf,E , xf ′,E ) = d(fE , f ′
E ) ≥ d(f, f ′) − d(f, fE ) − d(f ′, f ′

E )

for f, f ′ ∈ T since T is unbounded. We now need to estimate d(xf,E , γxf,E ) uni-
formly over γ ∈ S and f ∈ T . Write

d(xf,E , γxf,E ) = d(fE , ψγxf,E ) ≤ d(fE , f) + d(f, γf) + d(γf, ψγxf,E ).
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The first term is taken care of by (16) and Lemma 54, whilst the second is bounded
since T is Q-evanescent and S ⊆ Q. As for the last term, we have

d2(γf, ψγxf,E ) =
∫

F

d2(f(γ−1g), γxf,E ) dg =
∫

F

d2(γ−1(f(γ−1g)), xf,E ) dg

=
∫

F

d2(f(γ−1gγ), xf,E ) dg =
∫

γ−1Fγ

d2(f(g), xf,E ) dg

≤
∫

E

d2(f(g), xf,E ) dg = ∆E (f),

so we are done by Lemma 54. �

6. Superrigidity

Throughout this section, when considering irreducible lattices Γ < G = G1 ×
· · ·×Gn, we shall always assume n ≥ 2. This is indeed not a restriction, because for
n = 1 the definition of irreducibility implies G = Γ and there is nothing to prove.

6.1. We now give, in a slightly cumbersome formulation, a key intermediate state-
ment to which various superrigidity statements will be reduced. A map is called
totally geodesic if it takes geodesic segments to (possibly reparametrized) geodesic
segments. Recall that the separability assumptions, made as a matter of conve-
nience, will be disposed of in due time.

55. Theorem. Let Γ be an irreducible uniform lattice in a product G = G1×· · ·×Gn

of locally compact second countable groups and let X be a complete separable CAT(0)
space with a non-evanescent Γ-action by isometries.

Then there is a (canonical and minimal) non-empty closed convex G-invariant
subspace Z ⊆ L[2](G, X)Γ which splits isometrically and G-equivariantly as a prod-
uct Z1 × · · · × Zn of minimal Gi-spaces Zi. Moreover, Z consists of continuous
functions and the evaluation map ψ : Z → X at e ∈ G is a totally geodesic Γ-equi-
variant Lipschitz map. The restriction of ψ to every copy of each Zi is isometric.
In particular, if for some i the set Ci

def= ∂(ψ(Zi)) ⊆ ∂X is non-empty, then Γ pre-
serves Ci and the Γ-action on Ci extends continuously to a G-action which factors
through G � Gi.

As usual, f ∈ L[2](G, X)Γ is really a function class and is said to be continuous if
it contains a continuous representative. We shall use the following criterion, which
is readily checked using the Fubini-Lebesgue theorem.

56. Lemma. Let f : G → X be a measurable function from a locally compact second
countable group G to a separable complete metric space X. Assume that for all ε > 0
and all g ∈ G there is a neighbourhood U of g such that ess sup

h,h′∈U
d(f(h), f(h′)) < ε.

Then f agrees almost everywhere with a continuous function. �

Proof of Theorem 55. Recall that L[2](G, X)Γ is the complete separable CAT(0)
space with continuous G-action granted by Definition 51 and Lemmata 43, 46 and 52
(all in Section 5). Theorem 53 of Section 5.5 shows that the G-action is not
evanescent, and thus the splitting Theorem 9 implies that there is a closed convex G-
invariant subspace Z ⊆ L[2](G, X)Γ which splits isometrically and G-equivariantly
as a product Z1×· · ·×Zn of Gi-spaces Zi endowed with the product action. Recall



802 NICOLAS MONOD

from Remark 40 in Section 4.6 that Zi can be assumed to be a minimal non-empty
closed convex Gi-space.

We may, and shall from now on, identify each Zi with a subspace of Z. For
every y ∈ Z, there is a unique copy of Zi in Z containing y; we denote by Zy

i this
Gi-invariant closed convex subset Zy

i ⊆ Z. We claim

(17) d(f(g), f ′(g)) = d(f, f ′) ∀ y ∈ Z, ∀ f, f ′ ∈ Zy
i , a.e. g ∈ G.

Indeed, fix a Borel fundamental domain F ⊆ G for Γ as in Section 5.4; we shall
make use of the identification (12) and of the notation (15) introduced there. It
suffices to prove the claim for a.e. g ∈ F . Let I = [0, d(f, f ′)] and let σ1 : I → Zy

i

be the geodesic from f to f ′. If h is any element of Gj for j �= i, the splitting of Z

shows that σ1 and σ2
def= h−1σ determine a Euclidean rectangle in Z. Let σg

i and
αi be as in Proposition 44 for σi, i = 1, 2. Then Proposition 49 shows that α1 = α2

a.e. In other words, since α2(g) = α1(h.g), the function (class) α1 : F → R+ is
Gj-invariant for all j �= i. Since the projection of Γ to Gi is dense, the subproduct∏

j �=i Gj acts ergodically on G/Γ. Therefore, α1 (and hence also α2) is constant;
this constant is one by

∫
F α1(g)2 dg = 1. The claim now follows since f(g) and

f ′(g) are the endpoints of σg
1 .

