
A LATTICE IN MORE THAN TWO KAC�MOODY GROUPS ISARITHMETICPIERRE-EMMANUEL CAPRACE* AND NICOLAS MONOD‡Abstra
t. Let Γ < G1 × · · · × Gn be an irredu
ible latti
e in a produ
t of in�niteirredu
ible 
omplete Ka
�Moody groups of simply la
ed type over �nite �elds. We showthat if n ≥ 3, then ea
h Gi is a simple algebrai
 group over a lo
al �eld and Γ is an
S-arithmeti
 latti
e. This relies on the following alternative whi
h is satis�ed by anyirredu
ible latti
e provided n ≥ 2: either Γ is an S-arithmeti
 (hen
e linear) group, or Γis not residually �nite. In that 
ase, it is even virtually simple when the ground �eld islarge enough.More general CAT(0) groups are also 
onsidered throughout.1. Introdu
tionThe theory of latti
es in semi-simple Lie and algebrai
 groups has witnessed tremendousdevelopments over the past fourty years. It has now rea
hed a remarkably deep and ri
hstatus, notably thanks to the 
elebrated work of G. Margulis, whose main aspe
ts may be
onsulted in [Mar91℄. Amongst the followers and exegetes of Margulis' work, several authorsextended the methods and results pertaining to this 
lassi
al setting to broader 
lasses oflatti
es in lo
ally 
ompa
t groups. It should be noted however that as of today there existsapparently no 
hara
terisation of the S-arithmeti
 latti
es purely within the 
ategory oflatti
es in 
ompa
tly generated lo
ally 
ompa
t groups.It turns out that relatively few examples of 
ompa
tly generated topologi
ally simplegroups are known to possess latti
es; to the best of our knowledge, they are all lo
ally
ompa
t CAT(0) groups. In fa
t, the only examples whi
h are neither algebrai
 nor Gromovhyperboli
 are all automorphism groups of non-Eu
lidean lo
ally �nite buildings. Amongstthese, the most prominent family 
onsists perhaps of the so-
alled irredu
ible 
ompleteKa
�Moody groups over �nite �elds 
onstru
ted by J. Tits [Tit87℄ (see � 4.B below formore details).We now pro
eed to des
ribe our main result. To this end, �x a positive integer n.For ea
h i ∈ {1, . . . , n}, let Xi be a proper CAT(0) spa
e and Gi < Is(Xi) be a 
losedsubgroup a
ting 
o
ompa
tly.Theorem 1.1. Let Γ < G1 × · · ·×Gn be any latti
e whose proje
tion to ea
h Gi is faithful.Assume that G1 is an irredu
ible 
omplete Ka
�Moody group of simply la
ed type over a�nite �eld.If n ≥ 3, then ea
h Gi 
ontains a 
o
ompa
t normal subgroup whi
h is a 
ompa
t extensionof a semi-simple group over a lo
al �eld, and Γ is an S-arithmeti
 latti
e.Key words and phrases. Latti
e, lo
ally 
ompa
t group, arithmeti
ity, Ka
�Moody group, building, non-positive 
urvature, CAT(0) spa
e.*F.N.R.S. Resear
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2 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONOD(The same 
on
lusion holds if G1 is instead assumed to be a non-Gromov-hyperboli
 ir-redu
ible 
omplete Ka
�Moody group of 3-spheri
al type over a �nite �eld of 
hara
teris-ti
 6= 2.)One 
an summarise the above result as follows: As soon as n ≥ 3 and one of the fa
tors
Gi is Ka
�Moody as above, all Gi are topologi
ally 
ommensurable to semi-simple algebrai
groups and the latti
e is S-arithmeti
.Remark 1.2. Our aim in Theorem 1.1 is to provide a statement without any restri
tiveassumptions on the latti
e Γ, on the spa
es Xi or on the groups Gi. Considerable 
om-pli
ations are 
aused by the fa
t that Γ is not supposed �nitely generated. It turns out aposteriori that only �nitely generated latti
es exist � as a 
onsequen
e of arithmeti
ity.Remark 1.3. The assumption on faithfulness of the proje
tions of Γ to ea
h fa
tor Gi is aform of irredu
ibility. We refer to Se
tion 2.B below for a dis
ussion of the di�erent possiblede�nitions of irredu
ibility for latti
es in produ
ts of lo
ally 
ompa
t groups.The above theorem is a new manifestation of the phenomenon that �high rank� yieldsrigidity. Numerous other results support this vague statement, in
luding the rank rigidityof Hadamard manifolds, the arithmeti
ity of latti
es in higher rank semi-simple groups,or the fa
t that any irredu
ible spheri
al building of rank ≥ 3 (resp. a�ne building ofdimension ≥ 3) is asso
iated to a simple algebrai
 group (possibly over a skew �eld).Theorem 1.1 will be established with the help of the following arithmeti
ity vs. non-residual-�niteness alternative.Theorem 1.4. Let Γ < G1×· · ·×Gn be a latti
e whi
h is algebrai
ally irredu
ible. Assumethat G1 is an in�nite irredu
ible 
omplete Ka
�Moody group of simply-la
ed type over a�nite �eld.If n ≥ 2 then either Γ is an S-arithmeti
 group or Γ is not residually �nite.(The same 
on
lusion holds if G1 is instead assumed to be a non-Gromov-hyperboli
 ir-redu
ible 
omplete Ka
�Moody group of 3-spheri
al type over a �nite �eld of 
hara
teris-ti
 6= 2.)It is known that if G = G1 × G2 is a produ
t of two isomorphi
 
omplete Ka
�Moodygroups over a su�
iently large �nite �eld, then G 
ontains at least one irredu
ible non-uniform latti
e (see [Rém99℄, [CG99℄). In [CR09℄, this spe
i�
 example is shown to besimple provided G1 and G2 are non-a�ne (and without any other restri
tion on the type).Theorem 1.4 shows in parti
ular that, under appropriate assumptions, all irredu
ible lat-ti
es in G are virtually simple. More pre
isely, we have the following arithmeti
ity vs.simpli
ity alternative whi
h, under more pre
ise hypotheses, strengthens the alternativefrom Theorem 1.4.Corollary 1.5. Let G = G1×· · ·×Gn, where Gi is an in�nite irredu
ible Ka
�Moody groupof simply-la
ed type over a �nite �eld Fqi

(or a non-a�ne non-Gromov-hyperboli
 irredu
ible
omplete Ka
�Moody group of 3-spheri
al type over a �nite �eld Fqi
of 
hara
teristi
 6= 2).Let Γ < G be a topologi
ally irredu
ible latti
e; if Γ is not uniform, assume in addition that

qi ≥ 1764di/25 for ea
h i, where di denotes the maximal rank of a �nite Coxeter subgroupof the Weyl group of Gi. If n ≥ 2, then exa
tly one of the following assertions holds:(i) Ea
h Gi is of a�ne type and Γ is an arithmeti
 latti
e.(ii) n = 2 and Γ is virtually simple.



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 3It is important to remark that, in most 
ases, a group G satisfying the hypotheses of anyof the above statements does not admit any uniform latti
e (see Remark 4.4 below).Corollary 1.6. Let G = G1 × · · · × Gn, where Gi is an in�nite irredu
ible non-a�neKa
�Moody groups of simply-la
ed type over a �nite �eld Fqi
(or a non-a�ne non-Gromov-hyperboli
 irredu
ible 
omplete Ka
�Moody group of 3-spheri
al type over a �nite �eld Fqi

of
hara
teristi
 6= 2). Assume that qi ≥ 1764di/25 for ea
h i, where di denotes the maximalrank of a �nite Coxeter subgroup of the Weyl group of Gi.If n ≥ 2, then any topologi
ally irredu
ible latti
e of G has a dis
rete 
ommensurator, andis thus 
ontained in a unique maximal latti
e.Our proof of Theorems 1.1 and 1.4 builds upon the general methods developed in [CM09a,CM09b℄ for studying latti
es in isometry groups of non-positively 
urved spa
es. Our treat-ment of the residual-�niteness/simpli
ity di
hotomy is inspired by the work of Burger�Mozesfor tree latti
es [BM00℄.A
knowledgement. We are grateful to the anonymous referee for his/her useful 
om-ments. 2. Latti
es in non-positive 
urvature2.A. The set-up. We now introdu
e the setting for this se
tion and the subsequent ones.The situation will di�er from the very simple assumptions made in the Introdu
tion; indeedour �rst task in the proof of Theorems 1.1 and 1.4 will be to redu
e them to the set-upbelow.Fix an integer n ≥ 2. For ea
h i ∈ {1, . . . , n}, let Xi be an irredu
ible proper CAT(0)spa
e not isometri
 to the real line; irredu
ibility of Xi means that it does not split (non-trivially) as a dire
t produ
t. It follows that Xi has no Eu
lidean fa
tor. We also assumethat the boundary ∂Xi is �nite-dimensional for the Tits topology (though this assumptionwill only be used in later se
tions).Let further Gi < Is(Xi) be a 
ompa
tly generated 
losed subgroup without global �xedpoint at in�nity. We assume that Gi a
ts minimally in the sense that there is no invariant
losed 
onvex proper subspa
e of Xi. We point out that this assumption is automati
allyful�lled upon passing to some subspa
e sin
e there is no �xed point at in�nity, 
ompareRemark 36 in [Mon06℄.We set G = G1 × · · · × Gn and X = X1 × · · · × Xn. Finally, let Γ < G be a latti
e.It was established in [CM09b℄ that the following �Borel density� holds.Proposition 2.1. The a
tion of Γ and its �nite index subgroups on X is minimal andwithout �xed points at in�nity.Proof. This is a spe
ial 
ase of Theorem 2.4 in [CM09b℄. �2.B. Irredu
ible latti
es and residual �niteness. Let G = G1 × · · · × Gn be a lo
ally
ompa
t group. The following properties provide several possible de�nitions of irredu
ibilityfor a latti
e Γ in the produ
t G = G1 × · · · × Gn, whi
h we shall subsequently dis
uss.(Irr1) The proje
tion of Γ to any proper sub-produ
t of G is dense (and all Gi are non-dis
rete). In this 
ase Γ is 
alled topologi
ally irredu
ible.(Irr2) The proje
tion of Γ to ea
h fa
tor Gi is inje
tive.(Irr3) The proje
tion of Γ to any proper sub-produ
t of G is non-dis
rete.



