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CONTINUOUS BOUNDED COHOMOLOGY AND
APPLICATIONS TO RIGIDITY THEORY

M. Burger and N. Monod

Introduction and Statement of the Results

We present a theory of continuous bounded cohomology of locally compact
groups with coefficients in Banach modules. A central rôle is played by
amenable actions, as they give rise to relatively injective resolutions.

Further, we propose a substitute for the Mautner property, based on the
virtual subgroup viewpoint, and we show (Theorem 6) that all compactly
generated locally compact groups, e.g. finitely generated groups, satisfy it.
This, together with the cohomological characterization of amenable actions,
leads to a refined version of a higher degree Lyndon–Hochschild–Serre exact
sequence (Theorem 13), which entails a stronger Künneth type formula for
continuous bounded cohomology in degree two.

We apply this theory to general irreducible lattices in products of lo-
cally compact groups: we obtain notably super-rigidity results for bounded
cocycles (Theorem 16 and Corollary 23), rigidity results for actions by
diffeomorphisms on the circle (Corollary 22) and vanishing of the stable
commutator length (Corollary 32). More applications will be published
elsewhere.

In the spirit of relative homological algebra, we give for a locally com-
pact second countable group G a functorial characterization of the contin-
uous bounded cohomology of G with coefficients.

The resolutions and the notion of relatively injective objects (Defini-
tion 1.4.2) are set up in the category of continuous Banach G-modules,
while the coefficients are mainly duals of separable continuous Banach G-
modules (henceforth called coefficient modules), including notably separa-
ble continuous unitary representations, L∞ spaces and trivial coefficients.
We emphasize that on all Banach G-modules, the G-action is isometric.
If E is a coefficient module and S a regular measure G-space (see Defi-
nition 1.3.1), let L∞

w∗(S,E) be the space of weak-* measurable essentially
bounded maps; we consider the resolution

0 �� E
d �� L∞

w∗(S,E)
d �� L∞

w∗(S2, E) d �� L∞
w∗(S3, E) d �� · · ·



220 M. BURGER AND N. MONOD GAFA

where d is the standard homogeneous coboundary operator. If S = G, we
call this the standard resolution and define the continuous bounded coho-
mology H•

cb(G,E) to be the cohomology of the associated non-augmented
complex of invariants, endowed with the quotient semi-norm. In the func-
torial approach, we show that this standard resolution is indeed relatively
injective. However, for an actual computation of the bounded cohomol-
ogy, it is desirable to size down the G-space S, while keeping the above
resolution relatively injective. Our first result is a necessary and sufficient
condition on the G-space S for this to happen.
Theorem 1. Let G be a locally compact second countable group and S a
regular G-space. The following assertions are equivalent

(i) The G-action on S is amenable in the sense of Zimmer [Z3].
(ii) The Banach G-module L∞(S) is relatively injective.
(iii) The Banach G-module L∞

w∗(Sn+1, E) is relatively injective for all
n ≥ 0 and every coefficient G-module E.

Recall that examples of amenable G-spaces are Poisson boundaries of
étalées measures on locally compact groups [Z2, Corollary 5.3] and homo-
geneous spaces G/P , where P < G is a closed amenable subgroup [Z3,
Proposition 4.3.2].

With this cohomological characterization at hand, we establish the fol-
lowing result, which is indeed the starting point of our applications; we in-
sist on the fact that the claimed isomorphisms between cohomology groups
are isometries of semi-normed spaces.
Theorem 2. Let G be a locally compact second countable group, S an
amenable regular G-space and E a coefficient G-module. There is a canon-
ical isometric isomorphism between the continuous bounded cohomology
H•
cb(G,E) and the cohomology of the complex

0 −→ L∞
w∗(S,E)

G −→ L∞
w∗(S

2, E)G −→ L∞
w∗(S

3, E)G −→ · · ·
of bounded measurable invariant cochains on S. The same holds for the
subcomplex of alternating bounded measurable invariant cochains.

Example 3. If G is an amenable group, we may take S to be a one
point space and deduce Hn

cb(G,E) = 0 for all n ≥ 1 and every coefficient
module E. This is but a new approach to an old result of B.E. Johnson [Jo].

Example 4. Let G be a connected semi-simple Lie group, Γ < G a lattice
and P < G a minimal parabolic subgroup. Using Theorem 2 we obtain for
real coefficients a canonical isometric identification

H2
b(Γ) ∼= ZL∞

alt((G/P )3)Γ,
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where the right-hand side is the space of Γ-invariant alternating measurable
bounded cocycles on (G/P )3.

In Example 4, the concrete realization of H2
b(Γ) in terms of bounded

cocycles on a flag manifold turns out to be essential for our applications
to rigidity questions (see also [I]). This realization is a consequence of the
ergodicity of the diagonal Γ-action on G/P ×G/P , which is itself a conse-
quence of the Mautner property. Recall that for a connected semi-simple
Lie group without compact factors the Mautner property states that in a
continuous unitary representation of G, any vector invariant under a max-
imal split torus is G-invariant. We now proceed to generalize this Mautner
property to all compactly generated locally compact groups, thereby ob-
taining an extension of Example 4 to a much wider framework. For this,
the following ergodicity property will turn out to be a flexible tool:

Definition 5. Let X be any class of coefficient Banach modules, G a
locally compact group and S a regular G-space (see 1.3.1). We say that
the G-action on S is doubly X-ergodic if for every coefficient G-module F
in X, any weak-* measurable function

f : S × S −→ F

which is G-equivariant for the diagonal action is essentially constant.
We synonymously say that S is a doubly X-ergodic G-space and simply

write “doubly F -ergodic” if X is reduced to a single coefficient module F .

One of the virtues of this strong ergodicity property is its persistence by
passing to closed subgroupsH < G of finite invariant co-volume for suitable
classes X, notably the class of unitary representations (Proposition 3.2.4).

In this language, the two classical instances of this generalized Mautner
property are the following: let G be a semi-simple connected group or the
automorphism group Aut(T ) of a regular tree, and let Q < G be a parabolic
subgroup in the first case, the stabilizer of a point in the boundary ∂∞T at
infinity in the second case. Then the G-space G/Q with its canonical class
of quasi-invariant measures is doubly Xcont-ergodic, where Xcont is the class
of all continuous coefficient modules.

Restricting Q to be minimal parabolic in the first case, we have moreover
that in both cases the G-action on G/Q is amenable in the sense of Zimmer
[Z3].

These two classes of examples, together with the solution to Hilbert’s
fifth problem, are used to establish the following

Theorem 6. Let G be a compactly generated locally compact group.
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There exists a canonical topologically characteristic finite index open sub-
group G∗ ✁ G and a regular G∗-space S such that

(i) The G∗-action on S is amenable.
(ii) The G∗-action on S is doubly Xsep-ergodic, where Xsep is the class of

all separable coefficient modules.

Moreover, if G is either connected or totally diconnected (e.g. discrete),
then G∗ = G.

As we shall see (Proposition 1.1.4), a separable coefficient module is
necessarily continuous.
Remark 7. Theorem 6 implies that the commensurator super-rigidity
results [BuMo1, Theorem 0.1] and [Bu, Theorem 2] hold unconditionally
for all lattices Γ in any locally compact second countable group, generalizing
Margulis’ commensurator super-rigidity.

Remark 8. It will follow from the proof of Theorem 6 and from a result
of V. Kaimanovich [K] that we can take S to be the Poisson boundary of
(the random walk associated to) an étalée measure on G∗; see Remark 3.5.1
below.

As a rather direct consequence of Theorems 6 and 2, we obtain
Corollary 9. Let G be a compactly generated locally compact second
countable group and α : E → F an injective adjoint morphism of coefficient
modules. Assume F is separable. Then

(i) H1
cb(G,E) = 0.

(ii) The induced map H2
cb(G,E)→ H2

cb(G,F ) is injective and both spaces
are Banach spaces.

In particular, if F is a separable coefficient module, then H1
cb(G,F ) = 0

and H2
cb(G,F ) is a Banach space.

Remarks 10. (a) The first statement is well known for reflexive coefficients
since in this case it follows from the Ryll–Nardzewski fixed point theorem
[Bour1, IV, Appendice, No 3]. The second statement was previously only
known if simultaneously G is discrete and F = R.

(b) The first statement has the following consequence. Let Γ be any
group acting by isometries on a separable dual Banach space F . If Γ has
a bounded orbit in F , then there is a Γ-fixed point in F (a compactness
argument reduces the problem to the case of Γ finitely generated). However,
this latter statement follows from N. Bourbaki’s general version of Ryll–
Nardzewski’s theorem, see Lemme 3 in [Bour1, IV, Appendice, No 3] under
the assumption c) given therein.
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(c) We point out that if F is not separable, both conclusions of Corol-
lary 9 may fail, as one can see e.g. with the identity (Corollary 1.6.6)

Hn
cb

(
G,L∞(G)/C

) ∼= Hn+1
cb (G) (∀n ≥ 1) ,

recalling that H2
cb(G) is non-zero (in fact infinite dimensional) for any non-

elementary Gromov-hyperbolic group [EF] and that for a non-amenable
surface group H3

cb(G) is not Hausdorff [So1,2]. The assumption that F be
a coefficient module is also crucial: indeed, let Γ be any finitely generated
group. Consider the separable coefficient module �1(Γ) and its codimension
one Banach submodule F consisting of the functions of total sum zero; F
is not a coefficient module, and indeed the reader may check that H1

b(Γ, F )
vanishes (if and) only if Γ is finite.

A powerful tool in the study of the ordinary cohomology of, say co-
compact, lattices Γ < G is provided by the Blanc–Eckmann–Shapiro lemma
[Bl], which gives an isomorphism between the cohomology of Γ and the
continuous cohomology of G with coefficients in the unitary G-module
L2(Γ\G). In specific situations, a good knowledge of the decomposition
of L2(Γ\G) into irreducible representations gives in return information
about the cohomology of Γ. In the context of bounded cohomology, one
checks readily that there is an analogous isomorphism between H•

cb(H) and
H•
cb(G,L∞(H\G)) for any closed subgroup H < G; the drawback however

is that very little is known about the G-module L∞(H\G). Nonetheless,
in degree two, Theorem 6 allows us to fight our way back to unitary repre-
sentations:
Corollary 11. Let G be a compactly generated locally compact second
countable group and H < G a closed subgroup of finite invariant co-volume.
Let E be a separable coefficient H-module. Then the L2 induction

i : H2
cb(H,E) −→ H2

cb(G,L2IndGHE)
is injective.

Example 12. The fundamental group Γ = π1Σ of a surface Σ of genus
g ≥ 2 is Gromov-hyperbolic and hence H2

b(Γ) is an infinite dimensional
Banach space (in this case, the result goes back to [BrS] and [Mit]). But
by Corollary 11, any hyperbolization Γ → G = PSL2(R) of Σ yields an
injection

H2
b(Γ) −→ H2

cb

(
G,L2(Γ\G)

)
.

This suggests the question of how this infinite dimensional space gets dis-
tributed over the spectral decomposition of L2(Γ\G) into irreducible rep-
resentations. We show in [BuM3] that dimH2

cb(G,H) = 1 for all spherical
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representations H of G, while H2
cb(G,H) = 0 for all representations of the

discrete series.

We consider now the behaviour of continuous bounded cohomology un-
der group extensions. In view of the vanishing result given by Corollary 9,
we are going to establish a higher degree Lyndon–Hochschild–Serre exact
sequence, special cases of which were established for discrete groups by
G.A. Noskov [N2] and A. Bouarich [Bou]. Taking advantage of Theorem 6,
we will then obtain the following refinement in which the new feature is the
term H2

cb(N,FZG(N))Q, where ZG(N) is the centralizer of N in G:

Theorem 13. Let 1 → N → G → Q→ 1 be an exact sequence of locally
compact second countable groups, with N compactly generated. Let (π, F )
be a separable coefficient G-module. Then we have an exact sequence

0 −→ H2
cb(Q,FN ) inf−−−→ H2

cb(G,F ) res−−−→ H2
cb(N,FZG(N))Q −→

−→ H3
cb(Q,FN ) inf−−−→ H3

cb(G,F ) .

Our main application of Theorem 13 is to a Künneth type formula for
continuous bounded cohomology in degree two, with separable coefficient
modules. More precisely, let G = G1 × · · ·Gn be a product of compactly
generated locally compact second countable groups Gj and F a separable
coefficient G-module, e.g. a continuous unitary representation in a separable
Hilbert space. Write G′

j =
∏

i�=j Gi; then
∑n

j=0 F
G′

j is closed and even
weak-* closed in F (Lemma 4.4.2), hence is a coefficient G-module. In this
setting, we have

Theorem 14. There is a natural isomorphism of topological vector spaces

H2
cb(G,F ) ∼= H2

cb

(
G,

n∑
j=1

FG′
j

)
∼=

n⊕
j=1

H2
cb(Gj , F

G′
j ) .

Now let (M,µ) be a regular G-space, where µ is a G-invariant probabil-
ity measure; assume the number n of factors of G is at least two. We say
that G acts irreducibly on M if G′

j acts ergodically for every 1 ≤ j ≤ n.
As a consequence of Corollary 9 and Theorem 14, we obtain

Corollary 15. In this setting, the inclusion of constants C → L∞(M)
induces an isomorphism H2

cb(G)→ H2
cb(G,L∞(M)).

Let Γ < G = G1 × · · ·Gn be a lattice. Here and in the sequel we
will say that Γ is irreducible if the projection prj(Γ) is dense in Gj for
all 1 ≤ j ≤ n; this is easily seen to be equivalent to the irreducibility
of the G-action on the probability space Γ\G. Therefore, Corollary 15
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applied to the induction module L∞(Γ\G) alluded to above would already
yield an isomorphism of Banach spaces H2

b(Γ) ∼= H2
cb(G). The latter space

decomposes as
⊕n

j=1H
2
cb(Gj) by Theorem 14.

Using now L2 induction, we bring in once again the double ergodicity
and proceed to generalize this isomorphism to continuous bounded coho-
mology with coefficients in separable coefficient modules. Let thus F be
a separable coefficient Γ-module and let Fj be the maximal Γ-submodule
of F such that the restriction π|Fj extends continuously to G, factoring
through G � Gj ; this is well defined because prj(Γ) = Gj . Thus we have
a G-action on the sum

∑n
j=1 Fj ; we shall see (Lemma 5.1.2) that the latter

space is again a coefficient G-module. In this setting we have
Theorem 16. There are canonical topological isomorphisms

H2
b(Γ, F ) ∼=

n⊕
j=1

H2
cb(Gj , Fj) ∼= H2

cb

(
G,

n∑
j=1

Fj

)
.

Remark 17. At first sight, there is a striking analogy between the above
statement and Y. Shalom’s super-rigidity for irreducible lattices [Sh2]. How-
ever, it turns out that both the actual contents and the methods of proof
are completely different. For applications to rigidity theory, the interplay
of Shalom’s results with ours appears to be very fruitful – some instances
of this are shown below.

Remark 18. Theorem 16, applied to a cohomology class constructed by
Y. Shalom and the second named author, yields a super-rigidity statement
for action of irreducible lattices on negatively curved metric spaces. This
generalization of a result known [BuMo1] in the arithmetic case will appear
elsewhere [MoS].

Remark 19. We shall actually prove the Theorem 16 for any closed
subgroup H < G such that G/H has finite invariant measure and with
prj(H) = Gj . We also point out that the isomorphism from the rightmost
to the leftmost term is realized by the restriction map.

In Theorem 16, the special case where F is a unitary representation
of Γ and all Gi are algebraic groups generalizes the main results that we
established in [BuM1,2] for co-compact lattices:
Theorem 20. Let Γ < G =

∏
α∈AGα(kα) be an irreducible lattice,

where (kα)α∈A is a finite family of local fields and the Gα are connected
simply connected kα-almost simple groups of positive kα-rank. Then the
comparison map

H2
b(Γ,H) −→ H2(Γ,H)
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is injective for any non-degenerate unitary representation (π,H) of Γ.

Here, non-degenerate refers to the (necessary) condition that the in-
duced representation IndGΓπ does not contain a subrepresentation factoring
non-trivially through a rank one factor of G (if any such).

In accordance with our definition of irreducibility, the assumption in the
above theorem implies that A contains at least two elements. Otherwise,
we are in the almost simple case; there also, the result given in [BuM1]
for co-compact lattices in a single algebraic group of higher rank can be
generalized to non-uniform lattices:

Theorem 21. Let Γ be a lattice in G(k), where G is a connected, simply
connected, almost simple k-isotropic group and k a local field.

If G has k-rank at least two, then the natural map

H2
b(Γ,H) −→ H2(Γ,H)

is injective for any unitary representation (π,H) of Γ.

In order to dispose of the co-compactness assumption, we use notably
the results of Lubotzky, Mozes and Raghunathan [LMR] on the word met-
rics of such lattices.