Next, we recall (for any ai ∈ R) the inequality
∑n

i=1 ai ≤
(
n

∑n
i=1 a2

i

)1/2; this
allows us to bound the distance between any f, f ′ ∈ Z by applying (17) to each
factor Zi, obtaining

(18) d(f(g), f ′(g)) ≤
√

n d(f, f ′) ∀ f, f ′ ∈ Z, a.e. g ∈ G.

Since Z is G-invariant, it follows that for any compact neighbourhood U of g ∈ G

ess sup
h,h′∈U

d(f(h), f(h′)) ≤
√

n sup
h,h′∈U

d(f, (hh′−1)f) ∀ f ∈ Z,

which goes to zero as U → g by continuity of the G-action (Lemma 52). This shows
that every f ∈ Z is continuous (Lemma 56).

We may now define a map ψ : Z → X by ψ(f) = f(e). This map is Γ-equivariant
by definition. For every y ∈ Z and each i, the restriction of ψ to Zy

i → X is isometric
because of (17). Furthermore, ψ is

√
n-Lipschitz by (18) and totally geodesic by

Proposition 44. Assume, for some i, that ∂Zi �= ∅; set Xi
def= ψ(Zi). Notice that

Xi, being isometric to Zi, is complete, hence closed, and convex. In particular,
Ci

def= ∂Xi is closed in ∂X [BH, p. 266] and the isometry ψ|Zi
: Zi → Xi induces

a homeomorphism ∂Zi
∼= Ci. The G-action on Z being the product action, ∂Zi is

G-invariant and the (continuous) G-action on it factors through G � Gi. Summing
up, we obtained a Γ-equivariant homeomorphism ∂Zi

∼= Ci, finishing the proof. �

6.2. In this subsection we analyse the notion of indecomposability introduced in
Definition 3 from the Introduction (for proper spaces). The two obvious obstruc-
tions to indecomposability of a group L are (i) an L-fixed point at infinity (when
L �= 1) and (ii) an L-invariant splitting X = X1 × X2 with unbounded factors;
indeed in both cases we obtain closed invariant sets at infinity on which L does
not act faithfully. It is not clear to us to what extent the “topological part” of
Definition 3 is really an additional restriction in our setting.

Let X be a proper CAT(0) space, L < Is(X) a subgroup and C ⊆ ∂X a non-
empty closed L-invariant subset; write J for the stabiliser of C in Is(X). Recall
that the topology of uniform convergence coincides on M

def= Homeo(C ) with the



SUPERRIGIDITY AND SPLITTING 803

compact-open topology and turns M into a topological group; the natural homo-
morphism ι : J → M is continuous (compare Section 3.6). Moreover M is Polish
(hence Baire) because C is metrizable. Notice that J is closed in Is(X) and hence
contains L.

57. Remark. The conditions of Definition 3 hold if and only if ι|L is a topological
isomorphism onto its image. Indeed, indecomposability implies that ι|L is a con-
tinuous group isomorphism from a locally compact second countable group onto
a Baire group and thus is a topological isomorphism by the usual Baire category
argument. The converse (which we do not use) holds since any locally compact
subgroup of a topological group is closed (Corollaire 2 in [Bou2, II §3 no 3]).

In the two general instances where we verify indecomposability (Lemmata 59
and 60), we obtain the a priori stronger statement for the coarser topology of
pointwise convergence by the following criterion (note that M is not a topological
group for this topology).

58. Lemma. Let L be a locally compact second countable group with a faithful
continuous action L × C → C on a compact Hausdorff topological space C . The
associated injective homomorphism L → M

def= Homeo(C ) is a topological isomor-
phism onto its image endowed with the topology of pointwise convergence if and
only if for any sequence {hn} tending to infinity in L there is ξ ∈ C with hnξ � ξ.

Proof. Let {gα} be any net of L converging to g ∈L for the pointwise topology on
M but not in the L-topology. Since L is locally compact second countable and its
action on C is continuous, we obtain a sequence {�n} converging to infinity in L

such that �nξ → gξ for all ξ ∈ C. The criterion applied to hn
def= g−1�n yields a

contradiction. The converse follows from the continuity of the action. �

We now verify that indecomposability generalizes indeed Zariski density for sub-
groups of adjoint simple algebraic groups.

59. Lemma. Let k be a local field and H a connected adjoint k-simple k-group.
Let X be the symmetric space, respectively the Bruhat-Tits building, associated to
G = H(k) according to whether k is Archimedean or not. Then any Zariski-dense
subgroup L < G is indecomposable.

The following proof was kindly provided by J.-F. Quint.

Proof. Let C ⊆ ∂X be a non-empty L-invariant closed subset and HC its pointwise
stabiliser in G. Since HC is an intersection of parabolic subgroups, it is an algebraic
subgroup; but L normalizes it because it preserves C , so by Zariski-density HC is
normal in G and hence trivial.

