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Abstract. We provide the first examples of finitely generated simple groups that are
amenable (and infinite). To this end, we prove that topological full groups of minimal
systems are amenable. This follows from a general existence result on invariant states for
piecewise-translations of the integers. The states are obtained by constructing a suitable
family of densities on the classical Bernoulli space.

1. Introduction

A Cantor system (T,C) is a homeomorphism T of the Cantor space C; it is called minimal
if T admits no proper invariant closed subset. The topological full group [[T ]] of a Cantor
system is the group of all homeomorphisms of C which are given piecewise by powers of T ,
each piece being open in C. This countable group is a complete invariant of flip-conjugacy
for (T,C) by a result of Giordano–Putnam–Skau [GPS99, Cor. 4.4].

It turns out that this construction yields very interesting groups [[T ]]. Indeed, Matui
proved that the commutator subgroup of [[T ]] is simple for any minimal Cantor system, see
Theorem 4.9 in [Mat06] and the remark preceding it (or [BM08, Thm. 3.4]). Moreover, he
showed that this simple (infinite) group is finitely generated if and only if (T,C) is (conjugated
to) a minimal subshift. This yielded a new uncountable family of non-isomorphic finitely
generated simple groups since subshifts can be distinguished by their entropy; see [Mat06,
p. 246] or Theorem 5.13 in [BM08].

Until now, no example of finitely generated simple group that is amenable (and infinite)
was known. Grigorchuk–Medynets [GM] have proved that the topological full group [[T ]] of
a minimal Cantor system (T,C) is locally approximable by finite groups in the Chabauty
topology. They conjectured that [[T ]] is amenable; our first result confirms this conjecture.

Theorem A. The topological full group of any minimal Cantor system is amenable.

Surprisingly, this statement fails as soon as one allows two commuting homeomorphisms.
Indeed, it is shown in [EM] that the topological full group of a minimal Cantor Z2-system
can contain non-abelian free subgroups.

Combining Theorem A with the above-mentioned results from [GPS99, Mat06] we deduce:

Corollary B. There exist finitely generated simple groups that are infinite amenable. In fact,
there are 2ℵ0 non-isomorphic such groups. �

The next problem would be to find finitely presented examples (the groups considered
above are never finitely presented [Mat06, Thm. 5.7]).
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In order to prove Theorem A, we reformulate the problem in terms of the group W (Z) of
piecewise-translations of the integers. More precisely, we denote by W (Z) the group of all
those permutations g of Z for which the quantity

|g|w := sup
{
|g(j)− j| : j ∈ Z

}
is finite. The topological full group of any minimal Cantor system (T,C) can be embedded
into W (Z) by identifying a T -orbit with Z. However, W (Z) also contains many other groups,
including non-abelian free groups, see [vD90].

We shall introduce a model for random finite subsets of Z which has the following two
properties: (i) the model is almost-invariant under shifts by piecewise-translations; (ii) a
random finite set contains 0 with overwhelming probability. More precisely, Theorem A is
proved using a general result about W (Z) which has the following equivalent reformulation.

Theorem C. The W (Z)-action on the collection of finite sets of integers admits an invariant
mean which gives full weight to the collection of sets containing 0.

Notice that for any given finite set E ⊆ Z, a mean as in Theorem C will give full weight to
the collection of sets containing E. In a subsequent paper [JS], Theorem C will be extended
to a wider setting.

Acknowledgements. Part of this work was done when the authors enjoyed the hospitality
of the Mittag-Leffler institute. We are indebted to G. Elek for inspiring conversations. We
thank Y. de Cornulier and J. Peterson for useful comments on an earlier draft. The possibility
that topological full groups of minimal Cantor systems could be amenable was conjectured
by R. Grigorchuk and K. Medynets. We are grateful to the anonymous referees for their very
detailed reading of the paper and their suggestions.

2. Semi-densities on the Bernoulli shift

The technical core of our construction is a family of L2-functions fn on the classical
Bernoulli space {0, 1}Z. The relevance of these functions will be explained in Section 3.

For any n ∈ N, we define

fn : {0, 1}Z −→ (0, 1], fn(x) = exp

(
− n

∑
j∈Z

xje
−|j|/n

)
,

where x = {xj}j∈Z ∈ {0, 1}Z. We consider fn as an element of the Hilbert space L2({0, 1}Z),

where {0, 1}Z is endowed with the symmetric Bernoulli measure. The interest of the family fn
is that it satisfies the following two properties, each of which would be elementary to obtain
separately.