We turn now to applications to actions by homeomorphisms on the
circle S1. Recall that if π : Γ → Homeo+(S1) is an action by orientation-
preserving homeomorphisms, then the Euler class eπ ∈ H2

b(Γ,Z) is a com-
plete invariant of semi-conjugacy [Gh]. Denoting by eπ,R its image in
H2
b(Γ,R), we record the following consequence of É. Ghys’ result [Gh]:
The bounded cohomology class eπ,R vanishes if and only if π is semi-

conjugated to a Γ-action by rotations.
We obtain thus

Corollary 22. Let Γ < G = G1 × · · · ×Gn be an irreducible lattice and
assume H2

cb(Gj) = 0 for 1 ≤ j ≤ n.

Then any Γ-action by orientation-preserving homeomorphisms of S1 is
semi-conjugated to a Γ-action by rotations.

If in addition the Abelianization ΓAb is finite, which happens for in-
stance if Γ is co-compact and Homcont(Gj) = 0 for all j (see Y. Shalom
[Sh2]), then the corollary can be strengthened to

(i) Any Γ-action by orientation preserving homeomorphisms of the circle
has a finite orbit.

(ii) Any Γ-action by orientation preserving C1 diffeomorphisms of the
circle factors through a finite group.
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The fact that (i) implies (ii) uses W.P. Thurston’s stability theorem [T]
and has been observed by several authors independently, see e.g. [W2].

Next we turn to an application to extension properties for quasimor-
phisms; recall that a quasimorphism of a group H is a function f : H → C
such that the map δf : H×H → C defined by δf(x, y) = f(x)+f(y)−f(xy)
is bounded. Combining now Theorem 16 with a result of Y. Shalom [Sh2,
Theorem 0.8], we obtain

Corollary 23. Assume that the irreducible lattice Γ < G is co-compact.
Then any quasimorphism f : Γ → C extends to a continuous quasimor-
phism fext : G→ C.

In view of the above results, it is clearly desirable to gain an understand-
ing of H2

cb(G) for natural classes of locally compact groups. For semi-simple
Lie groups over local fields and for certain groups of tree automorphisms,
the second continuous bounded cohomology can be explicitly determined
(see the proof of Corollaries 24 and 26 in section 5.3). This together with
Theorem 16 leads to the following two corollaries.

Corollary 24. Let Γ < G =
∏

α∈AGα(kα) be an irreducible lattice,
where (kα) is a finite set of local fields and the Gα are connected simply
connected kα-almost simple groups of positive kα-rank. Assume |A| ≥ 2.

Then the comparison map from bounded to ordinary cohomology in-
duces an isomorphism

H2
b(Γ) −→ H2(Γ)inv,

where the latter is the image in H2(Γ) under restriction of the continuous
cohomology H2

c(G). Both spaces have the dimension of the number of
Hermitian factors of G.

Remark 25. Let Γ < G = SL2(R)× SL2(R) be a co-compact torsion free
irreducible lattice. Then H2

b(Γ) ∼= H2(Γ)inv has dimension two while

dimH2(Γ) = cVol(Γ\G) − 2 ,

wherein c is an absolute constant. This is in contrast with the case of
Gromov-hyperbolic groups, where the comparison map in degree two (and
higher) is known to be surjective [Mi1,2].

The next corollary concerns lattices in the product of automorphisms
groups of locally finite regular (or bi-regular) trees. Such lattices are never
irreducible in the sense of our definition (see [BuMo4]), therefore it is nec-
essary to consider the closures prj(Γ) of the canonical projections.
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Corollary 26. Let Γ < Aut(T1) × · · · × Aut(Tn) be a lattice such that
the closure prj(Γ) acts transitively on ∂∞Tj for all j. Then we have

H2
b(Γ) = 0 .

Remark 27. In the above corollary, the assumptions on Γ depend only on
its commensurability class (see [BuMo3]). In contrast to the vanishing of
H2
b(Γ) = 0, one has

dimH2(Γ) ≥ cVol(Γ\G) − 1

for co-compact lattices Γ < G = Aut(T1) × Aut(T1), where c > 0 is some
absolute constant.

A classical set of examples for Corollary 26 is provided by co-compact
lattices Γ < G =

∏
α∈AGα(kα), where all Gα have kα-rank one and all

kα are non-Archimedean; indeed Gα(kα) sits (modulo its centre) in the
automorphism group of the associated Bruhat–Tits tree. Those lattices are
linear and hence in particular residually finite.

In contrast to this class of linear examples, the following was shown in
[BuMo2,4]:

For every n ≥ 109, m ≥ 150, there exists a torsion free co-compact
lattice Γ < Aut(T1) × Aut(T2), where T1 and T2 are regular of degree 2n
respectively 2m, such that

(i) The closures prj(Γ) act transitively on ∂∞Tj.
(ii) Γ has a subgroup of finite index which is simple.

In particular, the latter simple groups provide also examples for Corol-
lary 26 as well as for Corollary 22 and its strengthening.

We observe incidentally that adélization techniques provide us with a
special class of lattices, which are irreducible in the sense introduced above
because of the Strong Approximation Theorem for almost simple groups
[M, II.6.8]. The situation differs slightly from the setting of Theorem 16
because we have to exhaust the infinite family of factors associated to all
places of K:

Theorem 28. Let K be a global field and G a simply connected semi-
simple linear algebraic group over K. Denote by V∞ the collection of
Archimedean places of K.

There are canonical topological isomorphisms

H2
b(G(K)) ∼=

⊕
v∈V∞

H2
cb(G(Kv)) ∼=

⊕
v∈V∞

H2
c(G(Kv)) .
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Remark 29. In ordinary cohomology, A. Borel and J. Yang [BoY] prove
the analogous statement for any positive degree. In particular, the right-
most term in the above statement is in return isomorphic to H2(G(K)) and
thus the natural map

H2
b(G(K)) −→ H2(G(K))

is injective.

Examples 30. (i) If d ∈ N is not a square, then H2
b(SL2(Q[

√
d])) has

dimension two.
(ii) Let G be a simply connected semi-simple linear group defined

over Q. Then the restriction map

H2
cb(G(R)) −→ H2

b(G(Q))

is an isomorphism. Thus the dimension of H2
b(G(Q)) is exactly the number

of factors of Hermitian type in G(R). We observe however that the G(Q)-
action on the Furstenberg boundary of G(R) is not amenable [Z4].

Notice further that since V∞ = ∅ when K has positive characteristic,
the Theorem 28 implies immediately

Corollary 31. Let K be a global field of positive characteristic and G a
simply connected semi-simple linear algebraic group over K. Then

H2
b(G(K)) = 0 . �

Recall that for a group Γ the stable length of an element γ ∈ [Γ,Γ] is
�(γ) = limn→∞ ‖γn‖/n, where ‖γ‖ is the word metric associated to the set
of commutators. Ch. Bavard has given in [B] the following characterization:

Theorem (Bavard [B]). For a discrete group Γ, the following assertions
are equivalent:

(i) The natural map H2
b(Γ)→ H2(Γ) is injective.

(ii) The stable length function � of the commutator subgroup [Γ,Γ] van-
ishes.

Thus we may apply our above results and deduce:

Corollary 32. Let Γ be either

(i) a lattice as in Theorem 21 or any of the Corollaries 22, 24, 26,

or

(ii) Γ = G(K) as in Theorem 28.

Then the stable length on the commutator subgroup [Γ,Γ] vanishes. ✷
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Finally, concerning the relation between the complex and integral bounded
cohomology, we observe that for any group Γ the following properties are
equivalent (see the proof of Corollary 33):
(a) The comparison map H2

b(Γ,Z)→ H2(Γ,Z) is injective.
(b) The comparison map H2

b(Γ)→ H2(Γ) is injective and the Abelianiza-
tion ΓAb is a torsion group.

With this at hand, we conclude:
Corollary 33. Let Γ be either

(i) a lattice as in Theorem 21 or Corollary 24,

or

(ii) a lattice as in Corollary 26 but being moreover co-compact,

or

(iii) Γ = G(K) as in Theorem 28.

Then the comparison map H2
b(Γ,Z)→ H2(Γ,Z) is injective.

Location of the proofs. Theorem1 is proved in section 2.2, Theorem2
is completed in section 2.3. Theorem 6 and Corollary 9 are established
in section 3.5, while Corollary 11 is deduced in section 3.6. The proof
of Theorem 13 is completed in section 4.3, the proofs of Theorem 14 and
Corollary 15 in section 4.4. For Theorem 16 see section 5.1, for Theorems 20
and 21 section 5.2. Theorem 28 is handled in section 5.4. The Corollaries 22,
23, 24, 26 and 33 are all proved in section 5.3.

1 On Continuous Bounded Cohomology

(A more detailed and general discussion of this theory can be found in the
second named author’s thesis, available [Mo] in Springer’s Lecture Notes.)

1.1 Banach modules. Let G be a locally compact group (e.g. dis-
crete). We shall work within the category of Banach G-modules, which
are Banach spaces endowed with an isometric G-action. For the sake of
simplicity, we leave aside the study of non-isometric uniformly bounded
actions.
Definitions 1.1.1. A Banach G-module is a pair (π,E) where E is a
Banach space over R or C and π is a (not necessarily continuous) homo-
morphism from G to the group of isometric automorphisms of E. Thus
modules are always left modules, right modules being understood as left
modules over Gop, the opposite group.
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A map α : E → F between Banach G-modules is a G-morphism pro-
vided it is linear, continuous and G-equivariant; ‖α‖ is its operator norm.
Mind that the category we just defined is not Abelian.

The Banach G-module (π,E) is continuous if the action mapG× E → E
is continuous; equivalently, if for all v ∈ E the map G→ E, g �→ π(g)v is
continuous. When no confusion can arise, we simply write E for the module
and gv for π(g)v.

A dual Banach G-module is the dual Banach space of a continuous Ba-
nach Gop-module endowed with dual structure; in particular, the action
map is weak-* continuous but in general not norm continuous. The con-
tragredient Banach G-module (π�, E�) to a continuous Banach G-module
(π,E) is the dual Banach G-module obtained via the topological isomor-
phism G→ Gop, g �→ g−1 (thus E� = E∗ as spaces, the notation emphasiz-
ing the action).

In order to avoid heavy terminology, we introduce the following concept,
which will be basic in this paper.

Definition 1.1.2. A coefficient G-module is a Banach G-module (π,E)
contragredient to some separable continuous Banach G-module denoted
(π�, E�). The choice of E� is part of the data. A morphism or G-morphism
of Banach modules α : E → F between coefficient modules is called adjoint
if it is the adjoint of a morphism α� : F � → E�, or equivalently if it is weak-*
continuous. We say synonymously that α is a morphism (or G-morphism)
of coefficient modules.

Remark 1.1.3. We insist that a coefficient module includes by definition
the choice of a pre-dual; for it may happen that (π�, E�) is not uniquely
determined by its contragredient. All the same, the above definition entitles
us to speak of the weak-* topology of a coefficient module.

The projective product E⊗̂F of two Banach G-modules E,F is the
Schatten–Grothendieck projective tensor product endowed with the diago-
nal tensor action. We refer to [J, III 15] (or [Gro1, I §1.1]) for the virtues
and flaws of this product. The projective product of continuous Banach
G-modules is again continuous. The canonical linear form on E�⊗̂E is
G-invariant; the corresponding pairing will always be denoted 〈·|·〉. We re-
call that the Banach space (E⊗̂F )∗ identifies canonically isometrically with
the space L(E,F ∗) of linear continuous operators endowed with the opera-
tor norm ([DU, Corollary VIII.2.2]); endowing the latter with the obvious
action, this yields an identification (E⊗̂F )� ∼= L(E,F �).
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For any Banach G-module E we define the maximal continuous sub-
module by

CE = {v ∈ V : G→ E, g �→ gv is continuous } .
One checks that CE is closed in E, hence is a continuous Banach G-module.
If α : E → F is a G-morphism, one has α(CE) ⊂ CF because of the equiv-
ariance, so that C is a retract functor on the full subcategory of continuous
Banach G-modules.

Whenever a confusion on the group is possible, we write CGE.
Basic examples include C or R with the trivial action, unitary repre-

sentations and the various Lebesgue spaces Lp(G) (for 1 ≤ p ≤ ∞ and a
left Haar measure) with translation action. The latter is in general not
continuous for p =∞, but is a coefficient module if G is second countable.

We record the following observation:

Proposition 1.1.4. Let G be a Baire topological group, e.g. a locally
compact group. Then every separable coefficient G-module is continuous.

Proof. A standard argument using Baire’s category theorem shows that
a representation of a Baire group by isometries of a separable Banach
space with Borel orbital maps is continuous (for the norm topology). On
the other hand, the representation in a coefficient module is by definition
weak-* continuous. However, the Banach–Alaoğlu theorem implies that the
weak-* and normic Borel structures coincide for separable Banach spaces:
indeed norm-open sets are countable unions of open balls, and the latter are
countable unions of closed balls; these are weak-* compact hence weak-*
closed. ✷

1.2 Integration matters.
Bochner’s integral. Let (π,E) be a continuous Banach G-module and

suppose either E separable or G second countable. Given a left Haar mea-
sure m on G, one can turn E into a L1(G)-module by the formula

π(ψ)v =
∫
G
ψ(g)π(g)v (ψ ∈ L1(G), v ∈ E) , (1)

the above integral being well defined in the sense of Bochner because of Pet-
tis’ theorem, see [DU, Theorem II.1.2]. The action map L1(G) × E → E
is continuous and compatible with G in the sense that π(g)π(ψ) = π(λ(g)ψ)
and π(ψ)π(g) = π(*(g−1)ψ), where (λ(g)ψ)(h) = ψ(g−1h) and (*(g)ψ)(h) =
∆(g)ψ(hg) are the two isometric translation actions (∆ is the modular func-
tion).
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An important feature of the Bochner integral is that it commutes with
continuous linear operators; in particular, for any G-morphism α : E → F
one has απE(ψ) = πF (ψ)α.

The canonical inversion isomorphism G→ Gop induces an isomorphism
L1(G) → L1(Gop) ∼= (L1(G))∼, where ψ∼(g) = ∆(g−1)ψ(g−1). Therefore,
E� has a natural L1(G)-module structure defined by π�(ψ) = (π(ψ∼))∗.
Thus the action map L1(G)×E� → E� is continuous – mind however that
in general G×E� → E� is not continuous, nor measurable, nor even weakly
measurable; it is only weak-* continuous.

The Gelfand–Dunford integral. One can also define the contragredient
L1(G)-module structure on E� by a formula analogous to (1) above, but
now the integral must be taken in the Gelfand–Dunford sense. Since we
shall need Gelfand–Dunford integration, we recall a few facts.

Let (S, µ) be a measure space and f : S → E� a weak-* integrable map
– that is, 〈f |v〉 ∈ L1(µ) for all v ∈ E. The formula〈∫

S
f(s)dµ(s)

∣∣∣ x〉
=

∫
S

〈
f(s)

∣∣ x〉
dµ(s)

defines an element
∫
S f(s)dµ(s) of the algebraic dual of E; the Gelfand–

Dunford theorem (see [Bour2, chap.VI §1.4 Théorème 1]) precisely states
that

∫
S f(s)dµ(s) belongs to the topological dual E�. Provided this, the

following are simple verifications:
Lemma 1.2.1. (i) If T is a weak-* continuous linear operator, then∫
S Tf(s)dµ(s) = T

∫
S f(s)dµ(s).

(ii) If f is bounded and ψ ∈ L1(µ), then∥∥∥∥
∫
S
ψ(s)f(s)dµ(s)

∥∥∥∥ ≤ ‖ψ‖1 · ‖f‖∞ . �

A major drawback of the Gelfand–Dunford integral is that it does usu-
ally not commute with continuous linear operators. This is a source of
complications for us, since the operators appearing in amenability issues
are precisely not weak-* continuous. Another difficulty is that there is no
general principle of the kind ‖

∫
S ‖ ≤

∫
S ‖ · ‖ generalizing (ii). The maximal

continuous submodule will be of help:
Proposition 1.2.2. Let (π,E) be a continuous Banach G-module with
either E separable or G second countable.

(i) CE� coincides with the image L1(G)E� of E� under π�.
(ii) CE� is weak-* dense in E�.

As to (ii), recall that CE� is norm closed. Point (i) implies that CE� is
the essential part of E� in the sense of [DoW].
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Proof of Proposition 1.2.2. For point (i), fix w ∈ E�, ϕ ∈ L1(G) and a net
(x) converging to e ∈ G. Let’s check that π�(x)π�(ϕ)w converges to π�(ϕ)w
in norm:∥∥π�(x)π�(ϕ)w − π�(ϕ)w

∥∥
E� = sup

‖u‖E=1

∣∣〈(π�(λ(x)ϕ) − π�(ϕ))w|u〉
∣∣

= sup
‖u‖E=1

∣∣〈w|π((λ(x)ϕ − ϕ)∼)u〉
∣∣

≤ sup
‖u‖E=1

(
‖w‖E� · ‖π((λ(x)ϕ − ϕ)∼)u‖E

)
≤ ‖w‖E� ·

∥∥(λ(x)ϕ − ϕ)∼
∥∥
1

= ‖w‖E� ·
∥∥λ(x)ϕ− ϕ

∥∥
1
,

which converges to zero since L1(G) is a continuous Banach G-module (the
second inequality is justified because it concerns a Bochner integral, see
[DU, Theorem II.2.4 (ii)]).