Now let {hn} be a sequence tending to infinity in L. Since parabolic subgroups
are cocompact, there is no loss of generality in supposing that C is contained in
a single G-orbit; thus C can be considered as a Zariski-dense subset of G/Q for
some parabolic Q �= G. We may fix an irreducible representation r of G on a
k-vector space V (of dimension, say, m) such that Q is the stabiliser of some line
U ⊆ V ; see [T]. Suppose for now that k = R; the Cartan decomposition gives
r(hn) = c′nancn for some an in a positive Weyl chamber and cn, c′n ∈ SO(m).
Upon passing to a subsequence, we may assume that cn, c′n converge to some c, c′.
Since r(hn) tends to infinity in SLm(k), the sequence an/‖an‖ (where ‖an‖ is
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the operator norm) converges, after possibly extracting a subsequence, to a linear
map onto a proper subspace 0 �= W � V , with kernel 0 �= Y � V . Since r is
irreducible, GU � c′W ∪ c−1Y so that by Zariski density there is ξ ∈ C not in
c′W ∪ c−1Y . However, for any line U ′ � c−1Y , r(hn)U ′ tends to a line in c′W .
Thus hnξ � ξ. For general k, the same argument applies to the corresponding
Cartan decomposition of GLm over k. �

For the sake of illustration, we now take a brief look at the context of negative
curvature (even though the methods proposed in [MS1], [MS2] are more powerful
in that case). Recall that if the proper CAT(0) space X is Gromov-hyperbolic,
e.g. CAT(−1), an action on X is said to be elementary if it fixes a point in X or
stabilises a pair of points in ∂X.

60. Lemma. Let Γ be a group with a non-elementary action by isometries on a
Gromov-hyperbolic proper CAT(0) space X. Then, upon possibly replacing X by a
non-empty closed convex Γ-invariant subspace, the Γ-action on X is indecompos-
able.

(The Γ-action is called indecomposable if the image of Γ in Is(X) is an indecom-
posable subgroup.)

Proof. By Remark 36 in Section 4.2, there is a minimal non-empty closed convex
Γ-invariant subspace Y ⊆ X; observe that the Γ-action on Y is still non-elementary.
Thus we may assume X to be minimal. Recall that there is a continuous Is(X)-
equivariant map C from distinct triples in ∂X to X (indeed, for any distinct ξi ∈
∂X, the sum β = βξ1 + βξ2 + βξ3 of Busemann functions is bounded below and
proper as shown by a comparison argument, e.g. by using the arbre approximatif
of Théorème 12 (ii) in [GH, 2 §2]; therefore, one can take for C(ξi) the circumcentre
of its min-set). Now let C ⊆ ∂X be a non-empty closed Γ-invariant set. By non-
elementarity, C contains at least three distinct points ξi. The pointwise stabiliser
K of C in Is(X) is therefore compact since it fixes C(ξi); thus, the closed convex
subspace XK is non-empty. Since Γ normalizes K, it preserves XK ; hence, XK = X
and thus K is trivial.

Now let {hn} be any sequence in the stabiliser H < Is(X) of C such that hnξ → ξ
for all ξ ∈ C . It remains only to show that the sequence {hn} is bounded in H, or
equivalently in Is(X). This follows since hnC(ξi) tends to C(ξi). �

6.3. We now proceed to prove Theorem 2 and Corollary 4 from the Introduction.

61. Proposition. It is enough for Theorem 2 to consider the case where G is second
countable.

Proof. Based on a classical argument [KK], one has:

62. Lemma. Let J be a locally compact σ-compact group and V ⊆ J a neighbour-
hood of e ∈ J . Then there exists a compact normal subgroup K � J contained in V
such that J/K is second countable.

Proof of the lemma. Let ϕ be a non-negative continuous function on J that is sup-
ported on V and such that ϕ(e) = 1. Then the smallest closed J-invariant subspace
M of L2(J) containing ϕ is separable; see Satz 5 in [KK]. If we let K be the kernel
of the J-representation on M , it follows as in [KK] that J/K is second countable
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because, by σ-compactness and an application of Baire’s theorem, J/K is topolog-
ically isomorphic to its image in the unitary group of M endowed with the strong
operator topology. The choice of ϕ guarantees that gϕ �= ϕ for all g /∈ V , so that
K ⊆ V . �

Since Γ is discrete in G, there are identity neighbourhoods Vi ⊆ Gi such that Γ
meets V1 × · · · ×Vn trivially. Let Ki � Gi be as in the lemma with Ki ⊆ Vi and set
K = K1×· · ·×Kn. Then G∗ = G/K is second countable, and the canonical image
Γ∗ of Γ in G∗ is still an irreducible uniform lattice with respect to the product
structure given by the factors Gi/Ki. But the choice of Vi ensures that the natural
map Γ → Γ∗ is an isomorphism; thus, if we have Theorem 2 for the second countable
case, we can apply it to G∗ and the general case follows. �
End of proof of Theorem 2. Suppose first that the Γ-action on X is evanescent.
Since X is proper, there is a Γ-fixed point ξ ∈ ∂X (Proposition 27 in Section 3.9).
In that case the conclusion of the theorem holds trivially for C = {ξ}.

Thus we may suppose that the action is non-evanescent; in addition, we may
assume that G is second countable (Proposition 61) and that X is separable since
it is a proper metric space. Therefore Theorem 55 applies; we shall use its notation.
If every Zi is bounded, then Z is reduced to a point by minimality. The image of
this point under ψ is a Γ-fixed point in X, contradicting unboundedness. Hence
we may assume that there is an index i such that Zi is unbounded. Since Zi is
isometric to the unbounded closed convex subspace ψ(Zi) of the proper space X,
we deduce that its boundary Ci is non-empty. The conclusion of Theorem 55 now
yields Theorem 2 for C = Ci. �

Observe that the G-action on C factors through G � Gi as noted in the Intro-
duction.

