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Abstract

Extensive amenability is a property of group actions which has recently been used
as a tool to prove amenability of groups. We study this property and prove that it is
preserved under a very general construction of semidirect products. As an application,
we establish the amenability of all subgroups of the group IET of interval exchange
transformations that have angular components of rational rank ≤ 2.

In addition, we obtain a reformulation of extensive amenability in terms of inverted
orbits and use it to present a purely probabilistic proof that recurrent actions are
extensively amenable. Finally, we study the triviality of the Poisson boundary for
random walks on IET and show that there are subgroups G < IET admitting no
finitely supported measure with trivial boundary.

1 Introduction

Recall that an action of a group G on a set X is amenable if it admits a G-invariant mean,
i.e. a finitely additive probability measure defined on all subsets of X that is invariant
under the action of G.

In this article, we study extensive amenability of an action G y X. As the name is
intended to suggest, this is a much stronger form of amenability and it has an intimate
connection with extensions of groups and of actions. This property was introduced (without
a name) in [JM13] as a tool to prove amenability of groups, a role it continued to play
in [JNdlS13]. In order to give its formal definition, we denote by Pf(X) the set of all finite
subsets of X.

Definition 1.1. The action of a group G on a set X is extensively amenable if there is
a G-invariant mean on Pf(X) giving full weight to the collection of subsets that contain
any given element of Pf(X).

Remarks 1.2.
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(i) Extensively amenable actions are amenable unless X = ∅, and every action of an
amenable group is extensively amenable; see Lemma 2.1.

(ii) Both converses fail: there are amenable actions that are not extensively amenable
(see [JdlS13], or § 6 for a new example), as well as extensively amenable faithful
actions of nonamenable groups [JM13].

(iii) A sufficient condition for extensive amenability was provided in [JNdlS13], namely
recurrence in the sense of random walks; see § 4.2 for details and a new proof of this
result.

(iv) We do not consider any topology on G or X. Moreover, it is not relevant to assume
G or X countable, because an action G y X is extensively amenable if and only
if the action of every finitely generated subgroup H ≤ G on every H-orbit is so
(Lemma 2.2).

An important advantage of extensive amenability over usual amenability of actions
is that it is more robust. For instance, it is preserved under extensions of actions in a
sense made precise in § 2. Another stability property is fundamental for applications and
concerns a wide class of group actions constructed functorially from G y X; here the
group G itself will be replaced by a semidirect product extension of G. The first example
is as follows:

Given G y X one can form the permutational wreath product, or “lamplighter group”,
(Z/2Z)(X)

⋊ G. Here (Z/2Z)(X) denotes the group of finitely supported configurations
X → Z/2Z, on which G acts by translations; it can be identified with Pf(X). The
lamplighter group acts affinely on the “lamp group” (Z/2Z)(X), identified with the coset
space ((Z/2Z)(X)

⋊G)/G. By simple Fourier analysis arguments, it was shown in [JM13,
3.1] that the amenability of this affine action is equivalent to the extensive amenability of
G y X.

Our first result (Theorem 1.3 below) provides a vast non-commutative generalization of
this equivalence, wherein the lamp groups (Z/2Z)(X) will be replaced by rather arbitrary
functors F applied to X. Specifically, we consider all ”finitary” functors to the category of
amenable groups in the following precise sense.

Denote by I the category of finite sets whose morphisms are injective maps. Denote
further by Amen the category of amenable groups with group homomorphisms. Since
Amen has direct limits, any functor F : I → Amen extends to the category of all sets
with injective maps as morphisms by setting F (X) to be the direct limit of F (Y ) as Y
runs over the directed set Pf(X). We still denote the resulting functor by the same letter
F . Several explicit examples are given in § 3, but the reader can already have in mind
F (X) = A(X) for an amenable group A, or F (X) = Sym(X) the group of permutations of
X with finite support.
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Notice that any group action G y X yields an action G y F (X) by automorphisms
and hence a semidirect product group F (X) ⋊G. This semidirect product acts on F (X)
identified with the coset space (F (X) ⋊G)/G.

We say that the functor F is tight on a nonempty set X if for all (equivalently, some)
x ∈ X the morphism F (X \ {x}) → F (X) induced by inclusion is not onto. A particular
case of our results from § 3 is the following theorem.

Theorem 1.3. Let F : I → Amen be any functor, extended to arbitrary sets as described
above. Let G be a group acting on a set X.

If the action G y X is extensively amenable, then the action F (X) ⋊ G y F (X) is
amenable. Moreover it is extensively amenable.

Conversely, assume that the action F (X) ⋊G y F (X) is amenable. Then G y X is
extensively amenable provided F is tight on X.

In particular, the amenability of the action F (X) ⋊ G y F (X) does not depend on
the choice of the functor F provided that it is tight on X. Furthermore, for such “affine”
actions, amenability and extensive amenability coincide.