Thus we have already L1(G)E� ⊂ CE�. Fix a bounded approximate
identity (ψ) (by which we mean a two-sided positive continuous approxi-
mate identity bounded by one, considered as a (generally uncountable) net.
This exists for any locally compact group, see e.g. [DoW, Theorem 13.4]).
Since CE� is continuous, π�(ψ)w converges to w for all w ∈ CE�, hence
L1(G)CE� is dense in CE�. But Cohen’s factorization theorem, as stated
in [DoW, Theorem 16.1], implies that L1(G)CE� is norm closed in CE�.
Therefore L1(G)CE� = CE�, which completes the proof of (i).

Point(ii): let (ψ) be a bounded approximate identity for L1(G). Since
π(ψ)u converges to u in norm for all u ∈ E, we see that π�(ψ∼)w, which is
in CE� by (i), weak-* converges to w for all w ∈ E�, whence (ii). ✷

1.3 L1 spaces. Let S be a standard measure space, E a dual Banach
space with separable pre-dual. We denote by L∞

w∗(S,E) the space of classes
of weak-* measurable essentially bounded maps S → E endowed with the
essential supremum norm. The separability of the pre-dual implies that
‖s �→ f(s)‖E ∈ L∞(S) for f ∈ L∞

w∗(S,E). Suppose now G acts on S; in or-
der to yield a well defined translation action on L∞

w∗(S,E), the action must
preserve the measure class on S; hence the Radon–Nikodým derivatives are
in L1(S). If moreover we are given a isometric representation π on E, we
define a G-representation λπ on L∞

w∗(S,E) by(
λπ(g)f

)
(s) = π(g)f(g−1s) (s-a.e.)

(in case π is trivial, we simply write λ). In view of the nature of this action,
we shall sometimes term an invariant element as equivariant.
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Definition 1.3.1. A regular G-space is a standard Borel G-space endowed
with a G-invariant class with the following property:

the class contains a probability measure µ such that the isometric G-
action λ�:

(λ�(g)ϕ)(s) = ϕ(g−1s)dg
−1µ
dµ (s) (ϕ ∈ L1(µ) , s ∈ S)

is continuous. (The notation hints to the fact that λ is contragredient
to λ�.)

Examples: a locally compact second countable group G endowed with
the class of a Haar measure is a regular G-space, a finite product of regular
G-spaces with the diagonal action is again a regular G-space, Poisson and
Furstenberg boundaries are regular G-spaces. A compact polish space with
continuous action of a second countable group G, endowed with a radon
measure µ with continuous Radon–Nikodým derivatives dgµ/dµ is a regu-
lar G-space. A consequence of the requirement that (S, µ) be a standard
measure space is the separability of L1(µ).

The following amounts to well-known functional analysis based on the
Dunford–Pettis theorem, see [DuS, VI.8], [Gro1, I §2.2] and [J, III 17.6].
Proposition 1.3.2. Let G be a locally compact second countable group,
let (Sj)nj=1 be regular G-spaces and (π,E) a coefficient G-module. Then

L∞
w∗(S1 × · · · × Sn, E) endowed with λπ

is a coefficient G-module, canonically contragredient to

L1(µ1)⊗̂ · · · ⊗̂L1(µn)⊗̂E�

for any (µj)nj=1 as in Definition 1.3.1. In particular, one has the canonical
coefficient G-module identification

L∞
w∗(S1 × · · · × Sn, E) ∼= L∞

w∗
(
S1, L

∞
w∗(S2 × · · · × Sn, E)

)
. �

Remark 1.3.3. In the setting of Proposition 1.3.2, one has also a canon-
ical isomorphism between L1(µn)⊗̂E� and the Bochner–Lebesgue space
L1(G,E�), which induces on the latter a G-action to which λπ is contra-
gredient.

1.4 Relative injectivity. We turn to the interplay between the cate-
gories of Banach spaces and Banach G-modules:
Definition 1.4.1. A G-morphism η : A → B of Banach G-modules is
admissible if there is a continuous linear map σ : B → A with ‖σ‖ ≤ 1 and
ηση = η.

In particular, an injective G-morphism is admissible if and only if it has
a left inverse {e}-morphism of norm at most one.
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In the non-topological case, an analogue of the following definition has
been considered by Ivanov [Iv].
Definition 1.4.2. A Banach G-module E is relatively injective (with
respect to G) if for every injective admissible G-morphism ι : A → B of
continuous Banach G-modules A,B and every G-morphism α : A → E
there is a G-morphism β : B → E satisfying βι = α and ‖β‖ ≤ ‖α‖.

A
� �

ι
��

α
���

��
��

��
B

β��

σ
��

E

Remark 1.4.3. A purist would restrict the above definition to continuous
Banach G-modules E to stay in the same category as A,B; but anyway,
with our definition, one checks easily that E is relatively injective if and
only if CE is so (recall α(A) ⊂ CE).

As an immediate consequence of the definition, we have
Lemma 1.4.4. Let υ : E → F be a norm one G-morphism of Banach
G-modules admitting a left inverse G-morphism of norm one.

If F is relatively injective, then so is E. ✷

For practical purposes, the fundamental property of relatively injective
modules is the following.
Lemma 1.4.5. Let η : A→ B be an admissible G-morphism of continuous
Banach G-modules and let E be a relatively injective Banach G-module.
Then for any G-morphism α : A → E with Ker(α) ⊃ Ker(η) there is a
G-morphism β : B → E with βη = α and ‖β‖ ≤ ‖α‖. ✷

The next proposition provides us with the first example of relatively
injective modules.
Proposition 1.4.6. Let G be a locally compact second countable group,
(π,E) a dual coefficient G-module. Then L∞

w∗(G,E) is relatively injective.

Proof. We contend that CL∞
w∗(G,E) is contained in the space of classes of

weak-* continuous E-valued maps on G.
Indeed, let f : G→ E represent a class in CL∞

w∗(G,E) and fix a bounded
approximate identity (ψ) on G. For every v in the fixed pre-dual E� of E,
〈f(·)|v〉 is in L∞(G) and hence the net ψ∗〈f(·)|v〉 is equicontinuous. There-
fore, Ascoli’s theorem (in the generality of [Bour4, X §2, No. 5]) implies uni-
form convergence of ψ′ ∗ 〈f(·)|v〉 to a continuous function for some subnet
(ψ′). Appealing to Tychonoff’s theorem, we may fix another subnet (ψ′′)
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for which convergence takes place for all v ∈ E�. On the other hand, for
all v ∈ E�, the net ψ′′ ∗ 〈f(·)|v〉 converges pointwise almost everywhere to
〈f(·)|v〉. Restricting this to a countable dense subset of elements v ∈ E�, we
conclude that f coincides a.e. with a weak-* continuous map, establishing
the claim.

Consider now

A
� �

ι
��

α

��

B

β?

��

σ
��

CL∞
w∗(G,E)

as in Definition 1.4.2. For b ∈ B and g ∈ G, the continuity claim above
allows us to define an element of E by

β(b)(g) = π(g)
(
ασ(g−1b)(e)

)
.

Since g �→ ασ(g−1b)(e) is norm continuous (B is continuous), β(b) is weak-
* continuous; moreover, ‖β(b)(g)‖∞ ≤ ‖α‖ · ‖b‖B , so that we have a map
β from B to L∞

w∗(G,E). It is straightforward to check that β is equivari-
ant (hence ranges in the maximal continuous submodule), ‖β‖ ≤ ‖α‖ and
βι = α. This completes the proof. ✷

We deduce immediately the following corollary, which will notably apply
to the case S = Gn:

Corollary 1.4.7. Let G be a locally compact second countable group, S
a regular G-space and (π,E) a coefficient G-module. Then L∞

w∗(G× S,E)
is relatively injective.

Proof. Using Proposition 1.3.2, we may identify L∞
w∗(G × S,E) with

L∞
w∗(G,L∞

w∗(S,E)). Now apply Proposition 1.4.6 with L∞
w∗(S,E) instead

of E. ✷

1.5 Functorial definition of bounded cohomology. In this section
we introduce a functorial definition of the continuous bounded cohomol-
ogy of a locally compact second countable group G, with coefficients. The
defining machinery bears certain analogies with Hochschild’s relative ho-
mological algebra [Ho]. We point out that the functorial characterization
of continuous bounded cohomology extends to all topological groups (not
necessarily locally compact), but this extension is not necessary for the
present paper and is not suited to the study of L∞ spaces.

Remark 1.5.1. For discrete groups, Johnson already alluded in [Jo] to
the possibility of such a theory; the task has been completed by Ivanov



238 M. BURGER AND N. MONOD GAFA

[Iv] (and Noskov [N1]). However, it remained unclear whether anything of
this kind was possible for topological groups, even for trivial coefficients
(compare with the remark on p. 37 in [Jo]).

A resolution E• of a Banach G-module E is an acyclic sequence

E• : 0 �� E
d0 �� E0

d1 �� E1
d2 �� E2

�� · · ·
of G-morphisms of Banach G-modules. It is said relatively injective, con-
tinuous, etc. if all En (n ≥ 0) are so (disregarding E). We define G-mor-
phisms of resolutions and G-homotopies of such morphisms in the obvious
way. One associates as usual to any resolution E• the cohomology of the
corresponding (non-augmented) subcomplex of invariants

EG
• : 0 −→ EG

0 −→ EG
1 −→ EG

2 −→ · · ·
and endows these cohomology spaces with the quotient semi-norm. The
resolution E• is admissible if there is also a sequence (hn) of continuous
linear maps of norm at most one

E• : 0 �� E
d0 �� E0

d1 ��

h0

�� E1
d2 ��

h1

�� E2
��

h2

�� · · ·��

satisfying hndn + dn−1hn−1 = IdEn−1 for all n ≥ 0 (with the convention
d−1, h−1 = 0). In particular, dn is an admissible G-morphism. We call the
sequence (hn) a contracting homotopy. A resolution is strong if the sub-
complex CE• : 0 → CE → CE0 → · · · of maximal continuous submodules
is an admissible resolution.

The definitions of relative injectivity and strong resolutions are adjusted
to each other so that the following proposition becomes a standard verifica-
tion using Lemma 1.4.5 and the obvious observation that for any resolution
E• one has EG• = (CE•)G.
Proposition 1.5.2. Let E• be a strong resolution of a Banach G-module
E and F• a relatively injective resolution of a Banach G-module F . Then
any G-morphism α : CE → F extends to a G-morphism of resolutions
CE• → F• which is unique up to G-homotopy; hence α induces functorially
a sequence of continuous linear maps on the corresponding cohomology
spaces.

In particular, if E = F and both resolutions are strong and relatively
injective, then any G-morphism of resolutions which is the identity on E
induces a canonical isomorphism of topological vector spaces between the
corresponding cohomology spaces. ✷

We shall now deduce:
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Corollary 1.5.3. Let E be a coefficient G-module, and let E• be any
strong relatively injective resolution of E. Then the cohomology of EG• is
canonically isomorphic to H•

cb(G,E).
More precisely, there is a G-morphism CE• → L∞

w∗(G•+1, E) extending
the inclusion CE ⊂ E, any two such are G-homotopic and they induce a
topological isomorphism in cohomology.

Remark 1.5.4. In certain cases, one can show that the induced map in
cohomology is isometric for the quotient semi-norm, but this does not follow
from the above; see section 2.3 below.

Proof of Corollary 1.5.3. The maximal continuous submodules
CL∞

w∗(G•+1, E) constitute a subcomplex of the standard resolution, and
obviously (

CL∞
w∗(G

•+1, E)
)G =

(
L∞
w∗(G

•+1, E)
)G

.

Thus the cohomology associated to the continuous subcomplex coincides
canonically with H•

cb(G,E) (notice also that any G-morphism has to range
in the continuous subcomplex). Since CL∞

w∗(G•+1, E) are all injective by the
Corollary 1.4.7, it remains only to see that this continuous subcomplex ad-
mits a contracting homotopy and is hence an admissible resolution. This is
taken care of by Lemma 1.5.6 below, so one can apply Proposition 1.5.2. ✷

Corollary 1.5.5. Let G be a locally compact second countable group
and E a relatively injective coefficient G-module. Then Hn

cb(G,E) = 0 for
all n ≥ 1.

Proof. Apply Corollary 1.5.3 to the resolution

0 −→ E
Id−−→ E −→ 0 −→ 0 −→ · · ·

which is indeed strong. ✷

The standard resolution (defined in the Introduction) is the simplest ex-
ample of a large family of resolutions: let S be a regular G-space and (π,E)
a coefficient G-module. Endow the spaces L∞

w∗(Sn+1, E) (n ≥ 0) with the
action(s) λπ. Define coboundary maps dn : L∞

w∗(Sn, E) → L∞
w∗(Sn+1, E)

by dn =
∑n

i=0(−1)idn,i, where dn,i omits the ith variable and (d0v)(g) = v;
it is standard to verify dn+1dn = 0. The map d0 is also called the co-
augmentation.
Lemma 1.5.6. There exists a contracting homotopy h• turning

0 �� CE
d0 �� CL∞

w∗(S,E)
d1 ��

h0

		 CL∞
w∗(S

2, E)
d2 ��

h1



 CL∞
w∗(S

3, E) ��

h2

�� · · ·��
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into an admissible resolution of CE (so the resolution with L∞
w∗(Sn+1, E) is

strong).

Proof. Fix a probability measure µ on S as in Definition 1.3.1. For any
coefficient G-module (γ, F ) define

hF : CL∞
w∗(S,F ) −→ F , hF (f) =

∫
S
f(s)dµ(s) , f ∈ CL∞

w∗(S,F )

(Gelfand–Dunford integral). We claim that hF ranges in CF .
To this end, notice first that since γ(g) (g ∈ G) is an adjoint operator,

we may apply Lemma 1.2.1 (i) and commute it with the Gelfand–Dunford
integral

γ(g)hF (f) =
∫
S
γ(g)(f(s))dµ(s) =

∫
S

dgµ

dµ
(s)(λγ(g)f)(s)dµ(s)

(recalling that the Radon–Nikodým derivative dgµ/dµ is in L1(µ)). Using
this, if (g) is a net converging to e ∈ G,∥∥γ(g)hF (f)− hF (f)

∥∥
F
≤

∥∥∥∥
∫
S
f(s)dµ(s)−

∫
S

(
λγ(g)f

)
(s)dµ(s)

∥∥∥∥
F

+
∥∥∥∥

∫
S

(
λγ(g)f

)
(s)dµ(s)−

∫
S

dgµ

dµ
(s)

(
λγ(g)f

)
(s)dµ(s)

∥∥∥∥
F

.

Using Lemma 1.2.1 (ii), we bound the first term by ‖f − λγ(g)f‖∞, which
converges to zero because f is in CL∞

w∗(S,F ). The second term can be
bounded by

‖f‖∞ ·
∥∥11S − dgµ

dµ

∥∥
1
.

The fact that the right hand side factor converges to zero is part of Defini-
tion 1.3.1. The claim is proved.

Now we can define hn via the identification

L∞
w∗(S

n+1, E) ∼= L∞
w∗

(
S,L∞

w∗(S
n, E)

)
by letting F = L∞

w∗(Sn, E) (and F = E for h0). We have ‖hn‖ ≤ 1
because of Lemma 1.2.1 (ii). Moreover, for all 0 ≤ i ≤ n, we have
dn,ihn = hn+1dn+1,i+1: indeed, the linear map dn,i is weak-* continuous
because it is induced by one of the canonical projections Sn+1 → Sn; thus
we may commute it with hn, which gives dn+1,i+1 via the above identifica-
tion, whence the relation dn,ihn = hn+1dn+1,i+1. This, together with the
analogous hn+1dn+1,0 = Id , implies immediately that h• is a contracting
homotopy. ✷

The natural map. Let (π,E) be a dual Banach G-module. The usual
continuous cohomology H•

c(G,E) is defined with resolutions by modules
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satisfying an appropriate injectivity condition; call it c-injectivity. It is
shown in [Bl] that the standard resolution by locally p-summable functions
is c-injective for all 1 ≤ p <∞. Now if E is separable, then we have

L∞
w∗(G

n+1, E) = L∞(Gn+1, E) ⊂ Lp
loc(G

n+1, E) ,
determining a cochain complex inclusion, and therefore a map

C(•) : H•
cb(G,E) −→ H•

c(G,E) .
We call the above map the natural map for the following reason: if E• is a
strong relatively injective resolution of E and F• is a c-injective resolution
of E, then there is a G-complex morphism E• → F• extending the identity
IdE and every such extension induces the above map at the cohomological
level. This follows indeed immediately from Proposition 1.5.2 and its ana-
logue in continuous cohomology. The kernel of the natural map is written
EH•

cb(G,E).
Contravariance. Let ψ : G → H be a morphism of locally compact

second countable groups, that is a continuous group homomorphism. Any
Banach H-module F becomes a G-module by pull-back, and we observe
that in this way both CGF and CHF are Banach G-modules, the latter
being contained in the former.