Theorem 2.1. For any g ∈ W (Z) we have 〈g(fn), fn〉/‖fn‖2 → 1 as n → ∞. Moreover,
‖fn|x0=0‖/‖fn‖ → 1.

The notation fn|x0=0 represents the function fn multiplied by the characteristic function of
the cylinder set describing the elementary event x0 = 0.

In preparation for the proof, we write

an,j = exp(−ne−|j|/n) for j ∈ Z.
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We shall often use implicitly the estimates

0 < an,j ≤ 1 and 0 <
a2n,j

1 + a2n,j
≤ a2n,j ≤ an,j .

Since fn is a product of the independent random variables exp
(
− nxje−|j|/n

)
, we have

‖fn‖2 =
∏
j∈Z

(
1

2
+

1

2
a2n,j

)
.

Notice that exp
(
−nxje−|j|/n

)
ranges in (0, 1] and that the above product converges uncondi-

tionally in the sense that the series of log
(
1
2+ 1

2a
2
n,j

)
converges absolutely (by a straightforward

estimate). We can regroup factors and compute the ratio

‖fn|x0=0‖2

‖fn‖2
=

1

1 + a2n,0

which thus converges to 1 as desired for the second statement of Theorem 2.1.

The proof of the first statement will be divided into two propositions. Define the function
Fn : W (Z)→ R by the absolutely convergent series:

Fn(g) =
∑
j∈Z

a2n,j
1 + a2n,j

e−|j|/n
(
|g(j)| − |j|

)
.

We begin with a conditional convergence:

Proposition 2.2. For any g ∈ W (Z) we have 〈g(fn), fn〉/‖fn‖2 → 1 as n → ∞ provided
Fn(g)→ 0.

The condition Fn(g) → 0 is about a signed series for which the series of sums of absolute
values does not converge to zero; it will be addressed by the following statement:

Proposition 2.3. We have limn→∞ Fn(g) = 0 for every g ∈W (Z).

We now undertake the proof of Proposition 2.2. Using again the product form of fn, one
obtains

〈g−1(fn), fn〉
‖fn‖2

=
〈g(fn), fn〉
‖fn‖2

=
∏
j∈Z

1 + an,jan,g(j)

1 + a2n,j
.

Thus 〈g(fn), fn〉/‖fn‖2 → 1 if and only if

(2.i) lim
n→∞

∑
j∈Z

log
1 + an,jan,g(j)

1 + a2n,j
= 0.

Next, we point out the elementary fact that there is an absolute constant C > 0 (namely
C = 4 log 2− 2) such that

(2.ii) z − Cz2 ≤ log(1 + z) ≤ z ∀ z ≥ −1

2
.

We can apply this inequality to each summand of the series in (2.i) by writing

z :=
1 + an,jan,g(j)

1 + a2n,j
− 1 =

a2n,j
1 + a2n,j

(
an,g(j)

an,j
− 1

)



4 K. JUSCHENKO N. MONOD

because 0 < an,j ≤ 1 for all n and j implies that we have

a2n,j
1 + a2n,j

(
an,g(j)

an,j
− 1

)
≥ −

a2n,j
1 + a2n,j

≥ −1

2
.

Therefore, summing up the inequalities given by (2.ii), we conclude that Proposition 2.2 will
follow once we prove the following two facts:

∑
j∈Z

(
a2n,j

1 + a2n,j

)2(
an,g(j)

an,j
− 1

)2

→ 0 ∀ g ∈W (Z),(2.iii)

∑
j∈Z

a2n,j
1 + a2n,j

(
an,g(j)

an,j
− 1

)
→ 0 ∀ g ∈W (Z) provided Fn(g)→ 0.(2.iv)

Here is our first lemma.

Lemma 2.4. For all n we have∑
j∈Z

an,je
−|j|/n ≤ 3 and

∑
j∈Z

a2n,je
−2|j|/n ≤ 1

n
.

It is based on the following elementary comparison argument.