Beside the lamplighter case F (X) = (Z/2Z)(X), another concrete example to which
Theorem 1.3 applies is F (X) = Sym(X), the group of finitely supported permutations of
a set X, on which G acts by conjugation. See § 3 for more examples. A case in which the
theorem does not apply, as it does not come from a functor on I, is F (X) = (Z/2Z)X , the
unrestricted direct product indexed by X; see § 7 for a counterexample in this case.

Theorem 1.3 can be used to establish a criterion for the amenability of some subgroups
of F (X)⋊G:

Corollary 1.4. Let G y X be an extensively amenable action and let F : I → Amen be
any functor.

A subgroup H of F (X) ⋊G is amenable as soon as the intersection H ∩ ({1} ×G) is
so.

(The derivation of this result from Theorem 1.3 is given in § 3.)

Remark 1.5. A particular case in which this criterion applies is when one is able to construct
a twisted embedding G →֒ F (X) ⋉ G of the form g 7→ (cg, g) with the property that
{g ∈ G : cg = 1} is an amenable subgroup of G. We then say that c : G → F (X), g 7→ cg
is a F (X)-cocycle with amenable kernel. The conclusion is then that G is amenable.

This method was used in the proof that the topological full group of any minimal
Cantor system is amenable [JM13]; namely the particular case of Corollary 1.4 for the
“lamp” functor F (X) = (Z/2Z)(X) was used. In the next paragraph we present a new
application of this method, relying this time on the functor F (X) = Sym(X).
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Application to groups of interval exchange transformations. An interval exchange
transformation is a permutation of a circle obtained by cutting this circle into finitely many
intervals (arcs), and reordering them. More precisely, an interval exchange transformation
is a right-continuous permutation g of R/Z such that the set {gx − x, x ∈ R/Z}, called
the set of angles of g, is finite. Interval exchange transformations are traditionally defined
as permutations of an interval [a, b), but we get the same notion by identifying a and b.

The set of all interval exchange transformations is a group acting on R/Z, denoted by
IET.

The interval exchange transformations have been a popular object of study in dynamical
systems and ergodic theory; for example they model the dynamics on polygonal billiards
with rational angles. The exchanges of three or more intervals were first considered by
Katok and Stepin [KS67]. The systematic study started in the paper by Keane [Kea75],
who introduced the terminology. For an introduction and account of the results, see the
survey by Viana [Via06] or the book of Katok and Hasselblatt [KH95].

A basic question on IET was raised by Katok, namely whether or not IET contains
a non-abelian free group. This problem attracted some attention recently; for instance,
Dahmani–Fujiwara–Guirardel [DFG13] showed that free subgroups in IET are rare in the
sense that a group generated by a generic pair of interval exchange transformations is not
free. A related open question raised in [dC13, p.4] is as follows.

Question 1.6. Is the group IET amenable?

It is sufficient for these questions to consider finitely generated subgroups of IET. The
latter can be classified according to their rational rank as follows. Given a subgroup
G ≤ IET, we denote by Λ(G) ≤ R/Z its group of angles, i.e. the subgroup of R/Z
generated by all increments gx− x where g ∈ G and x ∈ R/Z.

Definition 1.7. The rational rank of G, denoted rkQ(G) ∈ N ∪ {∞}, is the supremum of
all d such that Zd embeds in Λ(G).

Remark 1.8. If G is finitely generated, then Λ(G) is a finitely generated abelian group and
thus Λ(G) ≃ Zd ×H with H a finite abelian group. In this case rkQ(G) = d.

Theorem 1.9. Let G ≤ IET. If rkQ(G) ≤ 2 then G is amenable.

The proof is based on the method outlined in Remark 1.5 with F (X) = Sym(X),
the group of finitely supported permutations of X. We first observe that there exists a
Sym(R/Z)-cocycle g 7→ τg with amenable kernel defined on the whole group IET. This
reduces the problem of the amenability of a subgroup G ≤ IET to proving the extensive
amenability of the action G y R/Z. In the case rkQ(G) ≤ 2, this action is recurrent
and this yields Theorem 1.9. The general case would follow from a positive answer to
Question 1.11 below.

The possibility to define a twisted embedding IET →֒ Sym(R/Z) ⋊ IET also has an
almost immediate application related to Poisson–Furstenberg boundaries for random walks
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on IET. A group endowed with a probability measure (G,µ) is said to have the Liouville
property if its Poisson–Furstenberg boundary is trivial. If the support of µ generates G,
the Liouville property for (G,µ) implies amenability of G [KV83, §4.2]. Conversely any
amenable group admits a symmetric measure supported on a (possibly infinite) generating
set so that (G,µ) has the Liouville property [KV83, Theorem 4.3]. The next result shows
that there is an obstruction to showing amenability of IET in this way, namely that the
Liouville property never holds for finitely supported measures generating a “large enough”
subgroup.