Now let (π,E) be a coefficient H-module. If E• is a strong relatively
injective resolution for the H-module (π,E), then CHE• is in particular a
strong resolution for the G-module CHE by the above observation. Apply-
ing Proposition 1.5.2, one gets a natural map

H•
cb(ψ,E) : H•

cb(H,E) −→ H•
cb(G,E) .

The particular case of the restriction is considered again in section 2.4.

1.6 Coefficient sequence. Continuous bounded cohomology admits
also long exact coefficient sequences:
Proposition 1.6.1. Let G be a locally compact second countable group

and let 0 → A
α−→ B

β−→ C → 0 be an adjoint exact sequence of coefficient
G-modules. Then there is a family of continuous maps (τn) so that the
infinite sequence

· · · τn

−−→ Hn
cb(G,A) −→ Hn

cb(G,B) −→ Hn
cb(G,C) τn+1

−−−→ Hn+1
cb (G,A) −→ · · ·

is exact. Moreover, if α (or equivalently β) has a left (respectively right)
inverse G-morphism, then τn = 0 for all n ≥ 0.

Remarks 1.6.2. (i) In the second statement, the left (or right) inverse is
not supposed adjoint.



242 M. BURGER AND N. MONOD GAFA

(ii) The long exact sequence depends naturally on the short exact se-
quence and on G.

(iii) It is possible to use E. Michael’s selection theorem in order to estab-
lish a long exact sequence for more general Banach modules, see [Mo, 8.2].

Proof of Proposition 1.6.1. The proof is a straightforward adaptation of
the classical argument based on the “snake lemma” (here, the latter is a
consequence of the open mapping theorem), with one caveat : in order to
apply the snake lemma, one needs Lemma 1.6.3 below. ✷

Lemma 1.6.3. Let G be a locally compact second countable group and let

0→ A
α−→ B

β−→ C → 0 be an adjoint short exact sequence of G-morphisms
of coefficient G-modules. Then the induced sequence

0 −→ L∞
w∗(G

n+1, A)G α∗−−−→ L∞
w∗(G

n+1, B)G
β∗−−→ L∞

w∗(G
n+1, C)G −→ 0

(2)
is also exact for all n ≥ 0.

Remark 1.6.4. We point out that the closed range theorem implies that
an adjoint sequence of Banach spaces is exact if and only if its pre-dual is
exact.

Proof of Lemma 1.6.3. For any coefficient G-module (*,D) the Fubini–
Lebesgue theorem implies that the map

Un : L∞
w∗(G

n,D) −→ L∞
w∗(G

n+1,D)G

defined almost everywhere by

(Unf)(g0, . . . , gn) = *(g0)f(g−1
0 g1, . . . , g

−1
n−1gn)

is an isomorphism. Since Un is natural in D with respect to G-morphisms,
it intertwines (2) with

0 −→ L∞
w∗(G

n, A) α∗−−−→ L∞
w∗(G

n, B)
β∗−−→ L∞

w∗(G
n, C) −→ 0 , (3)

in particular the case n = 0 is clear. For n > 0, the exactness in the middle
follows from the open mapping theorem and hence the only non-trivial
point is the surjectivity of β∗ in (3). Denoting β� : C� → B� the map of
pre-duals to which β is adjoint, this amounts to the injectivity of the map
of Bochner L1 spaces

β�∗ : L
1(Gn, C�) −→ L1(Gn, B�) ,

where we recall that it is the Dunford–Pettis theorem [DuS, VI.8] that
yields the duality between L1(Gn, C�) and L∞

w∗(Gn, C). ✷
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Remark 1.6.5. The property of the predual L1 spaces that we used in the
proof of Lemma 1.6.3 actually characterizes such spaces [Gro2].

Applying Proposition 1.6.1 and Corollary 1.5.5 to the sequence

0 −→ F −→ L∞
w∗(G,F ) −→ L∞

w∗(G,F )/F −→ 0 ,

we deduce the dimension shifting statement

Corollary 1.6.6. There is for all n ≥ 1 an isomorphism Hn+1
cb (G,F ) ∼=

Hn
cb

(
G,L∞

w∗(G,F )/F
)
. ✷

1.7 Alternating and continuous cochains. Let S be a regular G-
space, E a coefficient G-module, and consider the complex

0 −→ E −→ L∞
w∗,alt(S,E) −→ L∞

w∗,alt(S
2, E) −→ L∞

w∗,alt(S
3, E) −→ · · ·

of alternating bounded measurable cochains; the contracting homotopy of
Lemma 1.5.6 preserves this subcomplex. The inclusions

ιn : L∞
w∗,alt(S

n+1, E) ⊂ L∞
w∗(S

n+1, E)

determine isometric isomorphisms at the level of cohomology because the
usual alternation operators

Altn =
1

(n+ 1)!

∑
π∈Sn+1

sign(π)π∗ (π∗(·) = · ◦ π−1) ,

where the symmetric group Sn+1 acts by permutation of the coordinates,
are norm one G-homotopy inverses for the inclusions.

When the module E is a separable Banach space, the usual regulariza-
tion procedure establishes a G-homotopy equivalence between the standard
resolution and the subcomplex of (norm-)continuous cochains. That is, the
complex

0 −→ Cb(G,E)G −→ Cb(G2, E)G −→ Cb(G3, E)G −→ · · ·
ofG-invariant continuous bounded cochains realizes the continuous bounded
cohomology H•

cb(G,E) in the sense that the inclusions

Cb(Gn+1, E) ⊂ L∞(Gn+1, E)

induce isometric isomorphisms at the level of cohomology. The proof can
be taken verbatim from our Proposition 2.4 in [BuM1].

Since Altn preserves continuity, one can also use the the subcomplex of
alternating G-invariant continuous bounded cochains.
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1.8 Cup product. A pairing of Banach G-modules is a triple (A,B,C)
of Banach G-modules together with a G-morphism

A⊗̂B −→ C

of norm one. Echoing the usual Alexander–Whitney construction, we get
a graded bilinear map

∧ : H•
cb(G,A) ×H•

cb(G,B) −→ H•
cb(G,C) (4)

for all coefficient Banach G-modules A,B,C. Indeed, the coefficient pairing
induces a pairing (symmetric cochain cup product)

× : L∞
w∗(G

n+1, A) ⊗̂L∞
w∗(G

m+1, B) −→ L∞
w∗(G

n+m+1, C)
defined almost everywhere by

α× β(x0, . . . , xn+m) =
〈
α(x0, . . . , xn)|β(xn, . . . , xn+m)

〉
and which restricts to the respective maximal continuous submodules. The
symbol ∧ denotes both the antisymmetrized version of × on the graded
group of alternating cochains and the quotient structure (4). The same
construction is retained for non-topological groups.

According to these definitions, the natural map intertwines the bounded
cup product with the usual one. In particular, for trivial coefficients, the
natural map H•

b → H• (or H•
cb → H•

c) determines a natural transformation
of contravariant functors from the category of groups (respectively locally
compact second countable groups) to the category of graded algebras.

As an illustration, we present the following remark.
Proposition 1.8.1. Let ω ∈ H2

b(T ) be the Euler class for Thompson’s
simple group T . Then the n-fold cup product ω ∧ . . . ∧ ω is non-trivial in
H2n
b (T ) for all n.

Recall that

T =
〈
a, b, c

∣∣ [ab−1, a−1ba], [ab−1, a−2ba2], c−1ba−1cb ,

(a−1cba−1ba)−1ba−2cb2, a−1c−1(a−1cb)2, c3
〉

can be viewed as the group of all orientation preserving piecewise affine
transformations of R/Z which have dyadic breaking points and whose
slopes are integral powers of two. We refer to [CFP] for a careful intro-
duction to this group.
Proof of Proposition 1.8.1. Since the cup product preserves boundedness
and the natural map is an algebra morphism, the statement reduces to the
corresponding assertion for the image of ω in H2n(T ). For rational coeffi-
cients, this is a result of É. Ghys and V. Sergiescu ([GhS, Théorème D]).
One concludes with the dual universal coefficients theorem. ✷
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1.9 Remarks on Banach algebra cohomology. Let G be a locally
compact second countable group and E a separable continuous Banach G-
module. Then the continuous bounded cohomology H•

cb(G,E�) coincides
with Johnson’s Banach algebra cohomology H•(L1(G), E�) (see Proposi-
tion 2.3 in [Jo]), for which Johnson’s memoir does not give a functorial
characterization.

After the completion of the present paper, we became aware of Helem-
skĭı’s monographs [H1] and [H2], where Johnson’s cohomology is character-
ized by an analogue of the classical derived functors Ext•.

We have seen in section 1.2 how E� can be given the structure of a
Banach L1(G)-module; E� is not neo-unital in general, but CE� is so. Now
if E� is relatively injective in the sense of Definition 1.4.2, then one can check
that it is an injective L1(G)+-module in the sense of Definition III 1.13 in
[H1]. Here L1(G)+ is the unitized algebra L1(G) ⊕C (endowed with sum
norm) and our claim relies on the fact that the canonical morphism

(L1(G)+)∗ −→ (L1(G))∗

is a retraction over L1(G) since L1(G) admits a bounded approximate iden-
tity.

The above gives a connection between continuous bounded cohomology
and Banach cohomology, although the latter does not carry with it any
isometric information of the kind of our Theorem 2.
Warning. The interplay between Banach G-modules and L1(G)-mod-
ules is not as straightforward as is sometimes assumed in the literature:
of basic importance in Banach algebra cohomology are L1(G)-morphisms
defined on the L1(G)-module L∞(G), in particular morphisms which are
not weak-* continuous. The (generally non-continuous) corresponding G-
module L∞(G) admits G-morphisms that are not L1(G)-morphisms. An
example of this situation is given by W. Rudin in [R, Theorem 4.1]. Our
Theorem 2.2.4 gives an instance where such phenomena are ruled out.

2 Amenable Actions

2.1 Amenability. To begin with, we remark that some amenability
issues already came in through the back door while we were discussing
relative injectivity.

To make this more precise, we consider for a while a discrete group Γ,
and recall that Γ is said to be amenable if one of the following two equivalent
conditions holds:
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(A1) Every non-empty convex compact Γ-invariant subset of a Fréchet
space on which Γ acts by continuous linear operators contains a fixed
point.

(A2) There is an invariant mean on �∞(Γ), i.e. there is a Γ-invariant left
inverse of norm one to the natural inclusion R→ �∞(Γ).

Now let E be a Banach Γ-module; the natural inclusion E → �∞(Γ, E)
is an admissible embedding since the evaluation at any fixed element of Γ
yields a (non-equivariant) left inverse of norm one. Therefore, considering
the diagram

E
� � ��

��
��

��
��

��
��

��
��

�∞(Γ, E)




E

we see that if E happens to be relatively injective, then we have indeed an
equivariant mean on �∞(Γ, E), that is, a Γ-equivariant left inverse of norm
one to the natural inclusion E → �∞(Γ, E).

Conversely, since for discrete groups �∞(Γ, E) is relatively injective re-
gardless of the nature of the Banach Γ-module E (see [Iv, Lemma 3.2.2]),
the presence of such an equivariant mean forces E to be relatively injective
by Lemma 1.4.4. Thus we have shown

Proposition 2.1.1. Let Γ be a discrete group and E a Banach Γ-module.
The following assertions are equivalent:

(i) E is relatively injective.

(ii) There is an equivariant mean on �∞(Γ, E).

In particular, the trivial module R (or C) is relatively injective if and only
if Γ is amenable. ✷

2.2 A characterization of amenable actions. The purpose of this
section is twofold: generalize the above proposition to locally compact
groups (which draws us into the issues of section 1.2), and give a connection
with amenable actions. With this in mind, we recall now how R.J. Zimmer
defined amenable group actions, generalizing the idea of (A1) above:

Definition 2.2.1 (Zimmer). Let G be a locally compact group and S a
standard Borel space with measure class preserving Borelian G-action. The
G-action on S is said to be amenable if for every separable Banach space
E and every Borelian (right) cocycle α : S × G → Isom(E) the following
holds for the dual α∗-twisted action on E∗:
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Any α∗-invariant Borelian field {As}s∈S of non-empty convex weak-*
compact subsets As of the unit ball in E∗ admits an α∗-invariant Borelian
section.

For more details, see [Z3]; it is important to us to have at our disposal
a criterion more in the spirit of (A2). Despite Zimmer’s early partial result
in [Z1], the task has been completed only quite recently:

Theorem 2.2.2 (Zimmer, Adams–Elliott–Giordano). Let G be a locally
compact separable group and S a regular G-space. The following assertions
are equivalent:

(i) G acts amenably on S.

(ii) The canonical inclusion L∞(S) → L∞(G × S) admits a left inverse
G-morphism of norm one.

Proof. (i)⇒(ii) is Theorem 3.4 in [AEG], while for (ii)⇒(i), according
to [AEG], the proof in [Z1] with G discrete holds without change in the
continuous case. ✷

Remarks 2.2.3. (i) In the references given, the second condition above is
expressed in terms of conditional expectations; both formulations are easily
seen to be equivalent.

(ii) The above theorem is already contained in S. Adam’s unpublished
notes [A].

An important step in the proof of Theorem 1 is the following Theo-
rem 2.2.4, which can be considered as a generalization of both Proposi-
tion 2.1.1 and of a classical result of Greenleaf to our Banach setting. How-
ever, difficulties arise from the lack of continuity of the coefficient space;
we will tackle them with Proposition 1.2.2.

Analogously to the classical scalar case, we say that a mean on a func-
tion space is a continuous linear left inverse of norm one to the coefficient
inclusion.

Theorem 2.2.4. Let G be a locally compact second countable group and
(π,E) a coefficient G-module.

The following assertions are equivalent:

(i) (π,E) is a relatively injective Banach G-module.

(ii) There is a G-equivariant mean m : L∞
w∗(G,E)→ E.

(iii) There is a G-equivariant mean m : CL∞
w∗(G,E)→ CE.

(iv) There is an L1(G)-equivariant mean m : L∞
w∗(G,E)→ E.

(v) There is an L1(G)-equivariant mean m : CL∞
w∗(G,E) → CE.
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Proof. Recall the notation (π�, E�) of Definition 1.1.2, so that λπ = λ�
π� .

Among the equivalences of the conditions (ii) to (v), the crux is the impli-
cation

(v)⇒(iv): fix an L1(G)-equivariant mean m : CL∞
w∗(G,E) → CE and

some bounded approximate identity (ϕ) on G. The Proposition 1.2.2 ap-
plied to L∞

w∗(G,E) allows us to consider the composition

mλπ(ϕ) : L∞
w∗(G,E) −→ CE ⊂ E

(see Remark 1.3.3). Using the identification

L
(
L∞
w∗(G,E), E

) ∼= (
L∞
w∗(G,E)⊗̂E�

)∗
,

we apply the theorem of Bourbaki–Alaoğlu and conclude to the existence
of an (other) approximate identity (ψ) such that for all f ∈ L∞

w∗(G,E) the
net mλπ(ψ)f weak-* converges in E to some element that we denote by mf .
It is straightforward that this yields a linear operator m : L∞

w∗(G,E) → E
with ‖m‖ ≤ 1. If f has constant essential value w ∈ E, then λπ(ψ)f is
essentially constant of value π(ψ)w; applying now Proposition 1.2.2 to E,
π(ψ)w is in CE and hence mλπ(ψ)f equals π(ψ)w, which weak-* converges
to w.

Thus it remains only to show that m is L1(G)-equivariant. For
ϕ ∈ L1(G) and f ∈ L∞

w∗(G,E), we have that mλπ(ϕ)f is the weak-* limit
of mλπ(ψ ∗ ϕ)f , whilst for all u ∈ E�〈

mλπ(ϕ ∗ ψ)f |u
〉
=

〈
π(ϕ)mλπ(ψ)f |u

〉
=

〈
mλπ(ψ)f |π�(ϕ∼)u

〉
→

〈
mf |π�(ϕ∼)u

〉
=

〈
π(ϕ)mf |u

〉
,

where in the very first equality we used the Lemma 1.2.1 applied to
L∞
w∗(G,E) in order to commute m with λπ(ϕ) according to the hypoth-

esis (v).
This shows that mλπ(ϕ)f − π(ϕ)mf is the weak-* limit of

mλπ(ψ ∗ ϕ− ϕ ∗ ψ)f . On the other hand, since our approximate iden-
tity is two-sided, ψ ∗ ϕ − ϕ ∗ ψ norm converges to zero in L1(G). The
continuity of the contragredient algebra-representation thus implies that
λπ(ψ ∗ ϕ − ϕ ∗ ψ)f , hence also mλπ(ψ ∗ ϕ − ϕ ∗ ψ)f , converge to zero in
norm. Putting everything together, we conclude that mλπ(ϕ)f = π(ϕ)mf ,
completing the proof of (v)⇒(iv).