Proof of Corollary 4. Keep the notation of the corollary, set L
def= τ (Γ) and let C

be as in Theorem 2. The conclusion of that theorem implies that the composed
map

Γ −→L
ι−−→ M

def= Homeo(C ),
with M topologized as in Section 6.2, extends to a continuous homomorphism
τ̂ : G → M ; as obseved above, the latter factors through one of the canonical
projections G � Gi. Since the image of Γ in Gi is dense and ι(L) closed, τ̂(G) ⊆
ι(L). By Remark 57, τ̂ lifts to a continuous homomorphism τ̃ : G → L factoring
through Gi and extending τ . This proves the theorem since L < H. �
Proof of Margulis’ Theorem 1 for Γ cocompact. By Lemma 59, we may apply
Corollary 4. �
6.4. With Theorem 6 from the Introduction in view, we now turn to complete
CAT(0) spaces X that are not assumed proper and analyse reduced subgroups
of Is(X) following Definition 5. In the beginning of Section 6.2 we mentioned
two immediate restrictions following from indecomposability; the analogous two
restrictions hold in the present setting as well, as shown by (i) and (ii) in the
following lemma.

63. Lemma. Let X be a complete CAT(0) space and L < Is(X) an unbounded
reduced subgroup. Then:

(i) the action is not evanescent;
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(ii) there is no L-invariant splitting X = X1 × X2 with non-trivial factors;
(iii) if L is countable, then X is separable;
(iv) X has no non-trivial Clifford translation unless it is isometric to a Hilbert

space.

Proof. (ii) Assume that the splitting X = X1 × X2 is preserved by L. Since L
is unbounded, one of the factors, say X2, is unbounded. For any x ∈ X1 the set
Y = {x} × X2 enjoys the property of Definition 5. Therefore Y = X, and hence
X1 is trivial.

(iv) This follows from (ii) in view of the canonical splitting of X recalled at the
end of Section 3.4.

(i) Suppose for a contradiction that T ⊆ X is an unbounded evanescent set. Since
for every γ ∈ Γ the displacement function x �→ d(γx, x) is continuous and convex,
there is no loss of generality in assuming T closed and convex upon replacing it by
[T ]. Then Definition 5 implies T = X. It follows now from this same condition
that the unbounded CAT(0) space X contains no unbounded closed convex subset
Y � X at all. In particular, X cannot be a Hilbert space and thus, by (iv), X does
not admit any non-trivial Clifford translation. Since Γ acts non-trivially, there is
γ ∈ Γ whose displacement function is not identically zero; however, since X = T , the
supremum C = supx∈X d(γx, x) is finite. If the displacement length were constant,
γ would be a non-trivial Clifford translation. Thus for some 0 < C ′ < C the closed
convex set

Y
def=

{
x ∈ X : d(γx, x) ≤ C ′} � X

is non-empty, hence bounded. Since γY = Y , the circumcentre y ∈ Y is γ-fixed.
Let � be the circumradius of Y . Since we assumed T unbounded, there is a sequence
{xn} in X with d(xn, y) → ∞. Let yn be the point of [y, xn] at distance � + 1 of y;
then a comparison argument shows that d(γyn, yn) tends to zero since d(γxn, xn) ≤
C. Thus, for n large enough, yn is in Y , a contradiction proving (i).

(iii) Let Y be the closed convex hull of some L-orbit. Since Y is unbounded and
L-invariant, X = Y . Thus it remains to show that Y is separable. This is indeed
the case: if Y0 ⊆ Y is any countable set (such as an L-orbit) and Yn+1 denotes
the set obtained by adjoining to Yn all midpoints of pairs in Yn, then the union⋃

n≥0 Yn contains the midpoint of any of its pairs, and thus is dense in [Y0]. �
We can now complete the main case of Theorem 6.

End of proof of Theorem 6, non-Hilbertian case. Observe first that Γ is countable
since it is a lattice in a locally compact σ-compact group. The argument of Propo-
sition 61 shows that we may assume G to be second countable. Moreover, since
τ (Γ) is unbounded and reduced, Lemma 63 implies that its action is non-evanescent
and that X is separable.

Thus, we may apply Theorem 55; we keep its notation and denote by z0 ∈ Z the
point common to all Zi. We know, as in the proof of Theorem 2, that at least some
Zi is unbounded, say Zn. Recall that ψ(Zn) is a closed convex subset of X since
it is the isometric image of a complete convex set. Fix γ ∈ Γ and write γ = γnγ′

n

for the decomposition along G = Gn × G′
n, where G′

n =
∏

j �=n Gj . Then, for all
z ∈ Zn,

d(γz, γnz) = d(γ′
nz, z) = d(γ′

nz0, z0)
since z ∈ Zn and we have a product action on Z. Thus, for each γ ∈ Γ, the distance
between γ, ψ(z) = ψ(γz) and ψ(γnz) ∈ ψ(Zn) is bounded independently of z ∈ Zn.
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Since the action is reduced, it follows that ψ(Zn) = X. At this point, in order to
conclude the proof and exhibit τ̃ via ψ|Zn

: Zn
∼= X, it only remains to show that

Gj fixes Zn (equivalently, that Zj is trivial) for all j �= n. Indeed, the continuity of
τ̃ as defined in Section 3.5 follows from the continuity of G on Z, and then τ̃ must
range in H by irreducibility of Γ.