Lemma 2.5. Let t0 ≥ 0 and let ϕ : R≥0 → R≥0 be a function which is increasing on [0, t0]
and decreasing on [t0,∞). Then∑

j≥0
ϕ(j) ≤ ϕ(t0) +

∫ ∞
0

ϕ(t) dt. �

Proof of Lemma 2.4. For the first series, we consider the function ϕ defined by ϕ(t) =

exp(−ne−t/n)e−t/n. One verifies that it satisfies the condition of Lemma 2.5 for t0 = n log n.
Therefore we can estimate∑

j∈Z
an,je

−|j|/n < 2
∑
j≥0

ϕ(j) ≤ 2e−1/n+ 2

∫ ∞
0

exp(−ne−t/n)e−t/n dt.

The change of variable s = e−t/n shows that the integral is
∫ 1
0 ne

−ns ds = 1 − e−n and

thus in particular the series is bounded by 2(e−1 + 1) < 3. For the second series, consider

ϕ(t) = exp(−2ne−t/n)e−2t/n, again with t0 = n log n. Lemma 2.5 yields∑
j∈Z

a2n,je
−2|j|/n < 2

∑
j≥0

ϕ(j) ≤ 2(ne)−2 + 2

∫ ∞
0

exp(−2ne−t/n)e−2t/n dt.

The change of variable s = e−t/n shows that the integral is∫ 1

0
ne−2nss ds =

1− (1 + 2n)e−2n

4n
<

1

4n

and thus in particular the series is bounded by 2(ne)−2 + 1/(2n) < 1/n. �
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Lemma 2.6. For any g ∈ W (Z) there are constants Cg, C
′
g and C ′′g which depend only on

|g|w such that for all n and j we have:

(2.v)
an,g(j)

an,j
= exp

(
e−
|j|
n (|g(j)| − |j|+ η(g, j, n))

)
, where |η(g, j, n)| ≤ Cg/n.

(2.vi)
an,g(j)

an,j
− 1 = e−

|j|
n (|g(j)| − |j|) + η(g, n, j)e−

|j|
n + ϑ(g, n, j),

where |ϑ(g, n, j)| ≤ C ′ge−2
|j|
n .

(2.vii)

∣∣∣∣an,g(j)an,j
− 1

∣∣∣∣ ≤ C ′′g e− |j|n .
Proof. Note that the conclusion (2.vii) is an easy consequence of (2.v) and (2.vi). From the
definition of an,j we have

an,g(j)

an,j
= exp

(
e−
|j|
n n
(

1− e
|j|−|g(j)|

n

))
.

Then using the Taylor series we have

n
(

1− e
|j|−|g(j)|

n

)
= |g(j)| − |j|+ η(g, j, n),

wherein

η(g, j, n) := −
∑
k≥2

(|j| − |g(j)|)k

k!nk−1
.

Now

|η(g, j, n)| ≤ 1

n

∑
k≥2

|g|kw
k!
≤ e|g|w

n

which proves (2.v). Continuing to expand (2.v), we have

an,g(j)

an,j
− 1 = exp

(
e−
|j|
n (|g(j)| − |j|+ η(g, j, n))

)
− 1

= e−
|j|
n (|g(j)| − |j|) + e−

|j|
n η(g, j, n) + ϑ(g, j, n)

wherein

ϑ(g, j, n) :=
∑
k≥2

1

k!
e−

k|j|
n
(
|g(j)| − |j|+ η(g, j, n)

)k
.

Thus we have

|ϑ(g, j, n)| ≤ e−
2|j|
n

∑
k≥2

1

k!

∣∣∣|g(j)| − |j|+ η(g, j, n)
∣∣∣k ≤ e− 2|j|

n exp
(
|g|w +

Cg
n

)
≤ e−

2|j|
n C ′g,

as required for (2.vi). �

End of the proof of Proposition 2.2. Recall that we have reduced the proof to showing (2.iii)
and (2.iv). By Lemma 2.6(2.vii) and Lemma 2.4 we have∑

j∈Z

(
a2n,j

1 + a2n,j

)2(
an,g(j)

an,j
− 1

)2

≤ C ′′2g
∑
j∈Z

a4n,je
−2 |j|

n ≤ C ′′2g
∑
j∈Z

a2n,je
−2 |j|

n ≤ C ′′2g /n,
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which implies the convergence (2.iii). For (2.iv), keep the notations of Lemma 2.6. By
point (2.vi) of that lemma, we have∑

j∈Z

a2n,j
1 + a2n,j

(
an,g(j)

an,j
− 1

)
=
∑
j∈Z

a2n,j
1 + a2n,j

e−
|j|
n

(
|g(j)| − |j|

)
+
∑
j∈Z

a2n,j
1 + a2n,j

e−
|j|
n η(g, j, n)

