APPENDIX ON A QUESTION OF KAZHDAN AND YOM DIN

NICOLAS MONOD

ABSTRACT. This is an appendix to Eli Glasner's *On a question of Kazhdan and Yom Din* [Gla21] in the Benjy Weiss birthday IJM volume. I am grateful to Eli for his comments and for welcoming this appendix. To Benjy, with admiration.

David Kazhdan and Alexander Yom Din asked the following [Gla21].

Question. Fix $\delta > 0$. Let *V* be a Banach space equipped with a linear isometric action of a group *G*.

Let α be an element of the dual V^* such that $||\alpha|| = 1$ and $||g\alpha - \alpha|| \le \delta/10$ for all $g \in G$.

- (i) Does there exist a *G*-invariant $\beta \in V^*$ with $||\alpha \beta|| \le \delta$?
- (ii) Specifically, does this hold for $V^* = \mathscr{B}(H)$, the space of bounded operators of a Hilbert space *H*?

(The predual *V* for (ii) is the space of trace-classs operators.)

In [Gla21] Eli Glasner proved (among many other things) that Question (i) has a negative answer in general, including for some weak-* closed subspaces of $\mathscr{B}(H)$, suggesting that perhap (ii) also has a negative answer.

Theorem. *Question* (ii) *does indeed have a negative answer.*

Proof. We shall use ideas introduced by Bożejko–Fendler [BF91] in the context of Herz–Schur multipliers and uniformly bounded representations. This leads to a concrete and self-contained construction as follows.

Let *G* be the free group on an infinite set *S* of generators. For any nontrivial $x \in G$, denote by x_{-} the element obtained by erasing the right-most letter in the reduced word for *x*. The Hilbert space *H* for question (ii) will be $H = \ell^2(G)$ with Hilbert basis $(\delta_x)_{x \in G}$. The *G*-action on $\mathscr{B}(H)$ is the adjoint representation associated to the left regular representation λ on $\ell^2(G)$. That is, for $T \in \mathscr{B}(H)$ and $g \in G$, we define $g.T = \lambda(g) \circ T \circ \lambda(g)^{-1}$. This is indeed isometric and induced by an isometric representation on the predual *V*. Below, all norms are understood in $V^* = \mathscr{B}(H)$ unless specified otherwise with a subscript such as $\|\cdot\|_{\ell^2}$.

Given n > 0, we choose a subset $S_n \subseteq S$ of n generators. We define $T_n \in \mathscr{B}(H)$ by requiring $T_n \delta_x = \delta_{x_-}$ if $x_-^{-1} x \in S_n^{\pm 1}$ (with $x \neq e$) and $T_n \delta_x = 0$ in all other cases; this defines a bounded operator.

Fix $g \in G$. Then T_n almost commutes with $\lambda(g)$ because $(gx)_- = g(x_-)$ holds unless x is completely cancelled by g (or x is already trivial). Let us compute the commutator when this complete cancellation occurs. Write g in reduced form as $g = s_1^{\epsilon_1} \cdots s_k^{\epsilon_k}$ with $k \in \mathbf{N}$, $s_i \in S$ and $\epsilon_i = \pm 1$ (we can assume k > 0). Then $x = s_k^{-\epsilon_{h+1}}$ for some h < k. Thus $gx = s_1^{\epsilon_1} \cdots s_h^{\epsilon_h}$.

Now we have

$$(T_n \circ \lambda(g) - \lambda(g) \circ T_n) \delta_x = \delta_{s_1^{\epsilon_1} \cdots s_{h-1}^{\epsilon_{h-1}}} - \delta_{s_1^{\epsilon_1} \cdots s_{h+1}^{\epsilon_{h+1}}}$$

provided s_h and s_{h+1} are in S_n (otherwise the corresponding term simply does not occur). This implies the estimate

$$\|T_n \circ \lambda(g) - \lambda(g) \circ T_n\| \le 2 \quad \forall g \in G \ \forall n$$

because, g being fixed, only one $x \in G$ gives rise to the pair of elements $s_1^{\epsilon_1} \cdots s_{h-1}^{\epsilon_{h-1}}$ and $s_1^{\epsilon_1} \cdots s_{h+1}^{\epsilon_{h+1}}$. In other words, the commutator is a sum of two partial isometries, whence the estimate. (A more high-tech argument with Riesz–Thorin interpolation can be found in [BF91, §2].)

At this point we have elements $T_n \in V^* = \mathscr{B}(H)$ with $||g.T_n - T_n|| \le 2$ for all $g \in G$. We now examine the distance

$$d(T_n, V^{*G}) := \inf \{ \|T_n - \beta\| \colon \beta \text{ is } G \text{-fixed } \}$$

from T_n to any *G*-fixed point in $\mathscr{B}(H)$.

We have $T_n \mathbf{1}_{S_n^{\pm 1}} = 2n\delta_e$ and use that β commutes with λ to compute

$$\begin{aligned} 2n &= \|T_n \mathbf{1}_{S_n^{\pm 1}}\|_{\ell^2} \le \|\beta \mathbf{1}_{S_n^{\pm 1}}\|_{\ell^2} + \|T_n - \beta\| \cdot \|\mathbf{1}_{S_n^{\pm 1}}\|_{\ell^2} \\ &= \|\lambda(\mathbf{1}_{S_n^{\pm 1}})\beta \delta_e\|_{\ell^2} + \sqrt{2n}\|T_n - \beta\| \\ &\le \|\lambda(\mathbf{1}_{S_n^{\pm 1}})\| \cdot \|\beta \delta_e\|_{\ell^2} + \sqrt{2n}\|T_n - \beta\| \\ &\le \|\lambda(\mathbf{1}_{S_n^{\pm 1}})\| \cdot \|T_n - \beta\| + \sqrt{2n}\|T_n - \beta\|, \end{aligned}$$

where at the end we used $T_n \delta_e = 0$. The norm $\|\lambda(\mathbf{1}_{S_n^{\pm 1}})\|$ is well-known to be $2\sqrt{2n-1}$, since it is a spectral radius that can be computed by enumerating paths in a tree, see Thm. 3 in [Kes59]. To be very precise: we can consider $H = \ell^2(G)$ as a multiple of the regular representation of the subgroup F_n generated by S_n and Kesten's computation takes place in this $\ell^2(F_n)$; the resulting norm coincides with $\|\lambda(\mathbf{1}_{S_n^{\pm 1}})\|$ in $\ell^2(G)$. Now the above inequalities imply

$$d(T_n, V^{*G}) > \frac{\sqrt{2n}}{3} \quad \forall n$$

We have therefore our answer to the original question by defining $\alpha \in V^* = \mathscr{B}(H)$ to be the unit vector corresponding to T_n and letting $n \to \infty$.

References

- [BF91] Marek Bożejko and Gero Fendler, *Herz-Schur multipliers and uniformly bounded representations of discrete groups.*, Arch. Math. **57** (1991), no. 3, 290–298.
- [Gla21] Eli Glasner, On a question of Kazhdan and Yom Din, To appear in Israel J. Math., 2021.
- [Kes59] Harry Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336–354.

École Polytechnique Fédérale de Lausanne (EPFL)