4 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONOD(Irr4) Γ has no �nite index subgroup whi
h splits as a dire
t produ
t of two in�nitesubgroups. In this 
ase Γ is 
alled algebrai
ally irredu
ible.It turns out, as is well known, that if ea
h fa
tor Gi is a semi-simple linear algebrai
 group,then all four properties (Irr1)�(Irr4) are equivalent. We shall show that, in the setting of� 2.A, the impli
ations (Irr2)⇒(Irr3)⇒(Irr4) do hold. If one assumes furthermore that ea
h
Gi is topologi
ally simple and 
ompa
tly generated, then ea
h Gi has trivial quasi-
entreby [BEW08, Theorem 4.8℄ and, hen
e, one has (Irr1)⇒(Irr2) in that 
ase. However, even inthe setting of � 2.A, none of the impli
ations (Irr2)⇒(Irr1), (Irr3)⇒(Irr2) or (Irr4)⇒(Irr3)holds true.A 
ru
ial point in the proof of Theorem 1.4 is that, nevertheless, the impli
ation (Irr4)⇒(Irr2)be
omes true provided the latti
e Γ is residually �nite, see Proposition 2.4 below.From now on, we retain the notation of � 2.A.The following result implies that (Irr2)⇒(Irr3)⇒(Irr4).Proposition 2.2.(i) If the proje
tion of Γ to ea
h fa
tor Gi is faithful, then the proje
tion of Γ to anyproper sub-produ
t of G is non-dis
rete.(ii) If the proje
tion of Γ to any proper sub-produ
t of G is non-dis
rete, or if theproje
tion to at least one fa
tor Gi is faithful, then Γ is algebrai
ally irredu
ible.Proof. (i) Assume that the proje
tion of Γ to ea
h fa
tor Gi is faithful and 
onsider any(non-trivial) regrouping of fa
tors G = G′ × G′′; we need to show that the proje
tion of Γto G′ is not dis
rete. Assume thus that the latter is dis
rete. In that 
ase, Lemma I.1.7in [Rag72℄ ensures that Γ∩ ({1}×G′′) is a latti
e in {1}×G′′. In parti
ular it is non-trivial.Therefore the proje
tion of Γ to G′ 
annot be faithful (a fortiori to some Gi).(ii) Suppose that some �nite index subgroup Γ0 < Γ admits a splitting. Proposition 2.1implies in parti
ular that Γ0 a
ts on X as well as on ea
h fa
tor Xj, minimally and without�xed points at in�nity. These are exa
tly the assumptions ne
essary to apply the splittingtheorem of [Mon06℄. The latter provides a splitting of X as X = Y × Z whi
h, by the
anoni
ity of the geometri
 de
omposition X ∼= X1 × · · · × Xn, must 
orrespond to someregrouping of irredu
ible fa
tors of X. In other words we have a non-empty subset J (

{1, . . . , n} su
h that Y =
∏

j∈J Xj and Z =
∏

j 6∈J Xj . The desired result now follows fromthe fa
t that the respe
tive Γ0-a
tions on Y and Z are dis
rete but not faithful. �Examples showing that the impli
ation (Irr3)⇒(Irr2) fails in the setting of � 2.A 
anbe obtained as extensions of arithmeti
 latti
es by produ
ts or free groups, using similar
onstru
tions as in [CM09b, �6.C℄ (suggested by Burger�Mozes). The following result showsthat (Irr4)⇒(Irr3) provided that the latti
e Γ is �nitely generated.Proposition 2.3. Assume that Γ is �nitely generated and algebrai
ally irredu
ible. Thenthe proje
tion of Γ to any proper sub-produ
t of G = G1 × · · · ×Gn has non-dis
rete image.Proof. See Theorem 4.2(i) in [CM09b℄. �We shall now des
ribe an example showing that the impli
ation (Irr4)⇒(Irr3) fails tohold if one removes the hypothesis that Γ be �nitely generated. This also illustrates someof the te
hni
al di�
ulties that are unavoidable in the proof of our main results, sin
e wedeal with general (i.e. possibly non-uniform in�nitely generated) latti
es.



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 5Example. Let A =
⊕

n≥0 Z/2 and M = A ∗ A. Then M 
an be realised as a non-uniformlatti
e in the group Aut(T3) of the regular tree of degree 3. To see this, one 
an express Mas the fundamental group of a graph of groups as follows. Let λ+ and λ− be two 
opies ofthe simpli
ial half-line, and let us index the respe
tive verti
es of λ+ and λ− by the stri
tlypositive integers in the natural order. On both λ+ and λ−, we atta
h the group (Z/2)n tothe vertex n and to the edge joining n to n + 1. The embedding of the edge group atta
hedwith [n, n + 1] to the vertex group atta
hed with n + 1 is the natural in
lusion of (Z/2)n in
(Z/2)n+1 de�ned by x 7→ (x, 0). Finally, we join the vertex 1 of λ+ to the vertex 1 of λ−by an edge to whi
h we atta
h the trivial group. In this way, we obtain a graph of groups,whi
h is simpli
ially isomorphi
 to the line. Its fundamental group is isomorphi
 to M anda
ts on the universal 
over T3 as a non-uniform latti
e.Similarly, we set B =

⊕

n≥0 Z/3 and view the group N = B ∗B a
ting as a non-uniformlatti
e on the regular tree T4 of degree 4 using the same 
onstru
tion, but repla
ing Z/2 by
Z/3.Now we de�ne an a
tion of M by automorphisms on N . Clearly A a
ts on B by non-trivial automorphisms 
omponentwise, so that the semi-dire
t produ
t A ⋉ B is isomorphi
to ⊕

n≥0(Z/2 ⋉ Z/3): in ea
h 
oordinate, the group Z/2 a
ts on Z/3 as the (unique) non-trivial automorphism. This a
tion extends naturally to a diagonal a
tion of A on B × Bwhi
h, post-
omposed with the embedding of sets B×B →֒ B ∗B, de�nes an a
tion of A onthe generators of N = B ∗B preserving all the de�ning relations. Thus A a
ts on N = B ∗Bby automorphisms. Pre
omposing this with the natural quotient map M = A∗A → A whi
hannihilates the se
ond free fa
tor, we obtain a homomorphism
α : M → Aut(N).Sin
e the M -a
tion on N preserves the graph of group de
omposition of N , it extends toan M -a
tion by automorphisms on T4 whi
h, by a slight abuse of notation, we also denoteby α. As a subgroup of Aut(T4), the group α(M) �xes pointwise a line; the 
losure of Min Aut(T4) is a 
ompa
t subgroup Q isomorphi
 to ∏

Z
Z/2.Set now

Γ = N ⋊α M and G = Aut(T4) × Aut(T3).We have already de�ned an embedding f4 : Γ → Aut(T4) and a latti
e embedding of
M in Aut(T3). Pre
omposing the latter with the quotient map Γ → M , we obtain ahomomorphism f3 : Γ → Aut(T3) whose image is the latti
e M < Aut(T3). Finally, wede�ne an inje
tive homomorphism

f : Γ → G : γ 7→ (f4(γ), f3(γ)).The image f(Γ) is dis
rete. Moreover, sin
e the image of f(Γ) is a latti
e in Aut(T3) andthe kernel of the proje
tion of f(Γ) to Aut(T3) is a latti
e in Aut(T4), it follows that f(Γ)is a latti
e in G.Remark that Γ is algebrai
ally irredu
ible sin
e no �nite index subgroup of M is normalin Γ. The proje
tion of Γ to Aut(T3) is dis
rete while its proje
tion to Aut(T4) is not, sin
eits 
losure is isomorphi
 to N ⋊Q. This shows that Proposition 2.3 does not hold for latti
eswhi
h are not �nitely generated.We �nish this subse
tion with a 
ru
ial ingredient in the proof of Theorem 1.4 whi
hshows that the impli
ation (Irr4)⇒(Irr2) does however hold under the extra assumptionthat the latti
e Γ is residually �nite � even if it is not �nitely generated.