(iv)⇒(ii): let m be an L1(G)-equivariant mean L∞
w∗(G,E) → E; we

claim that m is actually G-equivariant. Indeed, let f ∈ L∞
w∗(G,E) and

g ∈ G and fix a bounded approximate identity (ψ). Now mλπ(g)f is the
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weak-* limit of
π(ψ∼)mλπ(g)f = mλπ(ψ∼)λπ(g)f = mλπ((λ(g−1)ψ)∼)f

= π
(
(λ(g−1)ψ)∼

)
mf = π(ψ∼)(π(g)mf) ,

which converges weak-* to π(g)mf .
(ii)⇒(iii) is obvious.
(iii)⇒(v): let m be as in (iii). Since CL∞

w∗(G,E) is continuous and G
separable, Pettis’ theorem implies that the Gelfand–Dunford integral is a
Bochner integral, hence commutes with m. Thus conditions (ii) to (v) are
equivalent.

(i)⇒(iii): considering the diagram

CE � � ι ��

��
��

��
��

��
��

��
��

CL∞
w∗(G,E)

m?��
CE

we see that it is enough to show that ι is admissible. But this is exactly
the content of the initial claim in the proof of Lemma 1.5.6 (with S = G
and F = E).

(ii)⇒(i) (or (iii)⇒(i), see Remark 1.4.3): combine Proposition 1.4.6 with
Lemma 1.4.4. This completes the proof of the Theorem 2.2.4. ✷

Proof of Theorem 1. (i)⇒(iii): by the Proposition 4.3.4 of [Z3], G
acts amenably on Sn+1, so that we may as well suppose n = 0. Using
Theorem 2.2.2, we get a left inverse G-morphism m0 of norm one to the
inclusion of L∞(S) in L∞(G× S). For every f ∈ L∞

w∗(G× S,E) we define
a bilinear form mf on L1(S)× E� by

mf(ψ, v) =
〈
m0〈f(·)|v〉

∣∣ψ〉
(ψ ∈ L1(S) , v ∈ E�) .

The estimate |mf(ψ, v)| ≤ ‖f‖∞·‖v‖E� ·‖ψ‖1 shows at once that the bilinear
form mf is continuous and that the corresponding linear map

m : L∞
w∗(G× S,E) −→

(
L1(S)⊗̂E�

)� ∼= L∞
w∗(S,E)

is continuous of norm at most one. Using the relation〈
λπ(g)f(·)|v

〉
= λ(g)

〈
f(·)|π�(g−1)v

〉
,

one checks readily that m is G-equivariant. Recalling that the pairing on
L∞
w∗(S,E)×L1(S)⊗̂E� is obtained by Gelfand–Dunford integration over S

of the pairing on E × E�, one verifies that m is a left inverse G-morphism
to the inclusion of L∞

w∗(S,E) in L∞
w∗(G × S,E). Now by Corollary 1.4.7,

L∞
w∗(G× S,E) is relatively injective; finally apply Lemma 1.4.4.
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(iii)⇒(ii) is obvious.
(ii)⇒(i): set E = L∞(S) in Theorem 2.2.4 to deduce the existence

of an equivariant mean on L∞
w∗(G,E). Using the canonical identification

L∞
w∗(G,L∞(S)) ∼= L∞(G×S), this is the same as a left inverse G-morphism

of norm one to the canonical inclusion L∞(S)→ L∞(G×S). Thus we may
apply the Theorem 2.2.2. ✷

Remark 2.2.5. The statement of Theorem 1 does not hold for arbitrary
Banach G-modules in condition (iii). Indeed, G.A. Noskov considers in
[N1] the Banach Z-module Aµ

ρ of 2π-periodic functions that are analytic
in the strip |im(z)| < ρ (ρ > 0) and continuous in the closure of the strip,
endowed with the translation by multiples of 2πµ (µ ∈ R) and sup-norm.
He shows that results of Arnold imply dimH1

b(Z,Aµ
ρ ) = ∞ for 2ℵ0 many

µ ∈ R (we read Arnold’s relevant results in the translation [Ar1, chap. 3
§12]; there is an English version [Ar2]).

Now Z acts amenably on S = one point, so that if L∞(Sn+1,Aµ
ρ) were

injective, the general principles of section 1.5 would imply H1
b(Z,Aµ

ρ ) = 0.

Remark 2.2.6. Suppose S is an amenable G-space and N ✁ G a normal
closed subgroup. Let T be the point realization of L∞(S)N . By Theorem 1,
L∞(S) is G-relatively injective. This implies immediately that L∞(S)N is
G/N -relatively injective, and so applying again Theorem 1 we conclude
that T is an amenable G/N -space.

2.3 Relatively injective resolutions and the semi-norm. Let G be
a locally compact second countable group and E a coefficient G-module.
The outcome of the functorial constructions of section 1.5 is that for any
strong relatively injective resolution E• there is a natural isomorphism of
topological vector spaces between the associated cohomology of invariants

EG
• : 0 −→ EG

0 −→ EG
1 −→ EG

2 −→ · · ·
and H•

cb(G,E); however, this isomorphism is in general not isometric – we
recall that the semi-normed spaces Hn

cb(G,E) are defined via the standard
resolution. The point is that the G-morphisms of complexes granted by
Corollary 1.5.3 need not preserve the norm since the coboundary maps are
in general not of norm one (the standard dn is of norm n+ 1).

Since the semi-norm is an important cohomological invariant, we shall
show that the natural isomorphisms are isometric in the case of resolutions
on amenable regular G-spaces (Corollary 2.3.2 below). This is due to the
tensorial nature of the standard coboundary; the technical ingredient is the
following proposition.
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Proposition 2.3.1. Let G be a locally compact second countable group
and S, T regular G-spaces. If there is a norm one G-morphism m0 :
L∞(S) → L∞(T ) such that m0(11S) = 11T , then for every coefficient G-
module E there is a G-morphism of complexes

0 �� E �� L∞
w∗(S,E) ��

m0,E

��

L∞
w∗(S2, E) ��

m1,E

��

L∞
w∗(S3, E) ��

m2,E

��

· · ·

0 �� E �� L∞
w∗(T,E) �� L∞

w∗(T 2, E) �� L∞
w∗(T 3, E) �� · · ·

with all mn,E of norm at most one.

Proof. Choose measures µ, ν on S, T as in Definition 1.3.1 and consider the
corresponding canonical isometric G-equivariant isomorphisms

L
(
L∞(S), L∞(T )

) ∼= (
L∞(S)⊗̂L1(T )

)� ∼= L(
L1(T ), L∞(S)�

)
.

Denote by m′
0 the invariant element of the closed unit ball in the right-hand

side which corresponds to m0. One can fix a directed set A such that for
each ϕ ∈ L1(T ) there is a net (Mα

0 (ϕ))α∈A in L1(S) converging weak-* in
its bi-dual L∞(S)� to m′

0(ϕ). Moreover, we may suppose µ(Mα
0 (ϕ)) = ν(ϕ)

since m0(11S) = 11T . Let n ≥ 0 and write Cn,E for the closed unit ball of
L∞
w∗(Sn+1, E) endowed with the weak-* topology which is part of the data

of the coefficient module E. The product space

C =
∞∏
n=0

∏
ϕj∈L1(T )

0≤j≤n

∏
v∈E�

Cn,E

is compact by the theorems of Bourbaki–Alaoğlu and Tychonoff. We define
a net (Mα

n,E)α∈A in C by assigning to Mα
n,E(ϕ0, . . . , ϕn, v) the image of

Mα
0 (ϕ0)⊗ · · · ⊗Mα

0 (ϕn)⊗ v ∈ L1(Sn+1, E�)
under the canonical embedding into the bi-dual. By compactness of C,
there is an accumulation point (m′

n,E)
∞
n=0, which must be linear in v and

the ϕj . Therefore, we view it as simultaneous weak-* accumulation points
m′
n,E of nets (Mα

n,E)α∈A in

L
(
L1(T )⊗̂ · · · ⊗̂L1(T )⊗̂E�, L∞

w∗(S
n+1, E)�

)
.

We claim that the mapsmn,E corresponding to m′
n,E under the identification

of the latter space with
L

(
L∞
w∗(S

n+1, E), L∞
w∗(T

n+1, E)
)

have all required properties. The only point that is not an immediate
consequence of the weak-* continuity of the G-module structures is that
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the coboundaries intertwine mn,E with mn−1,E. We shall actually show
that each summand dn,j of the coboundary dn (see section 1.5) intertwines
them. Under the above identification, this reduces to show that for every
ϕ ∈ L1(T ), ψ ∈ L1(T n, E�) and χ ∈ L∞

w∗(Sn, E) the relation
m′
n,E(ϕ⊗ ψ)(11S ⊗ χ) = 〈11T |ϕ〉m′

n−1,E(ψ)(χ) (5)
holds. Indeed, the standard coboundary map is but an alternating sum of
various tensorisations against 11, and our definition of mn,E is compatible
with permutation of the factors. We conclude the proof with the remark
that (5) follows from

Mα
0 (ϕ)(11S) = µ(Mα

0 (ϕ)) = ν(ϕ) = 〈11T |ϕ〉 . �

Corollary 2.3.2. Let G be a locally compact second countable group,
S an amenable regular G-space and E a coefficient G-module. Then the
canonical isomorphism between H•

cb(G,E) and the cohomology of the com-
plex

0 −→ L∞
w∗(S,E)

G −→ L∞
w∗(S

2, E)G −→ L∞
w∗(S

3, E)G −→ · · ·
of bounded measurable invariant cochains is isometric. The same holds for
the subcomplex of alternating bounded measurable invariant cochains.

Proof. Since the inclusions ιn and alternation operators Altn of section 1.7
are of norm one, it is sufficient to consider the non-alternating complexes. In
this case, an application of the Proposition 2.3.1 (with T = G) provides us
with a G-morphism of complexes of norm at most one. By Corollary 1.5.3,
the corresponding cohomology map is the canonical isomorphism, which is
thus of norm at most one. Interchanging the rôle of S and T , we conclude
that the canonical isomorphism has an inverse of norm at most one and
thus is isometric. ✷

This completes the proof of Theorem 2 stated in the Introduction.

2.4 Restriction and inflation. LetH be a closed subgroup of a locally
compact second countable group G, and let E be a coefficient G-module;
the inclusion H → G induces a dual Banach H-module structure on E.
The corresponding natural cohomology map in the sense of section 1.5 is
called the restriction

res : H•
cb(G,E) −→ H•

cb(H,E) .
By Theorem 1 and Lemma 1.5.6, a strong relatively injective resolution for
the H-module E is given by the spaces L∞

w∗(Gn+1, E) viewed as H-modules
because G is an amenable regular H-space. Therefore the restriction map
is induced by the inclusions

L∞
w∗(G

n+1, E)G −→ L∞
w∗(G

n+1, E)H (n ≥ 0) .
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Applying the Corollary 2.3.2, it is apparent on this realization that the
restriction map does not increase the semi-norm.

For usual cohomology (resp. continuous cohomology) of groups, it is
well known that the restriction is injective if H is of finite index (resp. co-
compact with invariant measure on the quotient). In bounded cohomology,
we have a stronger statement:

Proposition 2.4.1. Let H be a closed subgroup of a locally compact
second countable group G. If there is a (right) invariant mean on L∞(H\G),
then the restriction

res : H•
cb(G,E) −→ H•

cb(H,E)

is isometrically injective for every coefficient G-module (π,E).

Proof. Recall that an invariant mean m is an invariant norm one linear form
on L∞(H\G) satisfying m(11) = 1. We shall show that there is a transfer
map

transm : H•
cb(H,E) −→ H•

cb(G,E)

such that transm ◦ res = Id .

First we claim that for every coefficient G-module F there is an adjointly
natural G-equivariant mean

mF : L∞
w∗(G/H,F ) −→ F .

By adjointly natural, we mean that any adjoint G-morphism α : F → F ′

of coefficient G-modules induces a commutative diagram

L∞
w∗(G/H,F )

mF ��

α∗
��

F

α

��
L∞
w∗(G/H,F ′)

mF ′ �� F ′

Mind that mF itself is not adjoint in general.
Indeed, if for f ∈ L∞

w∗(G/H,F ) and u in the chosen predual F � of F
we define fu ∈ L∞(G/H) almost everywhere by fu(·) = 〈f(·)|u〉, we obtain
the desired mF by 〈mF (f)|u〉 = m(fu); as F � is separable, it is enough
to consider countably many elements u, settling the “almost everywhere”
problem. If now α : F → F ′ is as above, with predual α� : F ′� → F �, we
check for v ∈ F ′� the relation〈

αmF (f)|v
〉
=

〈
mF (f)|α�v

〉
= m(fα�v) = m(α∗fv) =

〈
mF ′(α∗f)|v

〉
,

where the third equality follows from 〈f(·)|α�v〉 = 〈(α∗f)(·)|v〉. This proves
the claim.
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Now the functoriality implies that the restriction Hn
cb(G,E)→ Hn

cb(H,E)
is realized, together with its operator semi-norm, by the inclusion ι• of com-
plexes

0 �� L∞
w∗(G,E)G ��

� �

ι0

��

L∞
w∗(G2, E)G ��

� �

ι1

��

L∞
w∗(G3, E)G ��

� �

ι2

��

· · ·

0 �� L∞
w∗(G,E)H �� L∞

w∗(G2, E)H �� L∞
w∗(G3, E)H �� · · ·

We set Fn = L∞
w∗(Gn+1, E) and consider the corresponding maps mFn . We

define for every f ∈ (Fn)H the element τnf of L∞
w∗(G/H,Fn) by τnf(gH) =

λπ(g)f . One checks that the norm one map

τn : (Fn)H −→ L∞
w∗(G/H,Fn)

ranges actually in L∞
w∗(G/H,Fn)G; moreover one has τnιn = ε. Composing

τn with mFn , we see that we have obtained a norm one left inverse transnm =
mFnτn to the inclusion ιn realizing the restriction since

transnmι
n = mFnτnιn = mFnε = Id .

On the other hand, we have τndn = (dn)∗τn−1 so that the naturality claim
above ensures that mF •τ• is a morphism of complexes because the differen-
tials d• are adjoint maps. Therefore it induces a left inverse of semi-norm
at most one

transm : H•
cb(H,E) −→ H•

cb(G,E)

to the restriction, finishing the proof. ✷

As an example, we remark that if Γ < G is a non-uniform lattice, then
H•
cb(G)→ H•

b(Γ) is injective, while H
•
c(G)→ H•(Γ) needs not be so.

For any closed normal subgroup N ✁ G and coefficient G-module E,
the G/N -action on H•

cb(N,E) is defined as follows. Let S be any regular
G-space on which the N -action is amenable; for instance, one can take for
S any amenable G-space. Then the coefficient G-modules L∞

w∗(Sn+1, E)
are N -relatively injective. The complex

0 −→ L∞
w∗(S,E) −→ L∞

w∗(S
2, E) −→ L∞

w∗(S
3, E) −→ · · ·

computing H•
cb(N,E) according to Theorem 2 inherits a G/N -action. It

follows from the functoriality that the corresponding isometric action on
cohomology does not depend upon the choice of S. Using a classical argu-
ment, one moreover shows that the same action is induced by the G-action
R on L∞

w∗(Nn+1, E) defined by

R(g)f(x0, . . . , xk) = π(g)f(g−1x0g, . . . , g
−1xkg) . (6)



Vol. 12, 2002 BOUNDED COHOMOLOGY AND RIGIDITY 255

Therefore the functoriality implies that the restriction ranges always in the
space of G/N -invariant classes. However, even for co-compact subgroups, it
is not clear whether the range of the restriction is actually the whole of the
G/N -invariants: the difficulty here comes from the fact that the continuous
bounded cohomology might not be Hausdorff, so that one cannot integrate
over G/N unless this quotient is discrete. This latter case will nevertheless
be of use later.
Proposition 2.4.2. Let N ✁ G be a finite index closed normal subgroup
of the locally compact second countable group G, and let E be a coefficient
G-module. Then the restriction

res : Hn
cb(G,E) −→ Hn

cb(N,E)G/N

is an isometric isomorphism onto Hn
cb(N,E)G/N for all n ≥ 0.

Proof. The transfer is now just the averaging over G/N , exactly as in usual
cohomology (see e.g. Proposition III.10.4 in [Bro]), so the classical proof
goes through without changes. ✷

3 Double Ergodicity

3.1 We fix notation for the following important classes:
Definition 3.1.1. We write XHilb for the class of all unitary coeffi-
cient modules (i.e. continuous unitary representations in separable Hilbert
spaces). Likewise, Xrefl is the class of all reflexive coefficient modules and
Xsep the class of all separable coefficient modules. Finally, Xcont denotes
the class of all continuous coefficient modules.

We observe
XHilb ⊂ Xrefl ⊂ Xsep ⊂ Xcont . (7)

The only non-trivial inclusion is the last one, which follows from Proposi-
tion 1.1.4.

3.2 Basics on double ergodicity. We observe first that if F #= 0 is a
coefficient G-module with trivial G-action and S a regular G-space, then
the G-action is ergodic on S×S if and only if S is doubly F -ergodic: indeed
it is enough to evaluate functions S × S → F on a countable dense subset
of the pre-dual of F .

