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Abstract. We prove a fixed point theorem for a family of Banach spaces including notably L1

and its non-commutative analogues. Several applications are given, e.g. the optimal solution to

the “derivation problem” studied since the 1960s.

1. Introduction

Andrés Navas asked us if there is a fixed point theorem for all isometries of L1 that preserve
a given bounded set. Unlike many known cases where a geometric argument applies, there is a
fundamental obstruction in L1: any infinite group G admits a fixed-point-free isometric action
on a bounded convex subset of L1. Example: the G-action on the affine subspace of summable
functions of sum one on G. This action is fixed-point-free and preserves the closed convex bounded
set of non-negative functions. The obvious (and only) fixed point, zero, is outside the space.

Thus, we have to search for fixed points possibly outside the convex set, indeed outside the
affine subspace it spans. We shall do this more generally for any L-embedded Banach space V ,
that is, a space whose bidual can be decomposed as V ∗∗ = V ⊕1 V0 for some V0 ⊆ V ∗∗ (and ⊕1

indicates that the norm is the sum of the norms on V and V0). Recall that L1 is L-embedded by
the Yosida–Hewitt decomposition [16] and that this holds more generally for the predual of any
von Neumann algebra [14, III.2.14]; in particular, for the dual of any C*-algebra.

Theorem A. Let A be a non-empty bounded subset of an L-embedded Banach space V .
Then there is a point in V fixed by every isometry of V preserving A. Moreover, one can choose

a fixed point which minimises supa∈A ‖v − a‖ over all v ∈ V .

We recall that an isometric action of a group G on a Banach space V is given by a linear part
and a cocycle b : G→ V . The cocycle is the orbital map of 0 ∈ V and a fixed point v corresponds
to a trivialisation b(g) = v−g.v, where g.v is the linear action. The above norm statement implies
that one can arrange ‖v‖ ≤ supg ‖b(g)‖ by considering A = b(G) 3 0.

As a special case (the “commutative” case), we recover the main theorem of [11] due to Losert,
but with an improved (indeed optimal) norm estimate:

Corollary B (cf. [11]). Let G be a group acting by homeomorphisms on a locally compact space
X. Then any bounded cocycle b : G → M(X) to the space of (finite Radon) measures on X is
trivial. More precisely, there is a measure µ with ‖µ‖ ≤ supg∈G ‖b(g)‖ such that b(g) = µ − g.µ
for all g ∈ G. �

Indeed, M(X) is the dual of the (commutative) C*-algebra C0(X) and hence the predual of a von
Neumann algebra.

Numerous consequences of Corollary B are listed in [11]; let us only recall that it settles the
so-called derivation problem whose history began in the 1960’s: If G is a locally compact group,
then any derivation from the convolution algebra L1(G) to M(G) is inner. This is often phrased
in terms of derivations “of L1(G)” since any derivation L1(G) → M(G) must range in L1(G) by
Paul Cohen’s factorisation theorem [3]. It also follows that any derivation of M(G) is inner. Our
norm estimate is stronger and in fact optimal by Remark 7.2(a) in [11].
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As observed by Uffe Haagerup, Theorem A also yields a new proof that all C*-algebras are
weakly amenable, which was proved in [7] using the Grothendieck–Haagerup–Pisier inequality. In
fact, our theorem immediately implies that any continuous derivation from any normed algebra
A to a predual M∗ of a von Neumann algebra is inner as soon as A is spanned by the elements
represented as invertible isometries of M∗ (see the proof of the corollary below). In the particular
case of C*-algebras, we obtain the following general statement.

Corollary C. Let A be a unital C*-algebra. Let M∗ be the predual of a von Neumann algebra.
Assume M∗ is a Banach bimodule over A. Then any arbitrary derivation D : A→M∗ is inner.

Moreover, we can choose v ∈M∗ with D(a) = v.a− a.v such that ‖v‖ ≤ ‖D‖.

Haagerup’s weak amenability of A is given by the special case M∗ = A∗. Our definition of
Banach bimodule demands ‖a.v.b‖ ≤ ‖a‖ · ‖v‖ · ‖b‖ (a, b ∈ A, v ∈M∗).

Proof of Corollary C. By Theorem 2 in [13], D is continuous; thus it is bounded (by ‖D‖ < ∞)
on the group G of unitaries of A. The map G → M∗ given by g 7→ D(g).g−1 is a cocycle for
the Banach G-module structure defined by the rule v 7→ g.v.g−1. Theorem A thus yields v, with
norm bounded by ‖D‖, such that D(g) = v.g− g.v for all g ∈ G. The statement follows since any
element of A is a combination of four unitaries (in fact, three [8]). �

Finally, returning to the case V = L1 of Theorem A, we consider actions without a priori
boundedness of the orbits and obtain a new characterisation of Kazhdan groups:

Corollary D. Let Ω by any measure space. Then any isometric action of a Kazhdan group on
L1(Ω) has a fixed point.