To that end, we note that the above discussion did not depend on the choice of
the “copy” Zn; hence ψ(gZn) = X also holds for all g ∈ G. Now pick gj ∈ Gj for
some j �= n. Since ψ|Zn

and ψ|gjZn
are isometries onto X, the map T : X → X

defined by ψ ◦ gj ◦ (ψ|Zn
)−1 is an isometry. Since (ψ|Zn

)−1(x) and gj(ψ|Zn
)−1(x)

belong to a copy of Zj , we have

d(T (x), x) = d(gj(ψ|Zn
)−1(x), (ψ|Zn

)−1(x)) = d(gjz0, z0)

independently of x ∈ X. Thus T is a Clifford translation; since we assume that X is
not isometric to a Hilbert space, T is trivial by (iv) in Lemma 63. This proves that
gj fixes z0 and therefore also Zn, finishing the proof of Theorem 6 in this case. �

6.5. We still have to prove Theorem 6 in the case where X is a Hilbert space.
We provide a proof just for the sake of completeness; this is a very special case for
which our methods are rather coarse — indeed it is not so natural to assume the
action reduced here since the linear structure allows for stronger results; see [Sh].
Moreover, Theorem 6 does not hold as stated when X = Rd even in the simplest
cases.

64. Example. Consider the affine groups G1 = G2 = R � {±1} and set G =
G1 × G2. Consider the irreducible uniform lattice Γ < G defined by

Γ def=
{(

(n + m
√

2, ε); (n − m
√

2, ε)
)

: n, m ∈ Z, ε = ±1
}

.

The Γ-action on X = R defined by ((n + m
√

2, ε); (n − m
√

2, ε)
)
x = εx + n is

unbounded and reduced. However it does not extend continuously to G. Indeed,
if it did, the linear part of the G-action would have to factor through one of the
Gi, say G1, because the two canonical projections are the only homomorphisms
{±1}2 → O(1) = {±1} that are non-trivial on the diagonal. It then follows that G2

acts trivially altogether, which is impossible since the homomorphism n+m
√

2 �→ n
does not extend continuously to R.

A yet simpler example is G = (Z � {±1})2, Γ = Z2 � {±1}. Similar examples
can be constructed in higher dimensions.

The above examples are rather special in that the linear part of the action is
already encoded in G/Γ. This turns out to be typical for counterexamples to the
statement of Theorem 6:

65. Theorem. The statement of Theorem 6 holds for any complete CAT(0) space
X unless (i) X is isometric to Rd for some d ∈ N and (ii) the linear part of the
Γ-action is irreducible and is the restriction of a Gi-subrepresentation of L2(G/Γ)
endowed with the quasi-regular Gi-representation. Moreover, (ii) holds for at least
two distinct indices i.

In particular, this theorem completes the proof of Theorem 6 since it is assumed
in the latter that X �= Rd.

We begin with a general observation about lattices in products.
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66. Lemma. Let Γ be a lattice in a product G = G1 × · · · × Gn of locally compact
groups and let τ : Γ → H be any homomorphism to a topological group H. Suppose
that for two distinct indices i there are continuous homomorphisms τi : Gi → H
such that the composed homomorphisms τ̃i : G � Gi → H extend τ . Then τ (Γ) is
relatively compact in H.

Proof. Let i �= i′ be the two indices and define a continuous map σ : G → H by
σ(g) = τ̃i(g)τ̃i′(g)−1. Since σ descends to a map G/Γ → H we obtain a probability
Radon measure µ on H from the (normalized) invariant measure on G/Γ. Since
σ(gig) = τi(gi)σ(g) for all gi ∈ Gi and g ∈ G, the measure µ is invariant under
τi(Gi) = τ̃i(G), hence under τ (Γ). It remains to observe that the stabilizer K < H
of any Radon probability measure on H is compact. Since µ is Radon there is a
compact set C ⊆ H with µ(C) > 1/2. Therefore kC ∩ C �= ∅ for all k ∈ K. It
follows that K ⊆ CC−1. �

(The proof is slightly shorter when Γ is cocompact.)

Proof of Theorem 65. In view of the proof of Theorem 6 given in Section 6.4 under
the assumption that X was not a Hilbert space, we may now assume that X is a
Hilbert space. Recall that a Γ-action by isometries on X is given by an orthogonal
representation π → O(X) and a cocycle b : Γ → X. We claim that π is irreducible.
Indeed, if X = X ′ ⊕ X ′′ were a non-trivial orthogonal decomposition preserved by
π, then Y = 0 ⊕ X ′′ would contradict the condition of Definition 5 since τ (γ)Y is
at a finite distance of π(γ)Y = Y for all γ ∈ Γ.