Moreover, one checks readily the
Lemma 3.2.1. (i) Let X be a class of coefficient modules, G1, G2 locally
compact groups and S1, S2 doubly X-ergodic G1- respectively G2-spaces.
Then S = S1 × S2 is a doubly X-ergodic G-space for G = G1 ×G2.
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(ii) Suppose X is closed under taking weak-* closed submodules (e.g.
any of Xcont, Xsep, Xrefl or XHilb). Let G be a locally compact group, H ✁G
a closed normal subgroup and S a regular G/H-space. Then the G/H
action on S is doubly X-ergodic if and only if the G-action on S defined
via G→ G/H is also doubly X-ergodic. ✷

In connection with (i), we recall that if the Gi-action on Si is amenable
for i = 1, 2 then the G-action on S is amenable. Concerning (ii), recall that
if S is an amenable G/H-space, then the corresponding G-action on S is
amenable if and only if H is amenable.

The basic instances motivating our definition of double ergodicity are
consequences of the Mautner property:
Proposition 3.2.2. Let G be a connected semi-simple real Lie group
and P < G a parabolic subgroup. Then the G action on G/P is doubly
Xcont-ergodic.

Proposition 3.2.3. Let T be a locally finite regular or bi-regular tree,
G its group of automorphisms and P the stabilizer of a point at infinity.
Then the G-action on G/P is doubly Xcont-ergodic.

Proof of Propositions 3.2.2 and 3.2.3. In both cases, the ordinary er-
godicity on G/P ×G/P is just a consequence of a Bruhat decomposition.
It is then the classical Mautner lemma that comes in to imply the double
XHilb-ergodicity: see II.3 in [M] for the Lie group case and [LM] for the tree
case. The proof extends without changes to Xcont. ✷

An important closure property is the following.
Proposition 3.2.4. Suppose X is either XHilb, Xrefl or Xsep. Let G be
a locally compact second countable group, S a doubly X-ergodic G-space
and H < G a closed subgroup. If H\G admits a finite invariant measure,
then the H-action on S is also doubly X-ergodic.

The proof of the above proposition involves induction:
Let (π, F ) be any coefficient H-module and G,H,S as in Proposi-

tion 3.2.4. Since π is isometric, any H-equivariant map f : G → F yields
a well defined function ‖f‖F : H\G→ R which is measurable since F has
separable pre-dual. Now define the L2 induction module L2IndGHF to be
the space of those H-equivariant elements f for which ‖f‖F is in L2(H\G),
endowed with the right translation G-action.
Lemma 3.2.5. Suppose X is either XHilb, Xrefl or Xsep. Then the norm
‖(‖f‖F )‖2 turns L2IndGHF into a coefficient G-module which belongs to
the class X.
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Proof of the lemma. Consider the separable pre-dual F � of F and recall
that by the inclusions (7), the module F is continuous. At the level of Ba-
nach spaces, we have an isometric isomorphism L2IndGHF ∼= L2(H\G,F ).
In the cases considered for X, F has the Radon–Nikodým property (see [DU,
VII 7]). Therefore, there is a canonical isometric isomorphism L2(H\G,F ) =
L2(H\G,F �)∗ (Theorem 1 in [DU, IV 1]). It remains only to verify that
the G-action on L2IndGHF is continuous, because the above identification
shows then at once that L2IndGHF is a coefficient module and is in X. But
the separability of F entails that elements of L2IndGHF are Bochner mea-
surable, hence normic limits of uniformly continuous maps G→ F , whence
the continuity. ✷

We pick now a weak-* measurable H-equivariant map f : S × S → F .
The idea is to associate to f an induced map if on S × S ranging in the
space of H-equivariant maps G→ F , defined by the formula

if(s, t)(g) = f(gs, gt) (s, t ∈ S , g ∈ G) . (8)

Then if is obviously G-equivariant with respect to right translations in the
image. However we have still to show that if ranges in L2IndGHF . To this
end, it is sufficient to show that H is ergodic on S × S, since then ‖f‖F is
constant and thus if is bounded, hence in L2IndGHF .

Lemma 3.2.6. The H-action on S × S is ergodic.

Proof of the lemma. To test ergodicity, it is enough to consider a bounded
H-invariant measurable function b : S × S → C. This time ib ranges
in L2IndGHC ∼= L2(H\G) and the assumption on S implies that ib, hence
also b, is essentially constant. ✷

Now we can present the

End of proof of Proposition 3.2.4. For an H-equivariant weak-* measur-
able map f : S × S → F , the induced map if : S × S → L2IndGHF is
weak-* measurable by Fubini–Lebesgue, so by Lemma 3.2.5 we may apply
the assumption on S and conclude that if is essentially constant. In con-
sequence, its essential value in L2IndGHF is of the form v11G for some v ∈ F
and hence f is essentially constant too. ✷

3.3 The group G�. First some notation.
If G is a group and H < G a subgroup, ZG(H) denotes the centralizer

of H in G while Z(H) is the centre of H. If H ✁ G is normal, we denote
by KG(H) the kernel of the representation G→ Out(H) of G in the group
of outer automorphisms of H. Thus KG(H) = H.ZG(H) = ZG(H).H and
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there are canonical quotient maps KG(H)→ ZG(H)/Z(H) and KG(H)→
H/Z(H).

Let G be a locally compact group. The closure properties of the class
of amenable locally compact groups imply that there is a unique maximal
amenable closed normal subgroup A(G)✁G containing all amenable closed
normal subgroups of G. For a topological group G, the identity component
is denoted by G0.

Definition 3.3.1. Let G be a locally compact group. We define G∗ =
π−1

(
KL(L0)

)
, where L = G/A(G) and π : G→ L is the quotient map.

In other words, G∗ ✁G is the kernel of the representation G→ Out(L0)
defined through π : G→ L. Therefore, if G is connected, we have G∗ = G
because the map L → Out(L0) is trivial in view of L0 = L. On the other
extreme, if G is totally disconnected (for instance if G is discrete), we have
again G∗ = G: indeed, L is also totally disconnected (by Corollaire 3 in
[Bour3, III §4 No 6]); therefore L0 is trivial and G∗ = G.

Lemma 3.3.2. Let M be a closed normal subgroup of L = G/A(G). Then
A(M) is trivial.

Proof. The map π : G→ L yields a topological group extension

1 −→ A(G) ∩ π−1
(
A(M)

)
−→ π−1

(
A(M)

)
−→ A(M) −→ 1 .

The two extreme terms are amenable, hence π−1
(
A(M)

)
is amenable. Be-

ing further normal in G, it is contained in A(G). Therefore A(M) = 1. ✷

Using the solution to Hilbert’s fifth problem [MonZ] and the finiteness
of the group of outer automorphisms of connected semi-simple adjoint Lie
groups without compact factors, we deduce:

Theorem 3.3.3. Let G be a locally compact group and define L, G∗ as
above.

(i) G∗ is a topologically characteristic finite index open subgroup of G.

(ii) The group G∗/A(G) = KL(L0) is the topological direct product
L0.ZL(L0), and L0 is a connected semi-simple adjoint real Lie group
without compact factors.

Proof. Since L0 is a connected locally compact group, there is by [MonZ,
Theorem 4.6] a compact normal subgroup K ✁ L0 such that L0/K is a
connected real Lie group. Now A(L0) = 1 (Lemma 3.3.2) implies K = 1,
hence L0 is a connected real Lie group. The triviality of A(L0) implies
further that L0 is semi-simple, adjoint and without compact factors. In
this situation, the group Out(L0) is finite, so G∗ is open of finite index
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in G. Since L0 has trivial centre, the product L0.ZL(L0) is direct. It is
easy to see that G∗ is topologically characteristic. ✷

3.4 The totally disconnected case. Throughout this section, we let
G be a compactly generated totally disconnected locally compact group.

Let U < G be a compact open subgroup (which exists by Corollaire 1
in [Bour3, III §4 No 6]). Fix a compact generating set C of G such that
generality C = UCU . Define the graph g = (V,E) as follows (we use
J.-P. Serre’s conventions [S] for graphs). The set of vertices is V = G/U
and the set of edges is E = E+ %E+, where

E+ =
{
(gU, gcU) : g ∈ G , c ∈ C

}
with obvious boundary maps. The graph g is connected and regular of
finite degree r = |C/U |. Let Tr be a r-regular tree and Tr → g a simplicial
universal covering projection. The kernel of the G-action on g is K =⋂
g∈G gUg−1, which is compact and normal. For the group G1 = G/K, we

have an exact sequence
1 −→ π1(g) −→ G̃ −→ G1 −→ 1 ,

where G̃ is co-compact in Aut(Tr). Let ∂∞Tr be the boundary at infinity
of the tree Tr with its Aut(Tr)-action and let νr be the unique Stab(x0)-
invariant probability measure on Tr, where Stab(x0) is the stabilizer in
Aut(Tr) of some vertex x0 in Tr. We define now the probability G1-space
(B, ν) as the point realization of L∞(∂∞Tr)π1(g). Recall that B is a regular
G1-space given with a canonical C *-algebra isomorphism between L∞(B)
and the weak-* closed sub-C *-algebra L∞(∂∞Tr)π1(g) of L∞(∂∞Tr), the
isomorphism being induced by a measurable equivariant map ∂∞Tr → B.
We consider B as a regular G-space via the canonical map G→ G1.
Proposition 3.4.1. (i) The G-action on B is amenable.

(ii) The G-action on B is doubly Xsep-ergodic.
(iii) The G-space B is the Poisson boundary of an étalée measure on G.

Proof. The Aut(Tr)-action on ∂∞Tr is amenable, because ∂∞Tr is a homoge-
neous space with amenable stabilizers. Thus the G̃-action is also amenable,
and this implies that the G1 = G̃/π1(g)-action on (B, ν) is amenable (we
have pointed out in Remark 2.2.6 how this basic fact can be re-interpreted).
Therefore, the G-action is amenable since the kernel K of G→ G1 is com-
pact hence amenable.

As for point (ii), it is enough (Lemma 3.2.1) to show that the G1-ac-
tion on B is doubly Xsep-ergodic. If f : B × B → F is a G1-equivari-
ant weak-* measurable map to a separable coefficient G1-module F , we
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pull back through ∂∞Tr → B and obtain a weak-* measurable G̃-equivari-
ant f ′ : ∂∞Tr × ∂∞Tr → F . Applying successively Proposition 3.2.4 and
Proposition 3.2.3, we conclude that f ′ is essentially constant. Hence f is
essentially constant.

For (iii), it is enough to show that B is the Poisson boundary of an
étalée measure on G1. The space ∂∞Tr is the Poisson boundary of an
étalée probability measure µ on Aut(Tr), and thus also of an an étalée
probability measure µ̃ on the co-compact subgroup G̃. The projection
p : G̃→ G1 induces an étalée measure p∗µ̃ on G1, and it is straightforward
to check that f ∈ L∞(G1) is p∗µ̃-harmonic if and only if p∗f is a µ̃-harmonic
function in L∞(G̃). Thus, p∗ induces an isomorphism between the π1(g)-
invariant µ̃-harmonic function in L∞(G̃) and the p∗µ̃-harmonic functions in
L∞(G1). By the Poisson transform isomorphism of the latter with L∞(B),
this realizes B as the Poisson boundary of p∗µ̃. ✷

3.5 The general case.

End of proof of Theorem 6. Let G be a locally compact compactly gener-
ated group and adopt the notation of Theorem 3.3.3. Since G∗ is closed of
finite index in G, it is also compactly generated. Hence KL(L0) = G∗/A(G)
is compactly generated. By the second point of Theorem 3.3.3, KL(L0) =
L0.ZL(L0) is a direct product, which implies that ZL(L0) = KL(L0)/L0 is
a totally disconnected compactly generated locally compact group. There-
fore there is an amenable doubly Xsep-ergodic regular ZL(L0)-space B by
Proposition 3.4.1.

On the other hand, we know that L0 is a connected semi-simple adjoint
real Lie group without compact factors. Thus Proposition 3.2.2 provides
us with an amenable regular L0-space which is doubly Xcont-ergodic (this
space is of course nothing but the Furstenberg boundary of L0).

Applying Lemma 3.2.1, we conclude that the direct product KL(L0) =
L0.ZL(L0) admits an amenable regular KL(L0)-space S which is doubly
Xsep-ergodic.

We view now S as a G∗-space via the canonical map G∗ → G∗/A(G) =
KL(L0) and conclude by Lemma 3.2.1 that S is a doubly Xsep-ergodic G∗-
space. Moreover, the G∗-action is amenable because A(G) is amenable. ✷

Remark 3.5.1. In the above proof, the L0-space provided by Proposi-
tion 3.2.2 is the Poisson boundary of an étalée measure since it is just the
classical Furstenberg boundary of a semi-simple Lie group. On the other
hand, the corresponding statement for the ZL(L0)-space B is point (iii) in
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Proposition 3.4.1. Passing to the product, the KL(L0)-space S is the Pois-
son boundary of an étalée measure on KL(L0). It is a result of Kaimanovich
[K, Thm. 2] that this statement passes to amenable extensions; since G∗ is
by definition an amenable extension of KL(L0), we deduce that S is indeed
the Poisson boundary of an étalée measure on G∗.

As a first application of Theorem 6, we give the
Proof of Corollary 9. Retain the notation of Corollary 9 and let G∗ ✁ G
and S be as in Theorem 6. By Theorem 2, the spaces H•

cb(G
∗, E) and

H•
cb(G

∗, F ) together with the map induced by α : E → F are realized on
the complexes

0 �� L∞
w∗,alt(S,E)

G∗ ��

α∗
��

L∞
w∗,alt(S

2, E)G
∗ ��

α∗
��

L∞
w∗,alt(S

3, E)G
∗ ��

α∗
��

· · ·

0 �� L∞
w∗,alt(S, F )

G∗ �� L∞
w∗,alt(S

2, F )G
∗ �� L∞

w∗,alt(S
3, F )G

∗ �� · · ·

where α∗ is post-composition by α, and thus is injective in all degrees. The
doubleXsep-ergodicity implies L∞

w∗,alt(S
2,F )G

∗
=0 and hence L∞

w∗,alt(S
2,E)G

∗

is zero, too. As a first consequence, we have the vanishing of H1
cb(G

∗, F ) and
of H1

cb(G
∗, E). A second consequence is that H2

cb(G
∗, F ) is identified as a

closed subspace of L∞
w∗,alt(S

3, F )G
∗
, and likewise H2

cb(G
∗, E) as closed sub-

space of L∞
w∗,alt(S

3, E)G
∗
. This, together with the injectivity of α∗, proves

the corollary for G∗. The continuity and injectivity of the restriction from
G to G∗ (Proposition 2.4.1 or 2.4.2) implies that the corollary holds also
for G. ✷

3.6 Induction. We proceed now to establish Corollary 11, which is an
analogue of the Eckmann–Shapiro induction lemma (compare [Bl, Théo-
rème 8.7]). The straightforward L∞ induction isomorphism in (continuous)
bounded cohomology would take us away from continuous coefficient mod-
ules, therefore we have to use L2 induction. This is defined as follows. Let
H < G be a closed subgroup of the locally compact second countable group
G such that H\G admits a finite invariant measure, F a separable coef-
ficient H-module and S an amenable G-space. Then we define a cochain
map

i : L∞
w∗(S

n+1, F )H −→ L∞
w∗(S

n+1, L2IndGHF )G

by the formula (8) but for all n ≥ 0. In general, one cannot expect any
isomorphism in this setting; however, the double ergodicity implies:
Proposition 3.6.1. Let G be a compactly generated locally compact
second countable group and H < G a closed subgroup such that G/H has
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finite invariant measure. Let F be a separable coefficient H-module. Then
the L2 induction

i : H2
cb(H,F ) −→ H2

cb(G,L2IndGHF )
is injective.

Proof. Let G∗ < G and S be as in Theorem 6 and set H ′ = H ∩G∗. Since
G∗ is open in G, there is a restriction morphism

r : L2IndGHF −→ L2IndG
∗

H′F

making the following diagram commutative

H2
cb(H,F ) i ��

res

��

H2
cb(G,L2IndGHF )

r∗res
��

H2
cb(H

′, F ) i �� H2
cb(G

∗, L2IndG
∗

H′F )

Since H ′ is of finite index in H, the left restriction arrow is injective
(Proposition 2.4.2). Therefore, it is enough to show the injectivity of the
lower induction map. An element of its kernel is represented by a map
f in L∞

w∗(S3, F )H
′
such that if = db for some b in L∞

w∗(S2, L2IndG
∗

H′F )G
∗
.

By Fubini–Lebesgue, there is an H ′-equivariant weak-* measurable map
b′ : S2 → F such that ib′ = b holds almost everywhere, and hence f = db′.
It remains only to show that b′ is essentially bounded. But H ′ has finite
invariant co-volume in G∗, so by Lemma 3.2.6 the diagonal H ′-action on
S × S is ergodic. Since the map ‖b′‖F : S2 → R is measurable and H ′-
invariant, we conclude that the norm of b′ is essentially constant, hence
bounded. ✷

4 A Lyndon–Hochschild–Serre Sequence

4.1 Setup. Since we deal with second countable and hence σ-compact
groups, it is a well-known consequence of Baire’s category theorem that
the sequence 1 → N

ι−→ G → Q → 1 is topologically isomorphic to 1 →
ι(N)→ G→ G/ι(N) → 1 (see e.g. the Corollary 3.11 in [DoF, III]). Thus
we suppose from now on that N is a normal subgroup of G and that Q is
the quotient.