Moreover, this fixed point property characterises Kazhdan groups amongst all countable (or
locally compact σ-compact) groups.

By the Kakutani representation theorem [9], this corollary applies unchanged to abstract L1

spaces, for instance to M(X) for any locally compact space X.

Proof of Corollary D. Recall that any isometric action of a Kazhdan group on an L1 space has
bounded orbits because of a Fock space argument (see e.g. [1, 1.3(2)]). Therefore, Theorem A
implies the first part of the statement. Conversely, let G be a locally compact σ-compact group
with this fixed point property. A standard argument shows that G has the L1-version (TL1) of
property (T ), see [1, 1.3(1)] (this argument holds in the σ-compact generality). Theorem A in [1]
shows that (TL1) implies (T ); although it is claimed there for Lp with 1 < p < ∞, the proof
applies unchanged to L1, using the Connes–Weiss construction [4] (exposed also in Theorem 6.3.4
of [2]). �

2. Proof of the Theorem

We first recall the concept of Chebyshev centre. Let A by a non-empty bounded subset of a
metric space V . The circumradius of A in V is

%V (A) = inf
{
r ≥ 0 : ∃x ∈ V with A ⊆ B(x, r)

}
,

where B(x, r) denotes the closed r-ball around x. The Chebyshev centre of A in V is the (possibly
empty) set

CV (A) =
{
c ∈ V : A ⊆ B(c, %V (A))

}
.

Notice that CV (A) can be written as an intersection of closed balls as follows:

CV (A) =
⋂

r>%V (A)

Cr
V (A) where Cr

V (A) =
⋂
a∈A

B(a, r).

Thus, when V is a normed space, CV (A) is a bounded closed convex set. More importantly, when
V is a dual Banach space, we deduce from Alaoğlu’s theorem that CV (A) is weak-* compact and
that it is non-empty because the non-empty sets Cr

V (A) are monotone in r. (For general Banach
spaces, CV (A) is very often empty, even when A consists of just three points [10],[15].)
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Proposition. Let A be a non-empty bounded subset of an L-embedded Banach space V . Then the
convex set CV (A) is weakly compact and non-empty.

Proof. Consider A as a subset of V ∗∗ under the canonical embedding V ⊆ V ∗∗. In view of the
above discussion, CV ∗∗(A) is a non-empty weak-* compact convex set. We claim that it lies in
V and coincides with CV (A); the proposition then follows. Let thus c ∈ CV ∗∗(A) and write
c = cV + cV0 according to the decomposition V ∗∗ = V ⊕1 V0. Then, for any a ∈ A, we have

‖a− c‖ = ‖a− cV ‖+ ‖cV0
‖

since A ⊆ V . Therefore,

%V ∗∗(A) = sup
a∈A
‖a− c‖ = sup

a∈A
‖a− cV ‖+ ‖cV0‖ ≥ %V (A) + ‖cV0‖.

Since %V ∗∗(A) ≤ %V (A) anyway, we deduce cV0 = 0 and %V ∗∗(A) = %V (A), whence the claim. �

Proof of Theorem A. Since the definition of CV (A) is metric, it is preserved by any isometry
preserving A. By the proposition, we can apply the Ryll-Nardzewski theorem and deduce that
there is a point of CV (A) fixed by all isometries preserving A. The norm condition follows from
the definition of centres. �

We remind the reader that in the present context the Ryll-Nardzewski theorem has a particularly
short geometric proof relying on the dentability of weakly compact sets [12].

3. Comments

a. In marked contrast to classical fixed point theorems, there is no hope to find a fixed point
inside a general bounded closed convex subset of L1, as pointed out in the opening. As a case in
point, the weak compactness of the Ryll-Nardzewski theorem is a strong restriction in L1 since
it imposes equi-integrability, and yet it seems almost unavoidable in light of [6, Thm. 4.2] if one
insists on the classical statement.

b. For the proposition, a canonical norm one projection V ∗∗ → V is not enough. Indeed, any dual
space is canonically 1-complemented in its own bidual, but the fixed point property in all duals
characterises amenability. Specifically, any non-amenable group G has a fixed-point-free action
with bounded orbits in (`∞(G)/R)∗.

c. It would be interesting to find a purely geometric version of the proposition, since we prove
compactness out of geometric assumptions. Notice however that the compact set CV (A) might
still be large. If for instance A consists of just the two points 0[0,1], 1[0,1] in V = L1([0, 1]), then

CV (A) is the infinite-dimensional set of functions 0 ≤ f ≤ 1 with
∫
f = 1/2. It would further

be interesting to study the dynamics of the transformation A 7→ CV (A); for instance, it can have
orbits of period 1 or 2, but no other finite period.
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