+
∑
j∈Z

a2n,j
1 + a2n,j

ϑ(g, j, n)

and we recall that the first of the three terms is Fn(g), which is assumed to go to zero. For
the second term, since |η(g, j, n)| ≤ Cg/n, Lemma 2.4 gives∣∣∣∣∣∣

∑
j∈Z

a2n,j
1 + a2n,j

e−
|j|
n η(g, j, n)

∣∣∣∣∣∣ ≤ Cg
n

∑
j∈Z

an,je
− |j|

n ≤ 3Cg
n
.

For the last term, since |ϑ(g, j, n)| ≤ C ′ge−2
|j|
n , Lemma 2.4 implies∣∣∣∣∣∣

∑
j∈Z

a2n,j
1 + a2n,j

ϑ(g, j, n)

∣∣∣∣∣∣ ≤ C ′g
∑
j∈Z

a2n,je
−2 |j|

n ≤
C ′g
n
.

This completes the proof of (2.iv) and therefore of the proposition. �

In order to apply Proposition 2.2, we need to control Fn as stated in Proposition 2.3. Let
thus g ∈W (Z) be given; writing b0 = |g(0)| and

bj =
(
|g(j)| − |j|

)
+
(
|g(−j)| − | − j|

)
for j > 0,

we have

Fn(g) =
∞∑
j=0

a2n,j
1 + a2n,j

e−j/nbj

since an,j = an,−j . Define functions B and ψ on R≥0 by

B(t) =
∑

0≤j≤t
bj , ψ(t) =

exp(−2ne−t/n)

1 + exp(−2ne−t/n)
e−t/n.

Then the Abel summation formula gives

(2.viii)

N∑
j=0

ψ(j)bj = ψ(N)B(N)−
∫ N

0
B(t) dψ(t). (∀N ∈ N)

Lemma 2.7. We have
∣∣B(u)

∣∣ ≤ 4|g|2w for all u ≥ 0.

Proof. We claim that −2|g|2w ≤ B(u) ≤ 4|g|2w holds for all u > |g|w. For simplicity, write
c := |g|w and Ju := {j : |j| ≤ u}. Thus B(u) =

∑
j∈g(Ju) |j| −

∑
j∈Ju |j|. Since Ju−c ⊆ g(Ju),

we have

(2.ix) B(u) =
∑

j∈g(Ju)

|j| −
∑
j∈Ju

|j| =
∑

j∈g(Ju)\Ju−c

|j| −
∑

j∈Ju\Ju−c

|j|.
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Now note first that since Ju−c ⊆ g(Ju), the number of elements in the set g(Ju)\Ju−c is equal
to the number of elements in Ju \ Ju−c, which is 2c. Also, for any j ∈ g(Ju) \ Ju−c we have
u− c < |j| ≤ u+ c, and for any j ∈ Ju \ Ju−c, u− c < |j| ≤ u. Hence (2.ix) implies

−2c2 = 2c(u− c)− 2cu ≤ B(u) ≤ 2c(u+ c)− 2c(u− c) = 4c2,

as claimed.

It remains to show
∣∣B(u)

∣∣ ≤ 4c2 for u ≤ c, and we can assume c ≥ 1 since otherwise g is
trivial and B = 0. Now ∣∣B(u)

∣∣ ≤ ∑
−u≤j≤u

∣∣g(j)− j
∣∣ ≤ (2c+ 1)c ≤ 3c2,

finishing the proof. �

End of the proof of Proposition 2.3. SinceB(N) is bounded by Lemma 2.7 and since limN→∞ ψ(N)
vanishes, the equality (2.viii) gives Fn(g) = −

∫∞
0 B(t) dψ(t). After computing explicitly the

derivative ψ′, this rewrites as

Fn(g) =
1

n

∫ ∞
0

B(t)ψ(t)dt−
∫ ∞
0

B(t)
2 exp(−2ne−t/n)e−2t/n

(1 + exp(−2ne−t/n))2
dt.