6 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODProposition 2.4. Assume that Γ is residually �nite and algebrai
ally irredu
ible. Then theproje
tion of Γ to ea
h Gi is faithful.Proof. In the spe
ial 
ase when Γ is �nitely generated, we obtained this result in Theo-rem 4.10 of [CM09b℄. In the present level of generality, we 
an write Γ as the union ofan as
ending sequen
e of �nitely generated subgroups (Γj)j≥0 be
ause Γ is 
ountable sin
e
Is(X) is se
ond 
ountable.We let Hi denote the 
losure of the proje
tion of Γ to Gi. Upon reordering the fa
tors,we may assume that there is some s ∈ {0, . . . , n} su
h that Hi is dis
rete if and only if
i > s. We remark that if s = 0, then Hi is dis
rete for all i. Therefore, Lemma I.1.6 from[Rag72℄ ensures that H1 × · · · × Hn is a latti
e in G = G1 × · · · × Gn and that the indexof Γ in H1 × · · · × Hn is �nite. Therefore the produ
t group (Γ ∩ H1) × · · · × (Γ ∩ Hn) has�nite index in Γ, 
ontradi
ting the fa
t that Γ is algebrai
ally irredu
ible. Thus s > 0 asasserted.By [CM09a, Corollary 1.11℄, ea
h Gi is either totally dis
onne
ted or an adjoint simplenon-
ompa
t Lie group. By the de�nition of s, the group Hi is non-dis
rete for all i ≤ sand, hen
e, dense in every 
onne
ted fa
tor of H1 × · · · × Hs by Borel density [Bor60, 4.2℄(see also [Mar91, II.6.2℄). Thus, for all i ≤ s, the group Hi is a non-dis
rete 
losed subgroupwhi
h 
oin
ides with Gi if the latter is not totally dis
onne
ted.Let I ⊆ {1, . . . , s} be any non-empty subset. We 
laim that if the proje
tion of Γ to
∏

i6∈I Hi is not faithful, then the proje
tion of Γ to ∏

i∈I Hi is dis
rete.In order to establish the 
laim, we let C denote the 
losure of the proje
tion of Γ to
∏

i∈I Hi and let
N = Γ ∩ (

∏

i∈I

Hi ×
∏

i6∈I

{1}) < H1 × · · · × Hn.Then C is totally dis
onne
ted; this is shown in the proof of Theorem 4.10 in [CM09b℄ byarguments that do not depend on the �nite generation of Γ, but use the fa
t that Hi iseither totally dis
onne
ted or a 
onne
ted simple Lie group for all i ∈ I.We now assume that N is non-trivial and need to dedu
e that C is dis
rete. Sin
e Γ hastrivial amenable radi
al [CM09b, Corollary 2.7℄ the normal subgroup N � Γ is not lo
ally�nite and, hen
e, we 
an assume upon dis
arding the �rst few indi
es in the �ltration
(Γj)j≥0 that Γj ∩ N is in�nite for ea
h j ≥ 0. Furthermore, sin
e Γ has no �xed point ∂Xby Proposition 2.1 and sin
e ∂X is 
ompa
t when endowed with the 
one topology, we 
anmoreover assume that Γj has no �xed point in ∂X for all j. Finally, let Q < C be a 
ompa
topen subgroup and denote by Cj < C the subgroup generated by Q and the image of Γj .By 
onstru
tion the group Cj is 
ompa
tly generated, it a
ts without �xed point atin�nity and the interse
tion of Cj with the image of N in C is an in�nite dis
rete normalsubgroup of Cj. Sin
e Γ∩

(

(
∏

i6∈I Hi) ·Cj

) proje
ts densely to Cj , we dedu
e from [CM09b,Proposition 4.8℄ that [Cj ∩ N,C
(∞)
j ] = 1, where C

(∞)
j denotes the interse
tion of all opennormal subgroups of Cj . We re
all that a non-
ompa
t group of isometries of a properCAT(0) spa
e X a
ting without �xed point at in�nity has a 
ompa
t 
entraliser in Is(X)(though this is an overkill, it follows e.g. from the splitting theorem in [Mon06℄); hen
e

C
(∞)
j is 
ompa
t.On the other hand, the group Cj possesses a maximal 
ompa
t normal subgroup be
auseit a
ts without �xed point at in�nity; this follows e.g. from Corollary 5.8 in [CM09a℄, the
ompa
t subgroup being the kernel of the Cj-a
tion on a minimal subspa
e. Therefore,



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 7it follows from [CM09a, Proposition 6.12℄ that C
(∞)
j is non-
ompa
t whenever Cj is non-dis
rete. This shows that Cj is dis
rete. By 
onstru
tion Cj is open in C, thus C is dis
reteas well. This proves the 
laim.We shall now establish that s = n. To this end, we noti
e that the proje
tion of Γ to

Gs+1 × · · · × Gn 
annot be faithful sin
e it has dis
rete image (see [Rag72, Lemma I.1.7℄).Applying the 
laim with the set I = {1, . . . , s}, we infer that the 
losure C of the proje
tionof Γ to H1 × · · · ×Hs is dis
rete. By the de�nition of s, we also observe that the 
losure Dof the proje
tion of Γ to Hs+1 × · · · × Hn is dis
rete. Thus Γ is 
ontained in the dis
retesubgroup C × D < (H1 × · · · × Hs) × (Hs+1 × · · · × Hn). Sin
e Γ is a latti
e, it musttherefore have �nite index in C×D. Therefore Γ has a �nite index subgroup whi
h splits asa dire
t produ
t, whi
h 
ontradi
ts the hypothesis that Γ is algebrai
ally irredu
ible. This
ontradi
tion 
on�rms that s = n.Finally, assume for a 
ontradi
tion that the proje
tion of Γ to Gk is not faithful for some
k ∈ {1, . . . , n}. We then invoke the 
laim above to the set I = {1, . . . , n} \ {k}. From the
laim, we infer that the proje
tion C ′ of Γ to ∏

i6=k Hi is dis
rete. Therefore, this proje
tion
annot be faithful (see [Rag72, Lemma I.1.7℄). We 
an then invoke the 
laim one moretime, now with the set I = {k}. This implies that the proje
tion D′ of Γ to Hk is dis
rete,
ontradi
ting s = n. �2.C. Open subgroups. Re
all that, given a latti
e Λ in a lo
ally 
ompa
t group H andany open subgroup P < H, the interse
tion Λ ∩ P is a latti
e in P ; indeed a Haar measurefor P may be obtained by restri
ting the Haar measure of H. Furthermore, if Λ is uniformin H, so is Λ ∩ P in P . We shall frequently take advantage of this basi
 observation andstudy the interse
tion Γ ∩ P for various open subgroups P < G.Lemma 2.5. Let H,J be lo
ally 
ompa
t groups, Λ < H × J a latti
e, P < H an opensubgroup and ΛP = Λ ∩ (P × J). Then any intermediate group ΛP < Λ′ < Λ is a latti
e in
H ′ × J and in H ′ × J ′, where H ′ and J ′ are the 
losure of the proje
tion of Λ′ to H and Jrespe
tively.Proof. Let H∗ be the the 
losure of the proje
tion of Λ to H and P ∗ = P ∩ H∗. Then Λ isa latti
e in H∗× J by [Rag72, I.1.6℄. Moreover, ΛP is a latti
e in P ∗× J proje
ting denselyto P ∗ sin
e P is open; in parti
ular, P ∗ ⊆ H ′. Let F ⊆ P ∗ × J be a (left) fundamentaldomain for ΛP in P ∗ × J .We 
laim that the Λ′-translates of F 
over H ′×J . Pi
k thus any (h0, j0) in H ′×J . Sin
e
P ∗ is open in H ′, there is (h1, j1) in Λ′ su
h that h1h0 ∈ P ∗. Sin
e (h1h0, j1j0) ∈ P ∗ × J ,there is (h2, j2) in ΛP su
h that (h2h1h0, j2j1j0) ∈ F . Sin
e (h2h1, j2j1) ∈ Λ′, this provesthe 
laim.Sin
e Λ′ is dis
rete and sin
e the Haar measures of P ∗ × J extend to Haar measures of
H ′× J , we 
on
lude that Λ′ is indeed a latti
e in H ′× J . Applying again [Rag72, I.1.6℄, wededu
e that it is also a latti
e in H ′ × J ′. �We now return to our geometri
 setting.Proposition 2.6. Let P < G1 be an open subgroup and set

ΓP = Γ ∩ (P × G2 × · · · × Gn).Assume that the proje
tion of ΓP to some Gi with i ≥ 2 is faithful. Then ΓP is algebrai
allyirredu
ible.