We now adopt the notation of the proof of Theorem 6 given in Section 6.4; the
non-Hilbertian assumption on X was only used at the very end in order to prove
that Gj fixes Zn (equivalently, that Zj is trivial) for all j �= n. Therefore, we assume
now that Zj is non-trivial for some j �= n and we need to characterize X and its
Γ-action as in Theorem 65. We obtained in the proof of Section 6.4 an isometry
ψ|Zn

: Zn
∼= X such that for each γ ∈ Γ, the distance between γψ(z) and ψ(γnz) is

bounded independently of z ∈ Zn. Therefore, the new Γ-action on X transported
via ψ (and Γ → Gn) from the Gn-action on Zn (i.e., γx = ψ(γnψ|−1

Zn
(x))) differs

from the original Γ-action by its translation cocycle only. In other words, π extends
continuously to a homomorphism

π̃n : G � Gn
πn−−−→ O(X),

where the orthogonal group O(X) is endowed with the strong operator topology.
Applying the same argument to j �= n we are in a position to use Lemma 66
and conclude that π ranges in a compact subgroup of O(X). The Peter-Weyl
theorem implies that X is finite-dimensional since π is irreducible. It remains only
to prove that πi ⊆ L2(G/Γ)|Gi

for i = j, n. The G-representation � = IndG
Γ π

induced from π is canonically isomorphic to π̃n ⊗ L2(G/Γ) since π = π̃n|Γ and
hence πn ⊆ �|Gn

. Likewise, � ∼= π̃j ⊗ L2(G/Γ) and hence �|Gn
∼= dim(π)L2(G/Γ).

Since πn is irreducible, the claim follows for i = n and is established in the same
way for i = j. �

Appendix A: Commensurator superrigidity

Let G be a locally compact σ-compact group, Γ < G a cocompact (or square-
integrable, weakly cocompact) lattice and Γ < Λ < G a dense subgroup commen-
surating Γ, i.e. Γ ∩ λΓλ−1 has finite index in Γ for all λ ∈ Λ; equivalently, all
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Γ-orbits in Λ/Γ are finite. In an unpublished manuscript [M2] (see also [Bu]), Mar-
gulis proves the following theorem (under a more relaxed non-positive curvature
assumption, assuming G compactly generated, Γ cocompact, and assuming there
are no “parallel orbits”).

A1. Theorem. Suppose Λ acts by isometries on a complete CAT(0) space X such
that the resulting Γ-action is non-evanescent. Then, upon possibly passing to a
non-empty Γ-invariant closed convex subspace, the Γ-action extends continuously
to a G-action.

Margulis’ proof uses generalized harmonic maps. We give an elementary proof
illustrating the techniques introduced above; in spirit, this is a non-linear analogue
of [Sh]. In the particular case where both G and Is(X) are simple algebraic groups,
this result leads to Margulis’ arithmeticity criterion; see [M1], [AB].

Proof. Using Lemma 62, we may assume that G is second countable; we can assume
that Λ is countable and thus X is separable upon passing to the closed convex hull
of a Λ-orbit. Let Y be the induced G-space, which is non-evanescent by Theorem 53
of Section 5.5 (resp. by Appendix B). It is enough to show that there is a non-
empty G-invariant closed convex subspace Z ⊆ Y such that for all f, f ′ ∈ Z the
function d(f, f ′) on G is right Λ-invariant, since then it is essentially constant and
we get a Γ-equivariant isometric map Z → X by evaluation(s) (compare 6.1). Let
A be the directed set of finite Γ-invariant sets ∅ �= A ⊆ Λ/Γ. For any f ∈ Y
and a.e. g ∈ G let FAf(g) be the unique x ∈ X minimising

∑
a∈A d2(af(ga), x);

this is the barycentre construction (Section 5.3) for the uniform measure on A.
We thus obtain a well-defined G-equivariant map FA : Y → Y . The barycentre
inequality (9) of Section 5.3 yields

(19) d2(FAf(g), FAf ′(g)) ≤ |A|−1
∑
a∈A

d2(f(ga), f ′(ga))

− |A|−1
∑
a∈A

(
d(f(ga), f ′(ga)) − d(FAf(g), FAf ′(g))

)2

.

The first term already implies that FA is non-expanding (by integrating over G/⋂
a∈A aΓa−1); likewise, (19) shows that if f, f ′ are FA-fixed, then d(f, f ′) is invariant

under the group ΛA generated by the preimage of A in Λ. Every FA-orbit being
evanescent, it is bounded; thus Y FA �= ∅ by Remark 15 of Section 3.7 – and we
are done if Λ is finitely generated, taking A large enough and Z = Y FA .

For general Λ, let TA be the set of G-components C ∈ T (Remarks 39 in Sec-
tion 4.5) such that d(f, f ′) is ΛA-invariant ∀ f, f ′ ∈ C. It follows from the preceding
that TA �= ∅; TA is convex (use e.g. Proposition 49 of Section 5.2) and closed since
L2-convergence of functions implies a.e. subconvergence. Since T is bounded by
non-evanescence, the directed family {TA}A∈A has non-empty intersection by the
compactness of Theorem 14 in Section 3.7. Any element of this intersection is a
component Z as sought. �

Appendix B: Induction for certain non-uniform lattices

This appendix discusses non-uniform lattices. The cocompactness assumption
was only used in Sections 5.4 and 5.5, and it was needed only in defining the action
on the induced space (Lemma 52) and in proving Theorem 53. Thus, replacing them
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respectively with Lemma B2 and Theorem B5 below, we conclude that all our re-
sults (including Appendix A) hold as claimed in Theorem 7 of the Introduction. We
insist however that for classical lattices the integrability condition discussed below
is dependent on Margulis’ arithmeticity theorem (interestingly, Margulis originally
proved arithmeticity of non-uniform lattices without – and before – his superrigid-
ity).