Lemma 4.1.2 below will serve as a pattern for the proof of the following:
Theorem 4.1.1. Let G be a locally compact second countable group,
N ✁ G a closed subgroup and Q = G/N the quotient. Let (π, F ) be a
coefficient G-module.
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If H1
cb(N,F ) = 0, then inflation and restriction fit into an exact sequence

0 −→ H2
cb(Q,FN ) inf−−−→ H2

cb(G,F ) res−−−→ H2
cb(N,F )Q −→

−→ H3
cb(Q,FN ) inf−−−→ H3

cb(G,F ) .

Observe that we make no assumption as to whether the spaces H2
cb are

Hausdorff.

We use standard notation for spectral sequences, see [GM, section III.7].
Let S be an amenable regular G-space and T an amenable regular Q-

space. We consider also F as a coefficient N -module, FN as a coefficient
Q-module, S as an amenableN -space and T as a regularG-space. We define
a first quadrant double complex (L•,•, Id, IId) as follows. For all p, q ≥ 0 set

Lp,q = L∞
w∗(S

p+1 × T q+1, F )G .

Define Id : Lp,q → Lp+1,q by Id =
∑p+1

j=0(−1)jdj , where dj simply omits the
jth variable, and similarly define IId : Lp,q → Lp,q+1 by IId =

∑p+q+2
j=p+1(−1)jdj .

The total differential Id+ IId turns the graded total space

TLn =
⊕

p+q=n

Lp,q

into a cochain complex. The horizontal and vertical filtrations are respec-
tively

IF
m
TLn =

⊕
p+q=n
p≥m

Lp,q , IIF
m
TLn =

⊕
p+q=n
q≥m

Lp,q .

We get thus two first quadrant spectral sequences IE•,•
• and IIE•,•

• starting
respectively with

IE
p,q
1 = Hp,q(Lp,•, IId) , IIE

p,q
1 = Hq,p(L•,p, Id) ,

and converging both (in the category of linear spaces) to the cohomology of
the total complex. Recall that for both spectral sequences the differentials
are of the form

d : Ep,qr → Ep+r,q−r+1
r ,

so that in particular on IE•,•
1 the differential is induced by Id and on IIE•,•

1

by IId. We recall that any first quadrant spectral sequence E•,•
• converges as

follows: for any r ≥ p+1, q+2 one has Ep,q∞ = Ep,qr and hence in particular
for all s ≥ 1 the differential E0,s−1

s → Es,0s fits into the exact sequence

0 −→ E0,s−1
∞ −→ E0,s−1

s −→ Es,0s −→ Es,0∞ −→ 0 . (9)

With the standard notation En∞ =
⊕

p+q=nE
p,q∞ , this implies immediately

the
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Lemma 4.1.2. Let E•,•• be a first quadrant spectral sequence with E•,1
1 = 0.

Then there is a canonical exact sequence

0 −→ E2,0
∞ −→ E2

∞ −→ E0,2
3 −→ E3,0

3 −→ E3
∞ .

Proof. The assumption implies E1,1∞ = 0, so that the canonical injection
E2,0∞ → E2∞ fits into the exact sequence

0 −→ E2,0
∞ −→ E2

∞ −→ E0,2
∞ −→ 0 .

Setting s = 3 in (9) we have
0 −→ E0,2

∞ −→ E0,2
3 −→ E3,0

3 −→ E3,0
∞ −→ 0 .

Finally, we have the canonical inclusion 0 → E3,0∞ → E3∞. Connecting the
three exact sequences yields the statement. ✷

4.2 The first tableaux.

Lemma 4.2.1. The first spectral sequence IE•,•
• collapses in the first tableau

and converges to the continuous bounded cohomology of G with coefficients
in F .

Proof. Since N acts trivially on T , we have the identification

Lp,q ∼= L∞
w∗

(
T q+1, L∞

w∗(S
p+1, F )N

)Q
.

Since the Q-action on T is amenable, this yields with IId a complex as in
Theorem 2. Hence there is a canonical isomorphism

IE
p,q
1
∼= Hq

cb

(
Q,L∞

w∗(S
p+1, F )N

)
.

By Theorem 1, L∞
w∗(Sp+1, F ) is relatively injective for G and hence

L∞
w∗(Sp+1, F )N is relatively injective for Q. This implies by Corollary 1.5.5

that IEp,q1 = 0 unless q = 0, proving that IE•,•
1 collapses, hence this spec-

tral sequence is stationary from the second tableau on. Thus it remains to
identify IEn∞ = IEn,0∞ = IEn,02 . To this end, observe that
IE

n,0
1
∼= H0

cb

(
Q,L∞

w∗(S
n+1, F )N

)
=

(
L∞
w∗(S

n+1, F )N
)Q = L∞

w∗(S
n+1, F )G

and that the differential IEn,01 → IEn+1,0
1 is induced by Id, yielding again a

complex as in Theorem 2. We conclude IEn,02
∼= H•

cb(G,F ). ✷

Proposition 4.2.2. Let T = Q.

(i) There are canonical isomorphisms

IIE
p,0
2
∼= Hp

cb(Q,FN ) and IIE
0,q
2
∼= Hq

cb(N,F )Q (p, q ≥ 0) .
(ii) If for some q the space Hq

cb(N,F ) is Hausdorff, then there is a canon-
ical isomorphism

IIE
p,q
2
∼= Hp

cb

(
Q,Hq

cb(N,F )
)

(p ≥ 0) .
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(iii) If H1
cb(N,F ) = 0, then IIE•,1

1 = 0 and there is a canonical isomorphism

IIE
p,0
3
∼= Hp

cb(Q,FN ) (p ≥ 0) .

Lemma 4.2.3. Let A
α−→ B

β−→ C be an adjoint sequence of Q-morphisms
of coefficient Q-modules with βα = 0. If α(A) is closed, then the homology
of

L∞
w∗(Q

n+1, A)Q α∗−−−→ L∞
w∗(Q

n+1, B)Q
β∗−−→ L∞

w∗(Q
n+1, C)Q

is canonically isomorphic to L∞
w∗(Qn+1,Kerβ/α(A))Q for all n ≥ 0.

Proof of the lemma. By the closed range theorem, α(A) → Kerβ →
Kerβ/α(A) is adjoint; now use Lemma 1.6.3. ✷

Proof of Proposition 4.2.2. Point (i): the case of IIEp,01 is contained in (ii)
because H0

cb(N,F ) = FN is Hausdorff. The term IIE0,q
1 is defined by

· · ·
Id∗−−−→ L∞

w∗
(
Q,L∞

w∗(S
q+1, F )N

)Q Id∗−−−→ · · ·
which is intertwined with

L∞
w∗(S

q, F )N
Id−−→ L∞

w∗(S
q+1, F )N

Id−−→ L∞
w∗(S

q+2, F )N ,

by the isomorphism U0 defined in the proof of Lemma 1.6.3. Hence (The-
orem 2) we have IIE0,q

1
∼= Hq

cb(N,F ). The term IIE0,q
2 is by definition the

kernel of the differential d : IIE0,q
1 → IIE1,q

1 . Under the isomorphism U0, for
a cochain f ∈ L∞

w∗(Sq+1, F )N the class of df in IIE1,q
1 is represented by the

map q �→ qf − f , so that indeed IIE0,q
2 = Hq

cb(N,F )Q.

Point (ii): the term IIEp,q1 is defined by

· · ·
Id∗−−−→ L∞

w∗
(
Qp+1, L∞

w∗(S
q+1, F )N

)Q Id∗−−−→ · · ·
so by Lemma 4.2.3 and Theorem 2 we have a canonical isomorphism IIEp,q1

∼=
L∞
w∗

(
Qp+1,Hq

cb(N,F )
)Q. This isomorphism intertwines

· · ·
IId−−−→ L∞

w∗
(
Qp+1,Hq

cb(N,F )
)Q IId−−−→ · · ·

with IIEp−1,q
1 → IIEp,q1 → IIEp+1,q

1 . Applying Theorem 2 once again we
conclude IIEp,q2

∼= Hp
cb(Q,Hq

cb(N,F )).

Point (iii): assume now H1
cb(N,F ) = 0. The above consideration gives

IIEp,11 = 0 whence IIEp,1• = 0. Since by definition IIEp,03 is the (algebraic)
cokernel of IIEp−2,1

2 → IIEp,02 we have IIEp,03 = IIEp,02 . ✷

We can now complete the
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Proof of Theorem 4.1.1. Take T = Q and apply Proposition 4.2.2. Con-
sider the exact sequence of Lemma 4.1.2 for IIE•,•

• . We have IIEn∞ ∼= IEn∞
which is isomorphic to Hn

cb(G,F ) by Lemma 4.2.1, so the terms IIE2
∞ and

IIE3
∞ are identified. Since IIE2,0

∞ = IIE2,0
3 , this term is given by Proposi-

tion 4.2.2 point (iii). The same point identifies IIE3,0
3 . As for the term IIE0,2

3 ,
it is given as the cohomology of

IIE
−2,3
2 −→ IIE

0,2
2 −→ IIE

2,1
2 . (10)

The first term here vanishes. On the other hand, H1
cb(N,F ) = 0 is indeed

Hausdorff, so Proposition 4.2.2 point (ii) identifies IIE2,1
2 as H2

cb(Q, 0) = 0.
Thus (10) degenerates and IIE0,2

3 = IIE0,2
2 , which is now identified by the first

point of Proposition 4.2.2. Thus we have an exact sequence of the required
type; unravelling the identifications, we see that except for IIE0,2

3 → IIE3,0
3 ,

the maps come from inflation and restriction. ✷

We point out a particular case:

Corollary 4.2.4. Suppose G = N � Q is a (topological) semi-direct
product of the locally compact second countable groups N,Q. Let (π, F )
be a coefficient G-module.

If H1
cb(N,F ) = 0, then we have the exact sequence

0 −→ H2
cb(Q,FN ) inf−−−→ H2

cb(G,F ) res−−−→ H2
cb(N,F )Q −→ 0 .

Proof. There is a topological group homomorphism σ : Q → G with
pσ = Id , where p is the canonical map G → Q. The inflation is precisely
the map induced by p. Therefore, by contravariance, the map induced
by σ is a left inverse for the inflation, so that the inflation is injective.
By exactness at H3

cb(Q,FN ) in Theorem 4.1.1, we deduce that the map
H2
cb(N,F )Q → H3

cb(Q,FN ) vanishes, whence the statement. ✷

4.3 More on H2
cb. An important consequence of double ergodicity is

the following.

Theorem 4.3.1. Let G be a locally compact second countable group,
N✁G a compactly generated closed normal subgroup and (π, F ) a separable
coefficient G-module.

Then the inclusion FZG(N) → F induces a canonical isometric identifi-
cation H2

cb(N,FZG(N))G ∼= H2
cb(N,F )G.

The main step is

Proposition 4.3.2. Let G be a locally compact second countable group,
N ✁ G a closed normal subgroup and (π, F ) a coefficient G-module.
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If N admits an amenable doubly F -ergodic regular space S, then the
inclusion FZG(N) → F induces a canonical isometric identification
H2
cb(N,FZG(N)) ∼= H2

cb(N,F )ZG(N).

Proof of Proposition 4.3.2. We realize H2
cb(N,F ) on the complex

L∞
w∗(N•, F )N . The ZG(N)-action π on F is by N -morphisms and hence

induces a “coefficient” action on H•
cb(N,F ). On the other hand, the natu-

ral G-action on H•
cb(N,F ) is given by the operator R of given in section 2.4,

equation (6). Yet this operator coincides with π on ZG(N), so that it in-
duces also the coefficient action when restricted to ZG(N).

It remains thus to show that any class ω ∈ H2
cb(N,F ) invariant under

the coefficient ZG(N)-action is represented by a cocycle ranging in FZG(N).
We realize H•

cb(N,F ) on the complex L∞
w∗(S•, F )N . Thus ω can be rep-

resented by a cocycle f ∈ L∞
w∗(S3, F )N , and for each z ∈ ZG(N) there

is bz ∈ L∞
w∗(S2, F )N with π(z) ◦ f = f + dbz. One can take f and bz al-

ternating, so that bz = 0 by double F -ergodicity and hence f ranges in
FZG(N). ✷

Proof of Theorem 4.3.1. We let N∗ < N be as in Theorem 6. We have
then the following natural diagram, where α, β, η are the maps induced by
the corresponding inclusions of coefficients (observe that ZG(N∗) ⊃ ZG(N)
implies FZG(N∗) ⊂ FZG(N)). The theorem is about α.

H2
cb(N,FZG(N))G α ��

res∼=
��

H2
cb(N,F )G

res ∼=
��

H2
cb(N

∗, FZG(N))G H2
cb(N

∗, FZG(N∗))G
β�� η

∼=
�� H2

cb(N
∗, F )G

The map η is an isomorphism by Proposition 4.3.2, and the restrictions
are isomorphisms by Proposition 2.4.2. Since all maps above are obtained
either by covariance or contravariance, all possible commutation relations
hold. Thus it is enough to show that β is bijective. But res = βη−1 resα
implies surjectivity, while η = resα res−1 β entails injectivity. ✷

We can now give the

Proof of Theorem 13. By Corollary 9, we have H1
cb(N,F ) = 0, so Theo-

rem 4.1.1 applies. The Theorem 4.3.1 yields H2
cb(N,F )G=H2

cb(N,FZG(N))G,
finishing the proof. ✷

4.4 Product formulae. A first immediate application of the above
results is the following:
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Corollary 4.4.1. Let G1, . . . , Gn be compactly generated locally com-
pact second countable groups and let G =

∏n
j=1 Gj . Let (π, F ) be a sepa-

rable coefficient G-module. Then the inflation and restriction maps yield a
canonical topological isomorphism

H2
cb(G,F ) ∼=

n⊕
j=1

H2
cb(Gj , F

G′
j ) ,

where G′
j =

∏
i�=j Gi.

Proof. The case n = 1 is void. For n = 2, combine Corollary 4.2.4 with
Theorem 4.3.1 to obtain

H2
cb(G1 ×G2, F ) ∼= H2

cb(G1, F
G2)⊕H2

cb(G2, F
G1) . (11)

If n ≥ 2, an induction over n reduces the statement to successive applica-
tions of the formula (11). ✷

This statement implies a strong restriction on the range of cohomology
classes for a product. In order to formulate this (Corollary 4.4.3 below),
we need the
Lemma 4.4.2. Keep the notation of Corollary 4.4.1. Then

∑n
j=0 F

G′
j is

weak-* closed in F , so that it is again a coefficient G-module.

Proof. Pick v in the weak-* closure of
∑n

j=0 F
G′

j and take a sequence

(vkj )k∈N of FG′
j such that vk =

∑n
j=0 v

k
j converges weak-* to v. For any

g ∈ G1, we have π(g)vk − vk = π(g)vk1 − vk1 , which is in FG′
1 and yet

converges to π(g)v − v. Since FG′
1 is weak-* closed, we conclude that for

every g ∈ G1 the difference π(g)v − v is in FG′
1 . This yields a 1-cocycle

for H1
cb(G1, F

G′
1). This cohomology group vanishes by Corollary 9, so that

there is u1 ∈ FG′
1 with π(g)v−v = π(g)u1−u1 for all g ∈ G1, and therefore

v − u1 ∈ FG1 .
We may now repeat the argument with G2×· · ·×Gn instead of G, FG1

instead of F and v− u1 replacing v. This way we obtain by induction that
there are uj ∈ FG′

j for j = 1, . . . , n− 1 such that

v − u1 − u2 . . .− un−1 ∈ FG1 ∩ FG2 ∩ . . . ∩ FGn−1 = FG′
n ,

and hence v is in
∑n

j=0 F
G′

j . ✷

Corollary 4.4.3. Keep the notation of Corollary 4.4.1. There is a canon-
ical topological isomorphism

H2
cb(G,F ) ∼= H2

cb

(
G,

∑n
j=1 F

G′
j
)
.

Proof. Apply Corollary 4.4.1 successively to the coefficient G-modules F
and

∑n
j=1 F

G′
j . ✷
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Proof of Theorem 14. The Corollaries 4.4.1 and 4.4.3 yield topological
isomorphisms between the terms of Theorem 14. ✷

Proof of Corollary 15. The irreducibility of the G-action on M implies
that for all j one has L2(M)G

′
j = C11M . Therefore, considering the diagram

induced by C11M ⊂ L∞(M) ⊂ L2(M), the Theorem 14 implies that the
upper arrow

H2
cb(G) ��

�������������
H2
cb

(
G,L2(M)

)

H2
cb

(
G,L∞(M)

)
���������������

is an isomorphism. On the other hand, the inclusion L∞(M) ⊂ L2(M) is
an adjoint map and L2(M) is separable, so that by Corollary 9 the right
arrow is injective. Hence all arrows are isomorphisms. ✷

Remark 4.4.4. In the statement of Theorems 14, the formula

H2
cb(G,F ) ∼=

n⊕
j=1

H2
cb(Gj , F

G′
j ) (12)

actually holds also if there is one non-compactly generated factor in the
product

G1 × · · · ×Gn .