8 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODProof. In order to argue as in Proposition 2.2, we need to show that the ΓP -a
tion on Xi isminimal and without �xed point at in�nity.We 
laim that without loss of generality we may assume that G1 is totally dis
onne
ted.Indeed, otherwise by Corollary 1.11 in [CM09a℄ the group G1 is an almost 
onne
ted simpleLie group. In that 
ase the open subgroup P < G1 has �nite index in G1 and hen
e ΓP has�nite index in Γ. The 
laimed statement is thus a 
ase of Proposition 2.2.In view of the 
laim, we assume that G1 is totally dis
onne
ted; hen
e so is P . Thereforethere exists a 
ompa
t open subgroup U < P (see [Bou71, III.4 No 6℄). Then the group
ΓU = Γ ∩ (U × G2 × · · · × Gn)is a latti
e in U × G2 × · · · × Gn and thus its proje
tion to H := G2 × · · · × Gn is a latti
eas well. Sin
e the H-a
tion on Y := X2 × · · · × Xn is minimal and without �xed point atin�nity, so is the ΓU -a
tion by Proposition 2.1. Now we dedu
e a fortiori that the ΓP -a
tionon Y and hen
e on Xi is minimal and without �xed point at in�nity. �Corollary 2.7. Let P < G1 be any open subgroup and set
ΓP = Γ ∩ (P × G2 × · · · × Gn).If Γ is algebrai
ally irredu
ible and residually �nite, then so is ΓP .Proof. By Proposition 2.4 the proje
tion of Γ to ea
h Gi is faithful. Thus we may applyProposition 2.6. �2.D. Co�nite embeddings of semi-simple groups. We do not know if a semi-simplealgebrai
 group 
an appear as a subgroup of �nite 
ovolume in a lo
ally 
ompa
t groupwithout being 
o
ompa
t1. We shall prove that this does not happen in the CAT(0) setting.Proposition 2.8. Let H be a lo
ally 
ompa
t group and L < H a 
losed subgroup of �nite
ovolume whi
h is a 
ompa
t extension of a semi-simple algebrai
 group. Suppose that Hadmits a 
o
ompa
t proper 
ontinuous isometri
 a
tion on some CAT(0) spa
e.Then H/L is 
ompa
t.Morover, if the semi-simple group has no rank one fa
tors, then upon fa
toring out a(unique maximal) 
ompa
t normal subgroup, H is a group of automorphismsm of the semi-simple algebrai
 group.The following fa
t is well-known.Lemma 2.9. A group of isometries preserving a non-zero �nite measure on a 
ompleteCAT(0) spa
e �xes a point.Proof. Let G be the group, X the spa
e and µ the measure. There is a bounded set B ⊆ Xsu
h that µ(B) > µ(X)/2. Therefore gB ∩ B 6= ∅ for all g ∈ G. It follows that G has abounded orbit and hen
e a �xed point by Cartan's 
ir
um
entre prin
iple [BH99, II.2.8℄. �Lemma 2.10. Let H be a lo
ally 
ompa
t group 
ontaining a 
losed subgroup of �nite 
o-volume whi
h is a 
ompa
t extension of a semi-simple algebrai
 group. Then any 
ontinuousisometri
 H-a
tion on a proper CAT(0) spa
e preserves a non-empty 
losed 
onvex subsetwith trivial Eu
lidean fa
tor.1Note added in proof: we have been informed that Bader�Furman�Sauer address this question in forth-
oming work.
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anoni
al Eu
lidean de
omposition [BH99, II.6.15℄, it su�
esto prove that any 
ontinuous isometri
 H-a
tion on any Rd has a �xed point. Let L < Hbe the given subgroup with K0 � L 
ompa
t normal su
h that L/K0 is semi-simple. Thenon-empty subspa
e of K0-�xed points is an a�ne subspa
e preserved by L; we thereforehave an isometri
 a
tion of the semi-simple group L/K0 on some Rd′ .It is well-known that all su
h L/K0-a
tions have a �xed point. Therefore L �xes a pointin Rd, whi
h implies by Lemma 2.9 that H also �xes a point. �Proof of Proposition 2.8. Let X be a CAT(0) spa
e as in the statement; it is ne
essarilyproper. Sin
e H a
ts 
o
ompa
tly, it has a minimal 
onvex invariant subspa
e and thuswe 
an assume X minimal upon fa
toring out the 
ompa
t kernel of the H-a
tion on thatsubspa
e. We note in passing that this kernel is a (ne
essarily unique) maximal 
ompa
tnormal subgroup of H.Lemma 2.10 implies that X has trivial Eu
lidean fa
tor. Moreover, we 
laim that H hasno �xed point at in�nity. Indeed, otherwise by minimality the 
orresponding Busemann
hara
ter H → R would be non-trivial. This however would produ
e a non-trivial 
hara
terof L whi
h would thus des
end non-trivially to the semi-simple group, whi
h is absurd.By Theorem 2.4 in [CM09b℄, the L-a
tion on X is minimal and without �xed point atin�nity. In parti
ular, L has no non-trivial 
ompa
t normal subgroup and we 
an de
omposeit into its simple fa
tors L = L1 × · · · × Ln. Ea
h Li is non-
ompa
t and we 
an assume
n ≥ 1 sin
e otherwise H is 
ompa
t (a
tually trivial at this point).In view of Addendum 1.8 in [CM09a℄ we 
an write X = X1 × · · · × Xn, where ea
h Lia
ts minimally on Xi; the �nite-dimensionality of ∂X holds by Theorem C in [Kle99℄ sin
e
H a
ts 
o
ompa
tly. Moreover, ea
h ∂Xi is �nite-dimensional and ea
h Li has full limit setin ∂Xi be
ause the two 
orresponding statements for ∂X and the L-a
tion on X hold: thelatter by Proposition 2.9 in [CM09b℄, using again 
o
ompa
tness of H.We 
an now apply Theorem 7.4 in [CM09a℄ and dedu
e that ea
h Li a
ts 
o
ompa
tly on
Xi; indeed the proof of lo
. 
it. even provides a quasi-isometry bewteen Xi and the modelspa
e (symmetri
 spa
e or Bruhat�Tits building) of Li. Thus L a
ts 
o
ompa
tly on X,whi
h implies that L is 
o
ompa
t in H.Theorem 7.4 in [CM09a℄ also provides a Tits-isometri
 identi�
ation of ∂Xi with theboundary of the model spa
e of Li. Assuming now that ea
h Li has rank at least two, we
an apply Tits' rigidity theorem (Theorem 5.18.4 in [Tit74℄) and dedu
e that Is(Xi) is thegroup of isometries of the model spa
e, whi
h 
oin
ides with the group of automorphismsof the asso
iated semi-simple group. �3. Presen
e of an algebrai
 fa
tor3.A. Algebrai
 fa
tors in general. Following Margulis [Mar91, IX.1.8℄, we shall say thata simple algebrai
 group G de�ned over a �eld k is admissible if none of the followingholds:� char(k) = 2 and G is of type A1, Bn, Cn or F4;� char(k) = 3 and G is of type G2.A semi-simple group will be 
alled admissible if all its simple fa
tors are.Theorem 3.1. Let k be a lo
al �eld and G an adjoint admissible 
onne
ted semi-simple
k-group without k-anisotropi
 fa
tors. Let X be a proper CAT(0) spa
e without Eu
lideanfa
tor and H < Is(X) a 
losed totally dis
onne
ted subgroup a
ting minimally and without�xed point at in�nity. Let Γ < G(k)×H be any latti
e; in 
ase rankk G = 1 and char(k) > 0,we assume in addition Γ 
o
ompa
t.
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ts faithfully to the simple fa
tors of G(k), then H is a semi-simple algebrai
group upon passing to a �nite 
ovolume subgroup 
ontaining the image of Γ. Furthermore,
Γ is �nitely generated.Remark 3.2. There is a similar statement without the CAT(0) spa
e X in Theorem 5.20of [CM09b℄, but at the 
ost of assuming H 
ompa
tly generated and assuming that Γproje
ts densely to H. In general, we do not know how to prove a priori that the 
losure ofthe proje
tion of Γ to H is 
ompa
tly generated, even if we assume H 
ompa
tly generated.In the above theorem, 
ompa
t generation of H follows a posteriori from the statement. Infa
t, the bulk of the proof given below is 
on
erned with addressing this very issue.We begin with a geometri
 �niteness result that will allow us to rule out phenomena ofadéli
 type in the proof of Theorem 3.1; for its own sake, we provide more generality.Proposition 3.3. Let X be a proper CAT(0) spa
e and H < Is(X) a 
losed subgroup a
tingminimally and without �xed point at in�nity. Let {Hn} be a non-de
reasing family of 
losedsubgroups of H su
h that the 
losure of the union of all Hn is 
o-amenable in H.Then there is N ∈ N su
h that no Hn 
an be a 
ompa
t extension of a dire
t produ
t ofmore than N non-
ompa
t fa
tors.Proof. Let X = Y ×Rd be the maximal Eu
lidean de
omposition, so that Is(X) = Is(Y )×
(

O(d) ⋉ Rd
), see Theorem II.6.15 in [BH99℄. Arguing by 
ontradi
tion, we 
an assumethat ea
h Hn has a 
ompa
t normal subgroup Kn su
h that Hn/Kn 
an be de
omposedas a dire
t produ
t of n non-
ompa
t fa
tors. We 
laim that we 
an pass to a furthersubsequen
e and regroup fa
tors so that all n fa
tors have non-
ompa
t image in Is(Y Kn).Indeed, ea
h Hn/Kn a
ts on a Eu
lidean subspa
e of Rd, namely its Kn-�xed points. Thisimplies that at most d of the non-
ompa
t fa
tors of Hn/Kn have a non-
ompa
t image in

(Rd)Kn ; thus at least n − d fa
tors have non-
ompa
t image in Is(Y Kn), whi
h implies the
laim.Sin
e the 
losure H∞ < H of the union of all Hn is 
o-amenable, it has no �xed point in
∂Y by Proposition 2.1 in [CM09b℄. Therefore, by 
ompa
tness of ∂Y , we 
an further assumethat none of the Hn has a �xed point in ∂Y . It follows that ea
h Hn admits some minimalnon-empty 
losed 
onvex invariant subspa
e Yn ⊆ Y and that moreover the union Zn ⊆ Y ofall su
h subspa
es splits isometri
ally and equivariantly as Zn