Let G be a locally compact second countable group, Γ < G a lattice. We use
the notation of Sections 5.4 and 5.5, e.g., for χ : G → Γ, ψx(g) def= χ(g)x and
normalizing the covolume of Γ to one.

B1. Definition (see [Sh, 1.II]). The lattice Γ is square-integrable if it is finitely
generated and if, for the length function � associated to some (or equivalently
any) finite generating set, there is a Borel fundamental domain F ⊆ G (with null
boundary) such that ∫

F

�(χ(g−1h))2 dh < ∞ ∀ g ∈ G.

(We note that when dealing with uniform lattices we never imposed finite genera-
tion, thus allowing for lattices in groups that are not compactly generated.)

Y. Shalom explains in [Sh, §2] why the condition of Definition B1 always holds
for lattices as in Theorem 1; B. Rémy proves in [R2] that it holds for all Kac-Moody
lattices. We refer to [R*], [R1] for general Kac-Moody groups, in particular for the
following result of Rémy: any Kac-Moody group over Fq is an irreducible lattice in
the product of its associated twin building groups (modulo its finite centre), when
q is large enough.

The following parallels [Sh, 1.II].

B2. Lemma. Let F be as in Definition B1. Then Lemma 52 and formula (15) of
Section 5.4 provide a well-defined continuous G-action by isometries on L[2](G, X)Γ
∼= L2(F , X).

Proof. The only additional verification we need to do is that for f ∈ L2(F , X),
x ∈ X and g ∈ G the integral

∫
F d2((gf)(h), x) dh is finite. The latter is∫

F

d2(f(g−1.h), χ(g−1h)−1x) dh

in view of (15); since
∫

F d2(f(g−1.h), x) dh =
∫

F d2(f(h), x) dh is finite, it is enough
to show that

∫
F d2(χ(g−1h)−1x, x) dh is finite. Let S ⊆ Γ be a finite generating

set and � the associated length function; since d(χ(g−1h)−1x, x) is bounded by
�(χ(g−1h)) sups∈S d(sx, x), we complete the proof by square-integrability of Γ. �

The evanescence question is more difficult; we shall establish a geometric gener-
alization of an argument given in the linear setting by Margulis [M1, III.1].

B3. Definition ([M1, III.1.8]). The lattice Γ is weakly cocompact if the G-repre-
sentation L2

0(G/Γ) (i.e., the orthogonal complement of the trivial representation in
L2(G/Γ)) does not almost have non-zero invariant vectors (compare 3.10).

The definition is obviously satisfied whenever G, or equivalently Γ, has Kazhdan’s
property (T); this disposes right away with most higher rank groups. According
to Margulis [M1, II.1.12], it also holds for connected semisimple Lie groups G even
when they are not Kazhdan; see [Be] for a proof. Any Kac-Moody group over Fq
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whose Cartan matrix has finite entries is Kazhdan whenever q is large enough by a
general result of Dymara-Januszkiewicz [DJ].

B4. Remark. If there is an asymptotically invariant sequence {vn} (Remark 33 in
Section 3.10) of non-negative functions in L2(G/Γ) such that for every relatively
compact C ⊆ F the integral

∫
C

vn tends to zero, then Γ is not weakly cocompact.
Indeed, in that case,

∫
F vn → 0; thus the norm of the projection of vn on L2

0(G/Γ)
tends to one, yielding (after renormalization) an asymptotically invariant sequence
in L2

0.

B5. Theorem. Assume that Γ is square-integrable and weakly cocompact. Let X be
a complete separable CAT(0) space with a non-evanescent Γ-action by isometries.
Then the G-action on L[2](G, X)Γ is non-evanescent.

Proof. Fix x0 ∈ X. Suppose for a contradiction that there is an evanescent se-
quence {fn} in Y = L[2](G, X)Γ such that d(fn, ψx0) → ∞. Let F be as in
Definition B1. Let η be a non-negative continuous function on G of integral one;
we may assume that η has compact support K with K \ F null. For g ∈ G, we
want to define f̄n(g) ∈ X as the barycentre of h �→ fn(h−1g) with respect to the
measure η(h) dh; we thus have to prove that for (some, hence any x ∈ X) the
integral

∫
F d2(fn(h−1g), x)η(h) dh is finite for a.e. g ∈ F (hence a.e. g ∈ G). This

follows from Tonelli’s theorem applied to

(20)
∫

F

∫
F

d2(fn(h−1g), x)η(h) dh dg =
∫

F

η(h)
∫

F

d2(fn(h−1g), x) dg dh

=
∫

K

η(h)d2(hfn, ψx) dh ≤ sup
{
d2(hfn, ψx) : h ∈ K

}
< ∞.