Indeed, the Lyndon–Hochschild–Serre sequence of Theorem 13 requires only
the kernel of the extension to be compactly generated. Therefore, the
induction used to prove (12) can be carried out by taking successively all
compactly generated groups as kernels, the only non-compactly generated
one remaining as last quotient.

5 Remaining Proofs

5.1 Proof of Theorem 16. We turn now to the proof of Theorem 16 in
the generality of Remark 19. In other words, Gj are compactly generated
locally compact second countable groups (j = 1, . . . , n) and H < G =
G1×· · ·Gn is a closed subgroup such that G/H has finite invariant measure
and with prj(H) = Gj for all j. Let (π, F ) be a separable coefficient H-
module. The condition on prj(H) implies that there is a unique maximal
H-submodule of F such that the restriction π|Fj extends continuously to
a G-representation πj factoring through G � Gj . Recall the notation
G′
j =

∏
i�=j Gi.
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Lemma 5.1.1. There is a natural isometric isomorphism of G-modules

Fj ∼=
(
L2IndGHF

)G′
j .

Proof. Define a map Fj → L2IndGHF by v �→ fv, where fv(g) = πj(g)v is
indeed H-equivariant. Since πj factors through Gj , the map fv is G′

j-in-
variant under right translation. Moreover, the map v �→ fv is G-equivariant
and it preserves the norm since πj is isometric and the invariant measure
on H\G is normalized. It remains thus to show surjectivity onto the G′

j-

invariants. If f : G→ F is in (L2IndGHF )G
′
j , then by Fubini–Lebesgue it is

represented by a prj(H)-equivariant map Gj → F , which has to be of the
form fv for some v ∈ Fj by the density of prj(H), since F is continuous by
the inclusions (7). ✷

The Lemma 4.4.2 implies the following
Lemma 5.1.2. The sum

∑n
j=0 Fj is weak-* closed in F , so that it is again

a coefficient G-module extending the H-action.

Proof. The weak-* continuous G-action on the Fj extends to
∑n

j=0 Fj
and hence to its weak-* closure that we shall denote by F∞. Applying
Lemma 4.4.2 to F∞ yields the statement since (F∞)G

′
j = Fj . ✷

End of proof of Theorem 16. We consider the following diagram:
H2
cb(H,F )

i
�� H2

cb(G,L2IndGHF )
��

��������������

⊕n
j=1H

2
cb(Gj , Fj)

H2
cb

(
H,

∑n
j=1 Fj

)

��

H2
cb

(
G,

∑n
j=1 Fj

)
α

��

res��
��

�������������

On the right we have a commutative triangle of isomorphisms by Corol-
laries 4.4.1 and 4.4.3, with the identification provided by Lemma 5.1.1
inducing the map α. The left square is commutative because the formula
for α coincides with the composition of restriction and induction. Thus i
is surjective. On the other hand, it is injective by Proposition 3.6.1. Being
continuous, it is thus a topological isomorphism because Corollary 9 allows
us to apply the open mapping theorem. ✷

5.2 Higher rank lattices. In this section, we present the proof of The-
orems 20 and 21. The main additional ingredient is the following proposi-
tion, based on results of Margulis and Lubotzky–Mozes–Raghunathan in a
way similar to Shalom’s [Sh2].
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Proposition 5.2.1. Let Γ, G be as in Theorem 20 or Theorem 21 and let
(π,H) be any unitary Γ-representation. Then the induction H2

b(Γ,H) →
H2
cb(G,L2IndGΓH) maps EH2

b(Γ,H) to EH2
cb(G,L2IndGΓH).

Proof. A class [ω] in the kernel EH2
b(Γ,H) is given by a Γ-equivariant map

α : Γ2 → H such that ω = dα is bounded. We realize induction as follows.
Fix a Borelian fundamental domain F ⊂ G for the left Γ-action and denote
by σ : G→ Γ the associated Γ-equivariant retraction. Now define

iα : G2 −→ L2
locInd

G
ΓH , iα(g0, g1)(g) = α

(
σ(gg0), σ(gg1)

)
.

We know that diα ranges in L2IndGΓH since it coincides with iω (defined by
the analogous formula), and since ω is bounded. Therefore, what we have
to show is that iα actually ranges also in L2IndGΓH, that is,∫

F

∥∥α(σ(gg0), σ(gg1))∥∥2dm(g) <∞

for all g0, g1 (m a left Haar measure). Equivalently, setting ψ(γ) = α(γ, e)
and κ(g, g′) = σ(g)−1σ(gg′), we must show∫

F

∥∥ψ(κ(g, g′))∥∥2dm(g) <∞ (∀g′ ∈ G) .

By the conclusion of section IX.3 in Margulis’ book [M], Γ is finitely gen-
erated; we fix a finite generating set S and denote by � the corresponding
word length on Γ. Since for all γ0, γ1 ∈ Γ we have∥∥ψ(γ0γ1)− ψ(γ0)− π(γ0)ψ(γ1)

∥∥ ≤ ‖ω‖∞ ,

one can check by induction on the word length of γ ∈ Γ that
‖ψ(γ)‖ ≤ C�(γ) for C = max

s∈S
‖ψ(s)‖ + ‖ω‖∞ .

Therefore the above integral is dominated by

C

∫
F
�
(
κ(g, g′)

)2
dm(g) .

In [Sh2] (cf. also [Sh1]), Y. Shalom shows how to use the work [LMR] of
A. Lubotzky, S. Mozes and M.S. Raghunathan in order to deduce that this
last integral is finite for lattices as those considered here. ✷

Let us begin with the
Proof of Theorem 21. Retain the notation of Theorem 21. We denote by
L2
locInd

G
ΓH the Fréchet space defined as L2IndGΓH, except that the maps are

only required to be locally square-summable. The Blanc–Borel–Wallach
version of the Eckmann–Shapiro lemma (see [BoW]) states that cochain in-
duction yields an isomorphism from H•(Γ,H) onto H•

c(G,L2
locInd

G
ΓH). How-

ever, in general, the induction map does not factor through H•
c(G,L2IndGΓH).
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By contrast, the induction of a bounded cochain ranges in L2IndGΓH since
Γ has finite co-volume. This situation accounts for the missing arrow in
the following commutative diagram, in which the space H2

cb(G,L2
locInd

G
ΓH)

is only added for more symmetry; we define it ad hoc using cochains which
are bounded for the canonical bornology of the Fréchet space L2

locInd
G
ΓH.

H2
b(Γ,H) ��

��������������

��

H2
cb(G,L2

locInd
G
ΓH)

��

H2
cb(G,L2IndGΓH)

����������������

��
H2
c(G,L2IndGΓH)

��														

H2(Γ,H) �� H2
c(G,L2

locInd
G
ΓH)

Our proof consists of showing that the diagonal path from H2
b(Γ,H) to

H2
c(G,L2

locInd
G
ΓH) is injective. We have shown in [BuM1, Proposition 4.2]

that the induction from H2
b(Γ,H) to H2

cb(G,L2IndGΓH) is injective (with-
out co-compactness assumption). The injectivity of the map from
H2
cb(G,L2IndGΓH) to H2

c(G,L2IndGΓH) is Proposition 6.2 in [BuM1]; notice
here that the co-compactness assumption is not used in the proof of this
Proposition 6.2.

Therefore, the Proposition 5.2.1 completes the proof that the diagonal
path is injective. ✷

Proof of Theorem 20. Retain the notation of Theorem 20. In view of
Proposition 5.2.1, it remains to show that the comparison map

H2
cb(G,L2IndGΓH) −→ H2

c(G,L2IndGΓH) (13)

is injective. We split L2IndGΓH as
(
L2IndGΓH

)G⊕L, where L is the orthogo-
nal complement to the G-invariants, and handle the summands separately.
The G-invariant part is dealt with by our Lemma 6.1 in [BuM1].

As for L, we write for all α ∈ A

Lα = L
Q

β 	=α Gβ(kβ) .

According to Theorem 14, we have

H2
cb(G,L) ∼=

⊕
α∈A

H2
cb(G,Lα) .
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Since H is non-degenerate, we have Lα = 0 whenever the kα-rank of Gα is
one. For the higher rank factors, one repeats exactly the arguments of our
Proposition 6.2 in [BuM1] and concludes that the comparison map⊕

α∈A
H2
cb(G,Lα) −→

⊕
α∈A

H2
c(G,Lα)

is injective. Now the injectivity of (13) follows readily. ✷

5.3 Corollaries.

Proof of Corollary 22. In this situation, the Theorem 16 implies

H2
b(Γ) ∼=

n⊕
j=1

H2
cb(Gj) = 0 ,

so that eπ,R vanishes in H2
cb(Γ,R). Considering the coefficient exact se-

quence pointed out by S. Gersten [Ge]

· · · −→ H1(Γ,S1) −→ H2
b(Γ,Z) −→ H2

b(Γ,R) −→ · · · (14)

we see that eπ must be in the image of H1(Γ,S1), so that by É. Ghys’
criterion the action is semi-conjugated to an action by rotations. ✷

Proof of Corollary 23. Consider the commutative diagram

H2
b(Γ)

��

H2
cb(G)

res
∼=

��

��
H2(Γ) H2

c(G)� �res��

The upper restriction map is an isomorphism by Theorem 16. It is well
known that the lower restriction map is injective because Γ is co-compact.
If now f : Γ → C is a quasimorphism, it follows from this diagram that
there is a continuous quasimorphism F : G → C and h ∈ �∞(Γ) such
that δ(f + h) = δF |Γ×Γ. In particular, χ = f + h − F is in Hom(Γ,C).
By Y. Shalom’s result (Theorem 0.8 in [Sh2]), χ extends to a continuous
homomorphism X : G→ C. Pick now any H ∈ Cb(G) with H|Γ = h. Then
fext = F −H +X is the desired extension. ✷

Proof of Corollary 24. We have shown in [BuM1, Lemma 6.1] that the
natural map H2

cb(Gα(kα)) → H2
c(Gα(kα)) is injective for any α. On the

other hand, the right-hand side is known: it vanishes unless the associated
symmetric space is Hermitian, in which case it is one dimensional and
generated by a bounded cocycle, see [GuW]. This determines H2

cb(Gα(kα)),
and hence, by Theorem 16, it determines also at once H2

cb(G) and H
2
b(Γ). ✷
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Proof of Corollary 26. Let Gj = prj(Γ). Using a Cartan decomposi-
tion for Gj , we have shown in [BuM1, Lemma 7.1] that the natural map
H2
cb(Gj) → H2

c(Gj) is injective. However, the right hand side vanishes be-
cause Gj acts properly on the tree Tj (this vanishing is a particular case
of Lemma 1.12 in [BoW, chap.X]). Thus H2

cb(Gj) = 0 for all j and we
conclude with Theorem 16. ✷

Proof of Corollary 33. Take first Γ arbitrary. Denoting by EH•
b the kernel

of the maps H•
b → H•, the long exact sequence sketched at (14) yields by a

diagram chase the exact sequence

0 −→ H1(Γ,R)
/
H1(Γ,Z) −→ EH2

b(Γ,Z) −→ EH2
b(Γ,R) −→ 0 .

Since moreover EH•
cb(Γ) ∼= EH•

cb(Γ,R)2, the equivalence of (a) and (b)
preceding Corollary 33 follows from the fact that ΓAb is torsion if and only
if the map H1(Γ,Z) → H1(Γ,R) is surjective. Thus, turning back to our
particular Γ and in view of Theorem 21, Corollary 24, Corollary 26 and
Theorem 28, it remains only to justify that ΓAb is torsion. In the first
and third settings, this is a result of Margulis, while in the second the
additional co-compactness assumption allow us to apply Shalom’s result
[Sh2, Theorem 0.8] to the same end. (We have taken Theorem 28 for
granted since its proof below is independent of Corollary 33.) ✷

5.4 Proof of Theorem 28. We may and do suppose that G is K-
almost simple by applying the product formula of Theorem 14.

We write V for the set of places of K and AK for the ring of adèles.
We denote by V∞ the finite set of Archimedean places and by A the finite
set of places at which G is anisotropic; we put I = V \ A. For any U ⊂ V
let GU be the group of all elements of G(AK) which are trivial outside U .
Thus for instance GA is compact and G(AK) ∼= GI ×GA.

The main additional ingredient that we need for Theorem 28 is the
following exhaustion principle, which makes use of the Kolmogorov zero-
one law:

Proposition 5.4.1. Let B ⊂ I be a set of places with B ∩V∞ = ∅. Then
H2
cb(GB) = 0.

The point here is of course that B needs not be finite.

Proof of the proposition. For every v ∈ V, fix a minimal parabolic subgroup
Pv of G(Kv). Define for U ⊂ V the direct product

SU =
∏
v∈U

G(Kv)/Pv ,
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whereG(Kv)/Pv are considered as measure spaces and SU is endowed with
the product measure. The GB-action on SB is transitive because GB con-
tains the unrestricted product of a choice of maximal compact subgroups in
each of the G(Kv) as v ranges over B. Thus SB is a homogeneous GB-space
with amenable isotropy groups, and hence the action is amenable. A class
[ω] in H2

cb(GB) is therefore (Theorem 2) given by an alternating measurable
bounded GB-invariant cocycle

ω : SB × SB × SB −→ R .

For every finite subset F ⊂ B, we have H2
cb(GF ) = 0. Indeed, by

Theorem 14 this space is the direct sum of the local terms H2
cb(G(Kv))

over v ∈ F , and we have shown in [BuM1, Lemma 7.1] that the latter
space injects into H2

c(G(Kv)), which vanishes since v is non-Archimedean
by the assumption on B.

We may realize the restriction map
H2
cb(GB) −→ H2

cb(GF ) = 0
associated to GF → GB by the inclusion

L∞
alt(S

3
B)

GB −→ L∞
alt(S

3
B)

GF ,

so that there is a bounded GF -invariant measurable function
αF : SB × SB −→ R

with dαF = ω. We claim that αF does not depend on the first factor in
the decomposition

S2
B ∼= S2

F × S2
B\F .

Indeed, the diagonal GF -action on S2
F is ergodic because eachG(Kv) has an

orbit of full measure in (G(Kv)/Pv)2. We conclude that whenever F ⊂ B
is finite, ω is independent of the factor S3

F of S3
B. In other words, ω is

invariant under the cofinality equivalence relation. The Kolmogorov zero-
one law states that this equivalence relation is ergodic; therefore, the cocycle
ω must be constant and hence ω = 0 by alternation. ✷

We can now complete the proof of Theorem 28. The diagonal embedding
K ⊂ AK realizes G(K) as a lattice in G(AK) (see e.g. Theorem 3.2.1 in
[M, chap. I]) and thus also in GI .

We recall that the Strong Approximation Theorem for simply connected
K-almost simple linear groups states that given U ⊂ V, the image of G(K)
in GV\U is dense as soon as U is not contained in A (see section II.6.8
in [M]).

Therefore, according to the definition of irreducibility given in the In-
troduction, we see that for any non-empty finite set U ⊂ I, the groupG(K)
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is an irreducible lattice in the product∏
v∈U

G(Kv)×GI\U ∼= GI .

Now we would like to apply the Theorem 16 and deduce

H2
b(G(K)) ∼=

⊕
v∈U

H2
cb(G(Kv))⊕H2

cb(GI\U ) , (15)

except that GI might not be compactly generated. However, as pointed
out in Remark 4.4.4, we may still apply the Theorem 14 and get as in
section 5.1 the isomorphism

H2
cb

(
GI , L2(G(K)\GI)

) ∼= H2
cb(GI) .

Since the restriction H2
cb(GI)→ H2

b

(
G(K)

)
is injective (Proposition 2.4.1),

it remains only to see that the L2 induction
H2
b(G(K)) −→ H2

cb

(
GI , L2(G(K)\GI )

)
is injective. As we see in the proof of Proposition 3.6.1, it is enough to
find a doubly ergodic (i.e. just doubly C-ergodic) amenable GI -space S.
We claim that S = SI is such a space. We have already seen that it is
amenable, and double ergodicity follows from the double ergodicity of GI′

on SI′ for every finite I ′ ⊂ I, which is a consequence of Proposition 3.2.2.
Thus (15) is established (this corrects an omission in [Mo]).

Take now U big enough to include V∞∩I; then Proposition 5.4.1 shows
that the last term in (15) vanishes. Moreover, as explained above in the
proof of Corollary 24, we have

H2
cb(G(Kv)) ∼= H2

c(G(Kv))
and the latter vanishes if v /∈ V∞. This proves Theorem 28 up to terms
H2
cb

(
G(Kv)

)
associated to places v ∈ V∞ ∩ A. However, for such places,

G(Kv) is compact and hence both H2
cb and H2

c vanish.
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édition), Hermann, Paris (1974).

[BrS] R. Brooks, C. Series, Bounded cohomology for surface groups, Topol-
ogy 23:1 (1984), 29–36.

[Bro] K.S. Brown, Cohomology of Groups (second print), Graduate Texts in
Mathematics 87, Springer-Verlag (1994).

[Bu] M. Burger, Rigidity properties of group actions on CAT(0)-spaces, Pro-
ceedings of the International Congress of Mathematicians (Zrich, 1994),
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