∼= Yn × Tn, where the �spa
eof 
omponents� Tn is a bounded CAT(0) spa
e endowed with the trivial Hn-a
tion; for allthis, see Remark 39 in [Mon06℄.We 
laim that the sequen
e {Tn} is of non-in
reasing diameter. Indeed, let t, t′ ∈ Tn+1;then both Yn+1×{t} and Yn+1×{t′} 
ontain some, a priori several, minimal Hn-subspa
es.We denote by s, s′ ∈ Tn the elements 
orresponding to some arbitrary su
h 
hoi
es Yn×{s} ⊆
Yn+1×{t} and Yn×{s′} ⊆ Yn+1×{t′}. Now we have d(t, t′) ≤ d(s, s′) and the 
laim follows.In view of the 
laim, we may 
hoose a sequen
e of points yn ∈ Yn that remains bounded.Noti
e that Kn a
ts trivially on Yn. Our assumption on Hn/Kn together with the splittingtheorem from [Mon06℄ shows that Yn admits a splitting as a produ
t of n non-
ompa
t fa
-tors. In parti
ular, we 
an 
hoose n geodesi
 rays issuing from yn and spanning a Eu
lidean
n-dimensional quadrant. Having Eu
lidean quadrants of unbounded dimension but basedat the points yn whi
h remain in a bounded set 
ontradi
ts the lo
al 
ompa
tness of Y . �Proof of Theorem 3.1. In view of the nature of the statement, we may and shall repla
e Hby the 
losure of the proje
tion of Γ, whi
h has �nite 
ovolume in H. By Theorem 2.4in [CM09b℄, H still a
ts minimally and without �xed point at in�nity. In parti
ular, we 
anassume it non-
ompa
t sin
e otherwise it is trivial, in whi
h 
ase the statement is empty
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ept for the �nite generation of Γ; the latter would still follow as explained below for ΓU ,whi
h 
oin
ides with Γ when H is trivial.As we shall see, given the results we proved in [CM09b℄, the main step here is to provethe following.Main 
laim: the latti
e Γ is �nitely generated.To this end, let U < H be a 
ompa
t open subgroup, whi
h exists by [Bou71, III.4 No 6℄.Sin
e Γ proje
ts inje
tively to G(k), we 
an 
onsider ΓU = Γ ∩ (G(k) × U) as a latti
ein G(k). Moreover, ΓU is irredu
ible in G(k) sin
e it proje
ts inje
tively to the simplefa
tors (re
alling that the various notions of irredu
ibility 
oin
ide in the 
ase of latti
es insemi-simple groups). Our assumptions imply that ΓU is �nitely generated; indeed, we re
allthe argument given in [CM09b, 5.20℄: either we have simultaneously char(k) > 0 and G issimple of k-rank one, in whi
h 
ase we assumed Γ 
o
ompa
t, so that ΓU is 
o
ompa
t in the
ompa
tly generated group G(k) and hen
e �nitely generated [Mar91, I.0.40℄; otherwise,
ΓU is known to be �nitely generated by applying, as the 
ase may be, either Kazhdan'sproperty, or the theory of fundamental domains, or the 
o
ompa
tness of p-adi
 latti
es �we refer to Margulis, Se
tions (3.1) and (3.2) of Chapter IX in [Mar91℄.We 
hoose a non-de
reasing sequen
e {Γn} of �nitely generated subgroups with ΓU <
Γn < Γ and whi
h exhaust all of Γ. We denote by Gn < G(k) the 
losure of the proje
tionof Γn to G(k) and by Hn < H the 
losure of the proje
tion of Γn to H. Noti
e that the
losure of the union of all Hn 
oin
ides with the 
losure of the proje
tion of Γ to H andthus is all of H in view of our preliminary redu
tion.We 
laim that Γn is a topologi
ally irredu
ible latti
e in Gn × Hn upon dis
arding the�rst few n. Lemma 2.5 shows that Γn is indeed a latti
e in Gn × Hn and hen
e the pointto verify is that Gn,Hn are both non-dis
rete.If all Gn are dis
rete, they are latti
es in G(k) and thus ΓU has �nite index in Γn sin
ethe proje
tion of Γ to G(k) is faithful; in parti
ular, Hn is 
ompa
t and hen
e �xes a pointin X. Considering the nested sequen
e of Hn-�xed points in the 
ompa
ti�
ation X , wededu
e by 
ompa
tness that H �xes a point in X. This is impossible sin
e H �xes no pointat in�nity and is non-
ompa
t.If Hn is dis
rete, then Γn ∩ (Gn × 1) is a latti
e (see Theorem 1.13 in [Rag72℄). Viewingit in Gn, it is a normal (hen
e 
o
ompa
t) latti
e sin
e it is normalised by the proje
tionof Γn. However, Gn does not admit a normal latti
e when it is non-dis
rete. Indeed, beingZariski-dense in G (by Borel density applied to ΓU), it 
ontains the group Gα(k)+ for somesimple fa
tor Gα by [Pra77℄ and the latter is simple [Tit64℄ (and non-dis
rete). The 
laimthat Γn is irredu
ible in Gn × Hn is proved.We 
an now apply Theorem 5.1 from [CM09b℄ and dedu
e that Hn is a 
ompa
t extensionof a semi-simple algebrai
 group without 
ompa
t fa
tors. In fa
t, this referen
e allows apriori for a possibly in�nite dis
rete dire
t fa
tor in Hn whi
h is also virtually a dire
t fa
torof Γn, but in the 
ase at hand this 
ontradi
ts the fa
t that it is Zariski dense in a simplealgebrai
 group, namely any simple fa
tor Gα (sin
e it 
ontains ΓU whi
h is Zariski-densein G by Borel density).We 
laim that the obtained semi-simple quotient of Hn is a dire
t fa
tor of the quotientasso
iated to Hn+1.Indeed, Margulis' 
ommensurator arthmeti
ity [Mar91, 1.(1)℄ shows that ΓU is S-arithmeti
and hen
e the proje
tion of Γ is 
ontained in G(K) for some global �eld K over whi
h G isde�ned by Theorem 3.b in [Bor66℄ (see also [Wor07, Lemma 7.3℄). An examination of theproof of Theorem 5.1 in [CM09b℄ shows that the semi-simple quotient of Hn is the produ
t
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ompa
t semi-simple fa
tors of all G(Kv), where v ranges over the set of pla
esof K for whi
h Γn is unbounded. This proves the 
laim.Proposition 3.3 applies and we dedu
e from the previous 
laim that the sequen
e ofthe semi-simple quotients asso
iated to {Hn} stabilises. In view of the above dis
ussion,it follows that Γ < G(K) is in fa
t itself S-arithmeti
. In view of the assumptions on
G and of the results in Se
tion 3.2 of Chapter IX in [Mar91℄, this S-arithmeti
 group is�nitely generated if it is irredu
ible. Sin
e Γ proje
ts inje
tively into the simple fa
tors of
G(k), irredu
ibility follows. (Alternatively, argue as in the proof of Proposition 2.2.) This
on
ludes the proof of the main 
laim.We now have Γ = Γn for n large enough; in parti
ular, Hn = H and the proof is
omplete. �3.B. Redu
tion to the totally dis
onne
ted 
ase. Retain the notation of � 2.A. Thefollowing result will later allow us to fo
us on the 
ase where ea
h Gi is totally dis
onne
ted.Proposition 3.4. Assume that the proje
tion of Γ to ea
h Gi is faithful.If G is not totally dis
onne
ted, then ea
h Gi 
ontains a 
losed subgroup Hi of �nite
ovolume whi
h is a simple algebrai
 group over a lo
al �eld and Γ is S-arithmeti
. If inaddition G a
ts 
o
ompa
tly on X, then Gi/Hi is 
ompa
t.Proof. De�ne Hi as the 
losure of the proje
tion of Γ to Gi; we shall fo
us on the statementsabout Gi and Hi, sin
e the arithmeti
ity of Γ will then follow by Margulis' results (seeTheorem (A) in Chapter IX of [Mar91℄).If the identity 
omponent G◦ is non-trivial, then the same holds for some Gi. Uponrenumbering the Gi's, we may and shall assume that Gi is totally dis
onne
ted if and onlyif i > k for some k ∈ {1, . . . , n}. By [CM09a, Corollary 1.11℄, it follows that Gi is anon-
ompa
t simple Lie group with trivial 
entre for ea
h i ∈ {1, . . . , k}.By Proposition 2.2(i), the group Hi is non-dis
rete for ea
h i. In parti
ular we have
Hi = Gi for ea
h i ≤ k by Borel density [Bor60℄, sin
e a Zariski-dense subgroup of a simpleLie group is either dis
rete or dense. Furthermore, sin
e Hi has �nite 
ovolume in Gi, itfollows from [CM09b, Theorem 2.4℄ that Hi a
ts minimally without �xed point at in�nityon Xi. In parti
ular it has no non-trivial 
ompa
t normal subgroup. Now Theorem 3.1implies that

H := G1 × · · · × Gk × Hk+1 × · · · × Hnis a semi-simple algebrai
 group. In view of Proposition 2.8, if Gi a
ts 
o
ompa
tly on Xi,then so does Hi. �It will be 
onvenient to have the following ad ho
 simpler variant of Proposition 3.4; it isessentially just a short
ut available in positive 
hara
teristi
.Proposition 3.5. Let k be a lo
al �eld of positive 
hara
teristi
 and G an adjoint 
onne
tedabsolutely almost simple k-group of positive k-rank. Let X be a proper CAT(0) spa
e withoutEu
lidean fa
tor and let H < Is(X) be a 
losed subgroup a
ting 
o
ompa
tly, minimally andwithout �xed point at in�nity.If there is any latti
e Γ < G(k) × H that proje
ts faithfully to G(k), then H is totallydis
onne
ted.Proof. Theorem 1.6 in [CM09a℄ implies that H is of the form H = S × D, where S is a
onne
ted semi-simple Lie group and D is totally dis
onne
ted. Let U < D be a 
ompa
topen subgroup and observe that the latti
e ΓU < G(k) × S ×U (as 
onsidered in 2.C) stillproje
ts inje
tively to G(k). Suppose for a 
ontradi
tion that S is non-
ompa
t. Then we
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e in G(k)×S whi
h is irredu
ible and S-arithmeti
 in view of Margulis'arithmeti
ity [Mar91℄. This is absurd sin
e the 
hara
teristi
s of the �elds of de�nition donot agree. �3.C. Arithmeti
ity of residually �nite latti
es. We remain in the setting of � 2.A.Theorem 3.6. Suppose that the latti
e Γ < G = G1 × · · · × Gn is algebrai
ally irredu
ible.Assume that G1 possesses an open subgroup P whi
h is a 
ompa
t extension of a non-
ompa
t admissible simple algebrai
 group H over a lo
al �eld k. In 
ase k has positive
hara
teristi
 and H has k-rank one, we assume in addition Γ 
o
ompa
t.If Γ is residually �nite, then ea
h Gi 
ontains a 
losed subgroup of �nite 
ovolume whi
his a 
ompa
t extension of a simple algebrai
 group over a lo
al �eld, and Γ is S-arithmeti
.Proof. By Proposition 2.4, the proje
tion of Γ to ea
h Gi is faithful. Therefore, in view ofProposition 3.4, we 
an assume that G is totally dis
onne
ted. Set
ΓP = Γ ∩ (P × G2 × · · · × Gn).By assumption P has a 
ompa
t normal subgroup K su
h that P/K = H(k). Now ΓPmaps onto a latti
e in the produ
t