Using Lemma 2.7 and 0 < ψ(t) ≤ exp(−ne−t/n)e−t/n, the first integral is bounded by∣∣∣∣ 1n
∫ ∞
0

B(t)ψ(t)dt

∣∣∣∣ ≤ 1

n
4|g|2w

∫ ∞
0

exp(−ne−t/n)e−t/ndt =
1

n
4|g|2w(1− e−n),

which goes to zero. Similarly, the second integral is bounded by∣∣∣∣∣
∫ ∞
0

B(t)
2 exp(−2ne−t/n)

(1 + exp(−2ne−t/n))2
e−2t/ndt

∣∣∣∣∣ ≤ 8|g|2w
∫ ∞
0

exp(−2ne−t/n)e−2t/ndt <
2|g|2w
n

,

the last inequality having already been observed in the proof of Lemma 2.4. �

Taken together, Proposition 2.3 and Proposition 2.2 finish the proof of Theorem 2.1 since
we already observed ‖fn|x0=0‖/‖fn‖ → 1.

3. Actions on sets of finite subsets

Let G be a group acting on a set X. The collection Pf(X) of finite subsets of X is
an abelian G-group for the operation 4 of symmetric difference. The resulting semidirect
product Pf(X)oG, which can be thought of as the “lamplighter” restricted wreath product
associated to the G-action on X, has itself a natural “affine” action on Pf(X), where the
latter set can be considered as the coset space (Pf(X) oG)/G.

It will be convenient to identify the Pontryagin dual of the (discrete) group Pf(X) with
the generalised Bernoulli G-shift {0, 1}X , the duality pairing being given for E ∈Pf(X) and
ω = {ωx}x∈X ∈ {0, 1}X by the character exp(iπ

∑
x∈E ωx) ∈ {±1} ⊆ C∗. The normalised

Haar measure corresponds to the symmetric Bernoulli measure on {0, 1}X .

Lemma 3.1. Assume that G acts transitively on X and choose x0 ∈ X. The following
assertions are equivalent.

(i) There is a net {fn} of G-almost invariant vectors in L2({0, 1}X) such that the ratio
‖fn|ωx0=0‖/‖fn‖ converges to 1.

(ii) The Pf(X) oG-action on Pf(X) admits an invariant mean.
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(iii) The G-action on Pf(X) admits an invariant mean giving weight 1/2 to the collection
of sets containing x0.

(iv) The G-action on Pf(X) admits an invariant mean giving full weight to the collection
of sets containing x0.

Again, fn|ωx0=0 denotes the function fn multiplied by the characteristic function of the cylin-

der set describing the elementary event ωx0 = 0. The net {fn} can of course be chosen to be
a sequence when G (and hence X) is countable.

Proof of Lemma 3.1. Recall the well-known Reiter criterion: a group action on a set S admits
an invariant mean if and only if the corresponding representation `p(S) almost has invariant
vectors for some or equivalently for all 1 ≤ p < ∞. We shall use the fact (based on Mazur’s
lemma) that almost invariant probability measures on S are obtained as convex combinations
of a net approximating an invariant mean on S in the weak-* topology given by duality with
`∞(S). All this is classical and can be found e.g. in [Pat88].

(i)=⇒(ii). The Fourier transform f̂n provides G-almost invariant vectors in `2(Pf(X)).

Moreover, ‖fn|ωx0=0‖ is the norm of the image of f̂n projected to the subspace of vectors

in `2(Pf(X)) that are invariant under {x0} viewed as group element in Pf(X). Thus f̂n is

{x0}-almost invariant. Since the G-action is transitive, it follows that f̂n is Pf(X)-almost
invariant as n→∞.

(ii)=⇒(iii). Given a mean as in (ii), the condition on x0 follows from the invariance under
the element {x0} of Pf(X).

(iii)=⇒(iv). It suffices to show that for each k ∈ N there are G-almost-invariant probability
measures on Pf(X) such that the collection of sets containing x0 has probability at least
1 − 2−k. By (iii), we have G-almost-invariant probability measures such that the collection
of sets containing x0 has probability 1/2. Indeed, these probability measures arise as convex
combinations of a net approximating an invariant mean in the weak-* topology, and our
restriction about x0 is preserved under convex combinations. If we take the union of k
independently chosen such finite sets, we obtain a distribution as required.