By the definition of barycentres (Section 5.3),

(21) d2(f̄n(g), x) ≤
∫

F

d2(fn(h−1g), x)η(h) dh ∀x ∈ X.

Thus, f̄n is square-integrable because we apply (20) to∫
F

d2(f̄n(g), x) dg ≤
∫

F

∫
F

d2(fn(h−1g), x)η(h) dh dg.

Since in addition f̄n is Γ-equivariant by definition, f̄n ∈ Y . Setting x = fn(g)
in (21) yields
(22)

d2(f̄n, fn) ≤
∫

F

∫
F

d2(fn(h−1g), fn(g))η(h) dh dg =
∫

K

η(h)d2(hfn, fn) dh,

which is bounded independently of n by the evanescence of {fn}. It follows that
{f̄n} is also an evanescent sequence with d(f̄n, ψx0) → ∞. Now define ϕn ∈
L2(G/Γ) by ϕn(h) def= d(f̄n(h), χ(h)x0). We claim that {ϕn} is an evanescent
sequence in the linear G-space L2(G/Γ). Indeed, since (gϕn)(h) = d((gf̄n)(h),
χ(g−1h)x0), the triangle inequality gives∣∣(gϕn)(h) − ϕn(h)

∣∣ ≤ d((gf̄n(h), f̄n(h)) + d(χ(g−1h)x0, x0)

so that by Minkowski’s inequality and the definition of ψx0 ,

‖gϕn − ϕn‖ ≤ d(gf̄n, f̄n) + d(gψx0 , ψx0).
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The first term is bounded over compact sets by the evanescence of {f̄n} and the
second by continuity of the G-action on Y ; the claim follows. In particular, since
‖ϕn‖ = d(f̄n, ψx0) → ∞, the sequence {vn = ϕn/‖ϕn‖} is asymptotically invariant.

The goal now is to contradict weak cocompactness by applying Remark B4 to
{vn}. Therefore it suffices to show that for any relatively compact C ⊆ F the
integral

∫
C

ϕn(g) dg is bounded independently of n.
We apply Proposition 29 and Lemma 25 of Section 3.5. Since the Γ-action on

X is not weakly evanescent, there is a finite set F ⊆ Γ, λ > 0 and d0 ≥ 0 such that
supγ∈F d(γ−1x, x) ≥ λd(x, x0) − d0 for all x ∈ X. Thus,

λϕn(g) ≤ sup
γ∈F

d(γ−1f̄n(g), f̄n(g))+d0 ≤
∑
γ∈F

d(f̄n(gγ), f̄n(g))+d0 (a.e. g ∈ F ).

Therefore,

(23) λ

∫
C

ϕn(g) dg ≤
∑
γ∈F

∫
C

d(f̄n(gγ), f̄n(g)) dg + d0

≤
∑
γ∈F

(∫
C

d2(f̄n(gγ), f̄n(g)) dg

)1/2

+ d0.

It is now enough to prove that for all γ ∈ F the integral
∫

C
d2(f̄n(gγ), f̄n(g)) dg

is bounded independently of n. To that end, set Kγ,g
def= gγ−1g−1K, ηγ,g(·)

def=
η(gγg−1·) for any γ ∈ F , g ∈ G. By definition of f̄n and a change of variable,
f̄n(gγ) is the minimiser y ∈ X of

∫
Kγ,g

d2(fn(h−1g), y)ηγ,g(h) dh. Therefore, the
inequality corresponding to (21) yields

d2(f̄n(gγ), f̄n(g)) ≤
∫

Kγ,g

d2(fn(h−1g), f̄n(g))ηγ,g(h) dh

≤ ‖η‖∞
∫

Kγ,g

d2(fn(h−1g), f̄n(g)) dh.

Thus, ∫
C

d2(f̄n(gγ), f̄n(g)) dg ≤ ‖η‖∞
∫

C

∫
L

d2(fn(h−1g), f̄n(g)) dh dg,

where the integral over L
def=

⋃
{Kγ,g : g ∈ C} is finite because we bound the above

double integral by∫
L

∫
C

d2((hfn)(g), f̄n(g)) dg dh ≤
∫

L

d2(hfn, f̄n) dh,

which is finite by relative compactness of L. Moreover, the latter term is bounded
independently of n in view of

d(hfn, f̄n) ≤ d(hfn, fn) + d(fn, f̄n)

since the first summand here is bounded by evanescence and the second has been
treated previously with (22). This concludes the proof. �
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[BH] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature,

Grundlehren der Mathematischen Wissenschaften 319, Springer, Berlin, 1999. MR1744486
(2000k:53038)

[Bu] Marc Burger, Rigidity properties of group actions on cat(0)-spaces, Proceedings of the
International Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994) (Basel), Birkhäuser,
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[R*] Bertrand Rémy, Groupes de Kac-Moody déployés et presque déployés, Astérisque (2002),
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Sibirsk. Mat. Ž. 9 (1968), 918–927. MR0244922 (39:6235)
[Sch] Viktor Schroeder, A splitting theorem for spaces of nonpositive curvature, Invent. Math.

79 (1985), no. 2, 323–327. MR0778131 (86b:53041)
[Sh] Yehuda Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math. 141

(2000), no. 1, 1–54. MR1767270 (2001k:22022)
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