H(k) × G2 × · · · × Gnand this map has �nite kernel. Sin
e ΓP is residually �nite, we 
an assume that the kernelis trivial upon repla
ing ΓP with a �nite index subgroup; we hen
eforth 
onsider ΓP as alatti
e in the above produ
t.The proje
tion of ΓP to H(k) is faithful sin
e we have already re
orded that Γ proje
tsinje
tively to G1. Therefore, we 
an apply a �rst time Theorem 3.1 to ΓP and dedu
e inparti
ular for ea
h i ≥ 2 that Gi is an admissible semi-simple algebrai
 group upon repla
ingit by a 
losed subgroup of �nite 
ovolume 
ontaining the image of ΓP . In fa
t, these groupsare simple in view of the irredu
ibility of Xi (e.g. by the splitting theorem). We write
Gi = Gi(ki) for i ≥ 2 and also note that ΓP is irredu
ible (e.g. by Proposition 2.2).We now return to the latti
e Γ < G with the intention to apply a se
ond time Theorem 3.1,but reversing the r�les of G1 and G2×· · ·×Gn. We point out that the simple groups Gi areall admissible sin
e both the absolute type and 
hara
teristi
 are 
onstant over all fa
torsin view of the fa
t that the S-arithmeti
 group ΓP is irredu
ible. However, we have noguarantee that the te
hni
al assumption made on H holds for Gi. It 
an indeed fail andlikewise the �nite generation used in the proof of Theorem 3.1 for ΓU is also known to fail.We shall now 
ir
umvent this di�
ulty.The group ΓP is �nitely generated by the above appli
ation of Theorem 3.1. We 
on-sider a non-de
reasing sequen
e of �nitely generated groups Γj starting with Γ0 = ΓP andexhausting Γ. We denote by Lj and Rj the 
losure of the proje
tion of Γj to

G1 × · · · × Gn−1 and Gnrespe
tively. Lemma 2.5 shows that Γj is a latti
e in Lj ×Rj. It is topologi
ally irredu
iblein the former produ
t sin
e already the proje
tions of Γ0 are non-dis
rete (e.g. by Proposi-tion 2.3). Theorem 5.1 in [CM09b℄ implies that Lj is a 
ompa
t extension of a semi-simplegroup Sj. We write Q = P × G2 × · · · × Gn−1, wherein Q = P is understood if n = 2. Thegroup Q∩Lj is open in Lj and non-
ompa
t sin
e it 
ontains L0 whi
h is of �nite 
ovolumein the non-
ompa
t group Q. Therefore the image of Q ∩ Lj in Sj 
ontains S+
j by [Pra82,thm. (T)℄ (or by an appli
ation of Howe�Moore). Sin
e S+

j is 
o
ompa
t in Sj (see [BT73,6.14℄) we 
on
lude that Q ∩ Lj is 
o
ompa
t in Lj and hen
e has �nite index. This shows



14 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODthat L0 has �nite index in Lj . Therefore, S0 has �nite index in Sj for all j; it follows, sin
e
S+

0 is simple [Tit64℄, that Sj normalises S+
0 . We denote by L+

0 the preimage of S+
0 in L0and set Γ+

0 = Γ ∩ (L+
0 × Gn). Then Γ+

0 has �nite index in Γ0 sin
e the latter is �nitelygenerated and sin
e S0/S
+
0 is a virtually Abelian torsion group [BT73, 6.14℄. Moreover, Γjnormalises Γ+

0 for all j in view of 
orresponding statement for S+
0 < Sj above.At this point we have a natural map Γ → Aut(S+

0 ) whose image normalises Γ+
0 . In
ombination with the inje
tive map Γ → Gn, we have a realisation of Γ in the normaliser of

Γ+
0 in the algebrai
 group Aut(S+

0 ) × Gn(kn). Sin
e Γ+
0 is a latti
e in the latter, it followsfrom Borel's density theorem that Γ+

0 has �nite index in its normaliser, see [Mar91, II.6.3℄.In 
on
lusion, Γ+
0 has �nite index in Γ and thus both sequen
es Γj and Lj are eventually
onstant, 
ompleting the proof. �4. Ka
�Moody groups4.A. A lemma on Coxeter�Dynkin diagrams. A theorem of G. Moussong 
hara
terisesthe Gromov hyperboli
 Coxeter groups in terms of their Coxeter diagram. In fa
t, Mous-song's result says that a �nitely generated Coxeter group is Gromov hyperboli
 if and onlyif it does not 
ontain any subgroup isomorphi
 to Z× Z. The latter property 
an easily bedete
ted on the Coxeter diagram of G, sin
e any subgroup isomorphi
 to Z×Z is 
onjugateinto a spe
ial paraboli
 subgroup of W whi
h is either of a�ne type or whi
h de
omposesas the dire
t produ
t of two in�nite spe
ial subgroups. It turns out that for some spe
i�
families of Coxeter groups, the presen
e of a Z×Z-subgroup always guarantees the presen
eof an a�ne paraboli
.Lemma 4.1. Let (W,S) be a 
rystallographi
 Coxeter system of simply la
ed or 3-spheri
altype, with S �nite. Then W is Gromov hyperboli
 if and only if W 
ontains no paraboli
subgroup of a�ne type.Re
all that a Coxeter group W is 
alled 
rystallographi
 if its natural geometri
 repre-sentation in Rn preserves a latti
e (see [Bou68℄). This property is known to be equivalentto ea
h of the following 
onditions:

• The Coxeter numbers whi
h appear in a Coxeter presentation of W belong to
{2, 3, 4, 6,∞}.

• W is the Weyl group of some Ka
�Moody Lie algebra.In parti
ular, if W is the Weyl group of a Ka
�Moody group over any �eld, then W is
rystallographi
.Proof of Lemma 4.1. We may assume that W is irredu
ible. If W possesses a paraboli
subgroup of a�ne type, then it 
ontains a Z × Z-subgroup and 
annot be hyperboli
.Assume now that W is not hyperboli
. In view of Moussong's theorem, all we need to showis that if W 
ontains two in�nite spe
ial subgroups WI ,WJ whi
h mutually 
ommute, thenit also 
ontains a paraboli
 subgroup of a�ne type. Without loss of generality we mayassume that WI and WJ are minimal in�nite spe
ial subgroups, namely that every properspe
ial subgroup of WI or WJ is �nite. The list of minimal in�nite Coxeter groups is knownand may be found in Exer
ises 13�17 for � 4 in Chapter V from [Bou68℄. It turns out thatevery su
h a Coxeter group is either a�ne or is de�ned by a diagram belonging to a shortlist, the members of whi
h have size ≤ 5. A short glimpse at this list shows that noneof them is simply la
ed. Furthermore, only three of them are 3-spheri
al 
rystallographi
,namely those depi
ted in Figure 1.
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(a) (b) (
)Figure 1. Minimal non-spheri
al 3-spheri
al Dynkin diagramsWe now 
onsider a path of minimal possible length joining I to J in the Coxeter diagramof W and 
onsider the Coxeter diagram indu
ed on the union of the vertex set P of thispath together with I ∪ J .If any vertex in P − (I ∪ J) is linked by an edge to a vertex of I or J belonging to anedge labelled 4, then the Coxeter diagram 
ontains a subdiagram of type B̃2 or C̃2 and weare done. Similarly, if some vertex of P − (I ∪ J) is linked to a vertex of I or J by an edgelabelled 4, then we are done as well. Thus we may assume that all labels of edges linking avertex in P − (I ∪ J) to a vertex in I ∪ J are 3, and that all su
h edges are not adja
ent toan edge labelled 4 in I or J .Now it follows that if more than one vertex of I or J is linked by an edge to vertex in