(iv)=⇒(i). The assumption implies that there are G-almost-invariant probability measures
µ on Pf(X) such that the collection of sets containing x0 has probability 1, using the same
convexity argument as in (iii)⇒(iv). We can assume that each µ is supported on a collection
of sets of fixed cardinal n(µ) ∈ N. We define a function fµ on {0, 1}X as follows. Given
E ∈ Pf(X), consider the cylinder set CE ⊆ {0, 1}X consisting of all ω such that ωx = 0 for

all x ∈ E. We set fµ = 2n(µ)
∑

E∈Pf(X) µ({E})1CE
, where 1CE

is the characteristic function of

CE . Then fµ is supported on {ωx0 = 0}, has L1-norm one and satisfies ‖gfµ−fµ‖1 ≤ ‖gµ−µ‖1
for all g ∈ G. Therefore, the function f

1/2
µ is as required by (i) as µ becomes increasingly

invariant since ‖gf1/2µ − f1/2µ ‖ ≤ ‖gfµ − fµ‖1/21 . �

Proof of Theorem C. The sequence {fn} constructed in Section 2 satisfies the criterion (i)
of Lemma 3.1 in view of Theorem 2.1. Therefore, the criterion (iv) provides the desired
conclusion. �

The following is well-known.

Lemma 3.2. Let H be a group acting on a set Y with an invariant mean. If the stabiliser
in H of every y ∈ Y is an amenable group, then H is amenable.
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Proof. The amenability of stabilisers implies that there is an H-map Y → M (H) to the
(convex compact) space M (H) of means on H (by choosing for each H-orbit in Y the orbital
map associated to a mean fixed by the corresponding stabiliser). The push-forward of an
invariant mean on Y is an invariant mean on M (H). Its barycenter is an invariant mean
on H. (An alternative argument giving explicit Følner sets can be found in the proof of
Lemma 4.5 in [GM07].) �

The next proposition will leverage the fact that N4g(N) is finite for all g ∈W (Z).

Proposition 3.3. Let G < W (Z) be a subgroup such that the stabiliser in G of E4N is
amenable whenever E ∈Pf(Z). Then G is amenable.

Proof. As noted in the proof of Theorem C, the W (Z)-action on Z satisfies the equivalent
conditions of Lemma 3.1 thanks to Theorem 2.1. In particular, there is a Pf(Z)oG-invariant
mean on Pf(Z). Thus, in view of Lemma 3.2, it suffices to find an embedding ι : G →
Pf(Z)oG in such a way that the stabiliser in ι(G) of any finite set E is the stabiliser in G of
E4N. The homomorphism defined by ι(g) =

(
N4g(N), g

)
has the required properties. �

4. From Cantor systems to piecewise translations

It is known that the stabiliser of a forward orbit in the topological full group of a minimal
Cantor system is locally finite. This follows from the (much more detailed) description of this
stabilizer given in Section 5 of [Put89], where this group is realized as subquotient of unitaries
of an AF-algebra (in the notation of [Put89], the stabiliser of the forward orbit of a point y
is Γ{y}).

In the following two lemmas, we shall give an elementary proof (without C *-algebras) of
the corresponding fact in the setting of the group W (Z). A forward orbit then corresponds
to N ⊆ Z and the case of finite set differences E4N is a minor extension.

A subgroup G of W (Z) has the ubiquitous pattern property if for every finite set F ⊆ G
and every n ∈ N there exists a constant k = k(n, F ) such that for every j ∈ Z there exists
t ∈ Z such that [t − n, t + n] ⊆ [j − k, j + k] and such that for every i ∈ [−n, n] and every
g ∈ F we have g(i+ t) = g(i) + t.

Informally: the partial action of F on [−n, n] can be found, suitably translated, within any
interval of length 2k + 1.

Lemma 4.1. Let G < W (Z) be a subgroup with the ubiquitous pattern property. Then the
stabiliser of E4N in G is locally finite for every E ∈Pf(Z).

Proof. Let E ∈ Pf(Z) and F be a finite set of elements of the stabiliser of E4N in G. In
order to prove that the set F generates a finite group it is sufficient to show that Z is a disjoint
union of finite sets Bi of uniformly bounded cardinality such that each of this sets is invariant
under the action of F , since this will realize the group generated by F as a subgroup of a
power of a finite group. We will achieve this by taking the Bi to be the ubiquitous translated
copies of the “phase transition” region of E4N, suitably identifying the “top part” of E4N
with the “bottom part” of the complement of the next translated copy.

Let c = max{|e| : e ∈ E} (with c = 0 if E = ∅) and let m = max{|g|w : g ∈ F}. Let
k = k(c + m + 1, F ) be the constant from the definition of the ubiquitous pattern property.
Denote E0 = E4N ∩ [−c−m− 1, c+m+ 1]. Decompose Z as disjoint union of consecutive
intervals Ii (i ∈ Z) of length 2k + 1 such that [−c −m − 1, c + m + 1] ⊆ I0. Then, by the
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ubiquitous pattern property, for each interval Ii there exists a set Ei ⊆ Ii (a translate of E0)
such that the action of F on Ei corresponds to the action of F on E0. Let

Bi =
(
Ei ∪ [max(Ei) + 1,max(Ei+1)]

)
\ Ei+1.

By construction, we have Z =
⊔
Bi. The choice of m ensures that each Bi is F -invariant

because F preserves E4N. Finally, since Bi ⊆ Ii ∪ Ii+1, we have |Bi| ≤ 4k + 2 for all i. �

Let T be a homeomorphism of a Cantor space C and choose a point p ∈ C. If T has no
finite orbits, then we can define a map

πp : [[T ]] −→W (Z)

by the requirement
g(T jp) = T πp(g)(j)p, (g ∈ [[T ]], j ∈ Z).

The map πp is a group homomorphism and is injective if the orbit of p is dense.

Lemma 4.2. If T is minimal, then the image πp([[T ]]) of the injective homomorphism πp has
the ubiquitous pattern property.

Proof. Let F ⊂ [[T ]] be a finite set and let n ∈ N. By definition of [[T ]], there is a finite
clopen partition D of C such that each g ∈ F is a power of T when restricted to any element
of D . Thus there is an open neighborhood V of p such that for all i ∈ [−n, n] the set
T iV is contained in some D ∈ D . By minimality of T , the non-empty open T -invariant set⋃
q≥1

⋃
|r|≤q

T rV is C. By compactness, there is q ∈ N such that C =
⋃
|r|≤q

T rV .

Set k = k(n, F ) = q + n. For all j ∈ Z we have C = T−jC = T−(j+q)V ∪ . . . ∪ T−(j−q)V
and hence there an integer t ∈ [j− q, j+ q] such that p ∈ T−tV . In particular, [t−n, t+n] ⊆
[j − k, j + k] . Now T tp ∈ V and thus both T ip and T i+tp are in T iV for all i. Therefore,
when i ∈ [−n, n], every g ∈ F acts on T ip and on T i+tp as the same power of T . This is
exactly the ubiquitous pattern property under the πp-equivariant identification of the T -orbit
of p with Z. �

Proof of Theorem A. By Lemma 4.2, the (injective image of the) topological full group [[T ]]
has the ubiquitous pattern property. Therefore, Lemma 4.1 shows that the stabiliser of E4N
in G is amenable for every E ∈Pf(Z). Now Proposition 3.3 implies that [[T ]] is amenable. �
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[EM] Gábor Elek and Nicolas Monod, On the topological full group of a minimal Cantor Z2-system,
preprint, to appear in Proc. AMS.

[GM] Rostislav I. Grigorchuk and Konstantin Medynets, Topological full groups are locally embeddable into
finite groups, Preprint, http://arxiv.org/abs/math/1105.0719v3.

[GM07] Yair Glasner and Nicolas Monod, Amenable actions, free products and a fixed point property, Bull.
Lond. Math. Soc. 39 (2007), no. 1, 138–150.

[GPS99] Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Full groups of Cantor minimal systems,
Israel J. Math. 111 (1999), 285–320.

[JS] Kate Juschenko and Mikael de la Salle, Invariant means of the wobbling group, Preprint.
[Mat06] Hiroki Matui, Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math.

17 (2006), no. 2, 231–251.
[Pat88] Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Math-

ematical Society, Providence, RI, 1988.



CANTOR SYSTEMS, PIECEWISE TRANSLATIONS AND SIMPLE AMENABLE GROUPS 11

[Put89] Ian F. Putnam, The C∗-algebras associated with minimal homeomorphisms of the Cantor set, Pacific
J. Math. 136 (1989), no. 2, 329–353.

[vD90] Eric K. van Douwen, Measures invariant under actions of F2, Topology Appl. 34 (1990), no. 1, 53–68.

EPFL, 1015 Lausanne, Switzerland