P −(I∪J), then the diagram 
ontains a subdiagram of type Ãn and we are done. It remainsto 
onsider the 
ase where ea
h vertex of P − (I ∪ J) is linked to at most one vertex in Iand J . In that 
ase, it is readily seen that the diagram 
ontains a subdiagram of type C̃n.This �nishes the proof. �Another useful and well-known fa
t is the following.Lemma 4.2. Let (W,S) be an irredu
ible non-spheri
al non-a�ne Coxeter system su
h thatfor ea
h proper subset J ⊂ S, the spe
ial subgroup WJ is either spheri
al or a�ne. Then
|S| ≤ 10.Proof. See Exer
ises 13�17 for � 4 in Chapter V from [Bou68℄. �4.B. Complete Ka
�Moody groups and their buildings. Let G be a 
omplete adjointKa
�Moody group over a �nite �eld Fq. Su
h a group may be obtained as follows. Startwith a Ka
�Moody�Tits fun
tor G asso
iated to a Ka
�Moody root datum of adjoint type,as de�ned in [Tit87℄ (see also [Rém02℄ for non-split versions). Thus G is a group fun
tor onthe 
ategory of 
ommutative rings. Its value on any �eld k is a group G(k) whi
h admits twonatural uniform stru
tures. Completing G(k) with respe
t to any of these yields a totallydis
onne
ted topologi
al group G(k) whi
h 
ontains G(k) as a dense subgroup, see [CR09,� 1.2℄. When k = Fq is a �nite �eld of order q, then G(k) is lo
ally 
ompa
t.We remark that the fun
tor G may be obtained by a di�erent 
onstru
tion, due to OlivierMathieu [Mat89℄, whi
h yields not only a group fun
tor but an ind-group s
heme.We assume hen
eforth that k = Fq and set G = G(Fq). The group G possesses a
BN -pair with B 
ompa
t open in G. This BN -pair yields a lo
ally �nite building X ofthi
kness q + 1 on whi
h G a
ts faithfully, 
ontinuously and properly by automorphisms.Furthermore X possesses a natural realisation as a CAT(0) spa
e whose isometry group
ontains Aut(X) as a 
losed subgroup [Dav98℄. By a slight abuse of notation, we shall not



16 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODdistinguish between X and its CAT(0) realisation. Thus we view G as a 
losed subgroupof Is(X). The G-a
tion on X is transitive on the 
hambers and the 
hambers are 
ompa
t.In parti
ular G stabilises a minimal 
losed 
onvex invariant nonempty subspa
e whi
h wemay view as a CAT(0) realisation of X on whi
h G a
ts minimally. There is thus no loss ofgenerality in assuming that G a
ts minimally on X.The fa
t G has no �xed point at in�nity may be established in several di�erent ways. The
on
eptually easiest one is the following. It is shown in [CR09, Lemma 9℄ that the derivedgroup [G,G] is dense in G. It follows that if G �xed a point ξ in the boundary at in�nity ∂X,then G would stabilise ea
h horoball 
entered at that point, 
ontradi
ting the minimalityof the a
tion. Another way to obtain this statement is by using the fa
t that a Coxetergroup has no �xed point at in�nity in its natural a
tion on the asso
iated CAT(0) 
ell
omplex as one sees by 
onsidering the numerous re�e
tions (or else by applying [CM09b,Theorem 3.14℄). Sin
e for any apartment A ⊂ X the StabG(A)-a
tion on A is isomorphi
 tothe natural a
tion of the Weyl group on its 
ell 
omplex, and sin
e apartments are 
onvex,it follows again that G has no �xed point at in�nity.Finally, sin
e X has a 
o
ompa
t isometry group it has �nite-dimensional Tits boundaryby [Kle99, Theorem C℄. This dis
ussion shows in parti
ular that the group G1 appearingin the statement of Theorem 1.1 satis�es the set-up des
ribed in � 2.A by 
onsidering itsnatural a
tion on the asso
iated building.Furthermore, it turns out that G is topologi
ally simple [CR09, Proposition 11℄. Inaddition, if the ground �eld Fq has order q ≥ 1764d/25, where d denotes the dimensionof the building X, and if W is 2-spheri
al, then G has Kazhdan's property (T) [DJ02,Corollary G℄. Noti
e that the dimension of X is bounded above by the maximal rank of a�nite Coxeter subgroup of W , see [Dav98℄.Lemma 4.3. Let G be an irredu
ible 
omplete Ka
�Moody group of adjoint type over a�nite �eld Fq. Assume that the Weyl group W of G is in�nite and simply la
ed or 3-spheri
al but not Gromov hyperboli
. Then G 
ontains an open subgroup P whi
h is a
ompa
t extension of a simple algebrai
 group over a lo
al �eld of 
hara
teristi
 p = charFqand rank ≥ 2. Furthermore, if W is simply la
ed or if charFq 6= 2, then the latter simplegroup is admissible.Proof. By Lemma 4.1, the group Weyl group W possesses a spe
ial paraboli
 subgroupof (irredu
ible) a�ne type WJ . Let PJ < G be a paraboli
 subgroup of type WJ . Thus
PJ = B ·WJ ·B, where B denotes the Borel subgroup of G, namely the B-subgroup of the
BN -pair. In parti
ular PJ 
ontains the 
ompa
t open subgroup B and is thus open. Thesubgroup

KJ =
⋂

g∈PJ

gBg−1is a 
ompa
t normal subgroup of PJ . The quotient PJ/KJ is a 
omplete Ka
�Moody groupof type WJ over Fq (see [CR09, Proposition 11℄ and [CER08, � 5℄). It follows from [Tit85,Appendix℄ (or else from the uniqueness theorem in [Tit87℄) that PJ/KJ is a simple alge-brai
 group whose Weyl group is the spheri
al Weyl group of WJ . This yields the desired
on
lusions. �Remark 4.4. As pointed out by G. Margulis [Mar91, IX.1.6(viii)℄, it follows from thearithmeti
ity theorem, 
ombined with [Har75, Korollar 1 p. 133℄, that if WJ is not of type
Ãn, then PJ does not admit any uniform latti
e. (For type Ãn, su
h latti
es indeed exist,see [BH78℄ and [CS98℄.) If follows in parti
ular that if WJ is not of type Ãn, then no produ
t
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onne
ted lo
ally 
ompa
t group, possesses anyuniform latti
e.Noti
e furthermore that the 
ondition that every spe
ial subgroup of W of a�ne type beof type Ãn is a very strong one. For example, if W is 3-spheri
al, then only �nitely manyCoxeter diagrams are possible for W . This shows that in general one should not expe
t G(or G × H) to possess any uniform latti
e.5. Completion of the proofs5.A. Redu
tion of the hypotheses. For the purposes of this last se
tion, let us de�nea 
omplete Ka
�Moody group G = G(Fq) over a �nite �eld Fq with Weyl group W to beadmissible if any of the following two 
onditions holds:� W is simply la
ed.� char(Fq) 6= 2 and W is 3-spheri
al but not Gromov hyperboli
.Noti
e that the Weyl group W of G is Gromov hyperboli
 if and only if G(F ) is Gromovhyperboli
 for ea
h �nite �eld F . Indeed G(F ) a
ts properly and 
o
ompa
tly on a buildingof type W , and it is known that a building is Gromov hyperboli
 if and only if its Weylgroup is so (see e.g. [Dav98℄).Although we have already used the term admissible in a di�erent 
ontext in � 3.A, theabove de�nition will 
ause no 
onfusion. Indeed, given a Ka
�Moody group G of a�ne typeover Fq (equivalently G(Fq) is isomorphi
 to a semi-simple algebrai
 group H over a �eld
k of formal power series with 
oe�
ients in Fq), if G(Fq) is admissible in the above sensethen H(k) is admissible in the sense of � 3.A.We now pro
eed to relate the broad assumptions of the Introdu
tion to the setting 
on-sidered in � 2.A.Let n ≥ 2; for ea
h i ∈ {1, . . . , n}, let Xi be a proper CAT(0) spa
e and Gi < Is(Xi)be a 
losed subgroup a
ting 
o
ompa
tly. We re
all that 
o
ompa
tness implies that Gi is
ompa
tly generated (see e.g. Lemma 22 in [MMS04℄). Assume that G1 is an admissibleirredu
ible Ka
�Moody group as dis
ussed above. Set G = G1 × · · · × Gn and X = X1 ×
· · · ×Xn. Finally, let Γ < G be a latti
e whose proje
tion to ea
h Gi is faithful. We assume
G1 in�nite; this hypothesis was not made in Theorem 1.1 but the latter is otherwise trivialsin
e Γ would be �nite.Proposition 5.1. The spa
e X has trivial Eu
lidean fa
tor and G has no �xed point atin�nity.Moreover, for ea
h i ∈ {1, . . . , n}, there is a 
losed normal subgroup of �nite index G∗

i �Gi,a proper CAT(0) spa
e Yi = Yi,1 × · · · × Yi,ki
, where ea
h Yi,j is irredu
ible 6= R with �nite-dimensional boundary and a 
ontinuous proper map G∗

i → Is(Yi,1) × · · · × Is(Yi,ki
) whi
hyields a 
o
ompa
t minimal G∗

i -a
tion on Yi without �xed point at in�nity. Finally, for all
i, j the image of G∗

i in Is(Yi,j) is either totally dis
onne
ted or a 
onne
ted simple Lie group.Proof. Sin
e the Gi-a
tion on Xi is 
o
ompa
t, there is a non-empty 
losed 
onvex Gi-invariant subset Yi ⊆ Xi on whi
h the indu
ed Gi-a
tion is minimal. This a
tion is properand remains 
o
ompa
t, whi
h implies that the boundary ∂Yi is �nite-dimensional (Theo-rem C in [Kle99℄). Corollary 5.3(ii) in [CM09a℄ now states that Yi possesses a de
omposition
Yi = Rdi × Yi,1 × · · · × Yi,ki

, where Yi,j is an irredu
ible proper CAT(0) spa
e, su
h that
Is(Yi) = Is(Rdi) ×

(

(

ki
∏

j=1

Is(Yi,j)
)

⋊ F

)

,



18 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONODwhere F is a �nite permutation group of possibly isometri
 fa
tors. Thus Gi possessesa 
losed normal subgroup of �nite index G∗
i =

∏ki

j=1 Gi,j whose indu
ed a
tion on Yi is
omponentwise.We now pro
eed to prove that Y := Y1 × · · · × Yn has no Eu
lidean fa
tor, i.e. di = 0for all i. Our assumption on G1 implies d1 = 0 (see [CH09℄). Considering the 
anoni
alEu
lidean de
omposition of Y (see [BH99, II.6.15℄), we write Y ∼= Y ′ × Rd, where Y ′ hasno Eu
lidean fa
tor and d = d1 + · · · + dn. We 
laim that all G∗-�xed points at in�nity liein ∂Rd, where G∗ =
∏

G∗
i . To this end, we observe that Γ provides us with a latti
e in G∗upon passing to a �nite index subgroup; we still denote it by Γ. If Γ is �nitely generated,the 
laim follows from Proposition 3.15 in [CM09b℄; in general, it is a 
onsequen
e of theunimodularity of G∗, a fa
t we establish in [CM℄.We 
an now apply Theorem 1.6 from [CM09a℄ and dedu
e that ea
h Gi,j is either totallydis
onne
ted or a 
onne
ted simple Lie group (modulo the 
ompa
t kernel of its a
tion on

Yi,j). Proposition 3.6 in [CM09b℄ states that when Γ is �nitely generated, it virtually splitso� an Abelian dire
t fa
tor of Q-rank d. The �nite generation, however, is only used toprovide a 
omplementary fa
tor to this Abelian subgroup; the existen
e of a normal Abeliansubgroup A � Γ of Q-rank d is established in general in lo
. 
it. We �nally dedu
e that
d = 0 from the fa
t that Γ proje
ts inje
tively to the Ka
�Moody group G1 using [CH09℄.At this point we have established that Y has trivial eu
lidean fa
tor and that G∗ hasno �xed points at in�nity. In parti
ular G has no �xed points in ∂X = ∂Y and X has noEu
lidean fa
tor either sin
e Y has �nite 
odiameter in X. �5.B. End of the proofs.Proof of Theorem 1.4. Retain the notation of the theorem. Then Lemma 4.3 ensures that
G1 possesses an open subgroup P whi
h is a 
ompa
t extension of an admissible simplealgebrai
 group of rank ≥ 2 over a lo
al �eld. We 
an assume Γ residually �nite. Thestatement of Theorem 1.4 is not a�e
ted by the redu
tions of Proposition 5.1; therefore,Theorem 3.6 yields the desired 
on
lusion. �Proof of Theorem 1.1. We adopt the notation of the theorem. Countrary to Theorem 1.4,the irredu
ibility assumption is in the present 
ase sensitive to repla
ing Gi with the subfa
-tors Gi,j of Proposition 5.1. However, sin
e G1 is irredu
ible, Proposition 2.2 implies that
Γ is at least algebrai
ally irredu
ible.As above, Lemma 4.3 provides an open subgroup P < G1 whi
h is a 
ompa
t extensionof an admissible simple algebrai
 group H(k) of rank ≥ 2 over a lo
al �eld k; we emphasisethat k has positive 
hara
teristi
.The 
anoni
al image of ΓP = Γ∩ (P ×G2 ×· · ·×Gn) in H(k)×G2 ×· · ·×Gn is a latti
eand it proje
ts inje
tively to H(k) in view of the 
orresponding assumption on Γ. ThusProposition 3.5 implies that all Gi are totally dis
onne
ted. In parti
ular Gn possesses a
ompa
t open subgroup U (see [Bou71, III.4 No 6℄). Set

ΓU = Γ ∩ (G1 × · · · × Gn−1 × U).By assumption, the proje
tion of ΓU to U is faithful. In parti
ular ΓU is residually �nitesin
e U is so, being a pro�nite group. Applying the faithfulness assumption to any otherfa
tor Gi, we further dedu
e that ΓU interse
ts the 
ompa
t group 1× · · · × 1×U trivially;therefore, we 
an view ΓU as a latti
e in the produ
t
G1 ×

k2
∏

j=1

G2,j × · · · ×

kn−1
∏

j=1

Gn−1,j .



LATTICES IN PRODUCTS OF KAC�MOODY GROUPS 19By Proposition 2.6, the group ΓU is algebrai
ally irredu
ible. Thus we 
an apply The-orem 3.6 and dedu
e that G1 and ea
h fa
tor Gi,j 
ontains a 
losed subgroup of �nite
ovolume whi
h is a simple algebrai
 group over a lo
al �eld.We now return to the initial latti
e Γ in G, whi
h is algebrai
ally irredu
ible by Propo-sition 2.2, and 
on
lude the proof as in the end of the proof of Theorem 3.6. �Proof of Corollary 1.5. Sin
e Γ is irredu
ible and ea
h Gi is topologi
ally simple (as re
alledin Se
tion 4.B), it follows that the proje
tion of Γ to ea
h Gi is faithful. In view of Theo-rem 1.1, we may assume that n = 2 and that Γ is not residually �nite. All we need to showis that Γ is virtually simple.Sin
e G1 and G2 are topologi
ally simple and Γ is irredu
ible, it follows from [BS06,Theorem 1.1℄ that if Γ is uniform, then every non-trivial normal subgroup of Γ has �niteindex. If Γ is not uniform, then it has property (T) in view of our assumptions and, hen
e,the same 
on
lusion on normal subgroups holds in view of [BS06, Theorem 1.3℄.Therefore Proposition 1 from [Wil71℄ ensures that Γ is virtually isomorphi
 to a dire
tprodu
t of �nitely many isomorphi
 simple groups. Sin
e Γ is irredu
ible as an abstra
tgroup by Proposition 2.2, we dedu
e that the latter dire
t produ
t has a single simple fa
tor.Thus Γ is virtually simple. �Remark 5.2. As pointed out by the anonymous referee, the above arguments show alsothe following. Let Γ be a �nitely generated group without non-trivial in�nite index normalsubgroup. Suppose that Γ a
ts by isometries faithfully, minimally and without �xed pointat in�nity on an irredu
ible proper CAT(0) spa
e X. Then Γ is either residually �nite orvirtually simple.Indeed, in view of the above quoted result of Wilson, it su�
es to show that Γ does nothave a �nite index subgroup Γ∗ ∼= Γ1 × Γ2 splitting as a produ
t of two in�nite groups Γi.Sin
e X is irredu
ible, we 
an assume that it has no Eu
lidean fa
tor for otherwise X = Rin whi
h 
ase the statement is obvious. Therefore our �Borel density� in the generality ofProposition 2.1 (presently invoked with n = 1) implies that Γ∗ still a
ts minimally andwithout �xed point at in�nity. By the splitting theorem of [Mon06℄, this for
es at least oneof the Γi to a
t trivially, a 
ontradi
tion.New examples of groups to whi
h the above applies are provided in unpublished work ofShalom�Steger.Proof of Corollary 1.6. In view of Corollary 1.5, the assumption that the Gi's are of non-a�ne type implies that n = 2 in the above, and that any irredu
ible latti
e Γ of G isvirtually simple. The �nite residual Γ(∞) of Γ is thus a normal subgroup of �nite index, andany subgroup of G 
ommensurating Γ normalizes Γ(∞). Thus CommG(Γ) = NG(Γ(∞)).Under the present hypotheses, the group G, and hen
e also Γ has Kazhdan's property(T). Thus Γ is �nitely generated and, hen
e so is the latti
e Γ(∞). In view of [CM09b,Corollary 2.7℄, it follows that NG(Γ(∞)) is itself a latti
e in G, whi
h is thus the desiredmaximal latti
e. �5.C. A latti
e in a produ
t of a simple algebrai
 group and a Ka
�Moody group.Let G be an irredu
ible 
omplete Ka
�Moody group of simply la
ed type over a �nite �eld
Fq. It is shown in [Rém99℄ (see also [CG99℄ and [CR09℄) that the group G × G 
ontainsan irredu
ible non-uniform latti
e Γ, provided that q is larger than the rank r of the Weylgroup of G. Assume now that G is not of a�ne type. By Lemma 4.3 G 
ontains an opensubgroup P < G whi
h possesses a 
ompa
t normal subgroup K su
h that P/K is a simplealgebrai
 group over a lo
al �eld. As in the proof of Theorem 3.6, we may 
onsider the
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ΓP = Γ ∩ (P × G)and view it as a latti
e in P/K × G. Furthermore ΓP is irredu
ible (see Proposition 2.6)and one shows, as in the proof of Theorem 3.6, that ΓP is �nitely generated provided theground �eld is large enough.Sin
e P/K a
ts 
o
ompa
tly on the asso
iated Bruhat�Tits building, we see in parti
ularthat ΓP is an example of a CAT(0) latti
e (in the sense of [CM08, CM09b℄) in a produ
t ofan a�ne and a non-a�ne building.Proposition 2.4 together with Theorem 3.6 imply that ΓP is not residually �nite. Inparti
ular its proje
tion to the linear group P/K is not faithful sin
e a �nitely generatedlinear group is residually �nite by [Mal40℄. This example shows that the assumption on thefaithfulness of the proje
tions in Theorem 1.1 may not be removed.Referen
es[BEW08℄ Yifta
h Barnea, Mikhail Ershov, and Thomas Weigel, Abstra
t 
ommensurators of pro�nitegroups, Preprint, 2008; to appear in Trans. Amer. Math. So
.[BH78℄ Armand Borel and Günter Harder, Existen
e of dis
rete 
o
ompa
t subgroups of redu
tive groupsover lo
al �elds, J. Reine Angew. Math. 298 (1978), 53�64.[BH99℄ Martin R. Bridson and André Hae�iger, Metri
 spa
es of non-positive 
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