We say that a probability measure on a group is non-degenerate if its support generates
the group.

Theorem 1.10. Let G < IET be finitely generated.

(i) If rkQ(G) = 1 then every symmetric, finitely supported probability measure µ on G
has the Liouville property.

(ii) Assume that rkQ(G) ≥ 3 and, viewing Λ(G) as a subgroup of IET consisting of
rotations, assume that G contains Λ(G) strictly. Then every finitely supported, non-
degenerate probability measure on G has non-trivial Poisson–Furstenberg boundary.

Part (i) follows essentially from a combination of known facts, namely a result from [MB14]
combined with the observation [dC13] that a finitely generated G < IET can be realized
as a subgroup of the topological full group of a certain minimal subshift on the group of
angles Λ(G). Part (ii) is proven applying the twisted embedding IET →֒ Sym(X) ⋊ IET
and then arguing in a similar way as for the classical example of the lamplighter group
(Z/2Z) ≀ Z3 from [KV83]. Details are given in § 5.2.

There is a strong analogy between Theorems 1.9 and 1.10 and existing results on groups
generated by finite automata of polynomial activity. These are a well-studied class of groups
acting on rooted trees, which can be classified according to their activity degree d ∈ N (we
refer to [Sid00] for details). Amenability of polynomial activity automata groups is an
open problem, that has been answered affirmatively for d ≤ 2 [JNdlS13]. Concerning the
Liouville property, it was conjectured in [AAV13] that it holds up to d = 2; this is known
for d = 0 [BKN10, AAMBV13] and for d = 1 in some important special cases [AAV13],
while for d ≥ 3 the Liouville property does not hold [AV14].

Criteria for extensive amenability. It is an intriguing problem to find new criteria
to establish extensive amenability of an action G y X. To this end, there is no loss of
generality in assuming that G is finitely generated and acts transitively on X (Lemma 2.2).
Assuming this, let S be a finite symmetric generating set of G. Recall that the orbital
Schreier graph of the action is the oriented labelled graph Γ(G,X,S) whose vertex set is
X and edge set is X × S, where the edge (x, s) connects x to sx. The corresponding edge
is labelled by s.
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We would like to find sufficient geometric conditions on the labelled Schreier graph
Γ(G,S,X) that imply extensive amenability of the action G y X. An obvious simplifi-
cation for this problem is to seek sufficient conditions that only depend on the unlabelled
Schreier graph. So far the only available criterion [JNdlS13] of this kind is Theorem 4.2.

Question 1.11. Assume that Γ(G,X,S) grows polynomially. Does this imply that G y X
is extensively amenable?

A positive answer to Question 1.11 would imply that the whole group IET is amenable,
as the Schreier graph of any finitely generated subgroup G < IET admit an injective
Lipschitz embedding into Zd (see § 5). Note that a counterexample is missing even for
graphs with uniform sub-exponential growth. Relying on the main result from [JNdlS13],
a positive answer in this case would also imply amenability of polynomial activity automata
groups, for which the graphs grow uniformly sub-exponentially [Bon12].

Organization of the paper. In § 2 we study general properties of extensive amenabil-
ity. § 3 deals with the functorial formalism, and contains proofs and generalizations of
Theorem 1.3 and Corollary 1.4. In § 4 we give a probabilistic reformulation of extensive
amenability. The results on groups of interval exchange transformations are proven in § 5.
In § 6 we describe an example of an action G y X which is not extensively amenable,
but the action of every subgroup H of G on every H-orbit is amenable (see Corollary 2.3).
Finally in § 7 we construct an example where the conclusion of Theorem 1.3 does not hold
for the unrestricted wreath product action (Z/2Z)X ⋊G y (Z/2Z)X .

Acknowledgements. We are grateful to Gidi Amir for many conversations related to
§ 4, to Anna Erschler for pointing out a reference for Lemma 5.5, and to Yves de Cornulier
for useful and numerous comments on the exposition.

2 General properties of extensive amenability

Notation. We will always identify a finitely additive probability measure m defined on
all subsets of X with the corresponding positive unital linear form on ℓ∞(X), that we
denote as f 7→ m(f) or f 7→

∫
fdm or

∫
X f(x)dm(x).

The first Lemma is easy and already known from [JdlS13]. We give a proof for conve-
nience.

Lemma 2.1. Every action of an amenable group is extensively amenable, and every ex-
tensively amenable action on a nonempty set is amenable.

Proof. Assume that G is amenable and acts on a set X. Then G acts on the set K of
all means on Pf(X) giving full weight to any given finite subset of X. Observe that
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K is a σ(ℓ∞(X)∗, ℓ∞(X))-closed (hence compact) convex subset of ℓ∞(X)∗. Moreover
K is nonempty because it contains any cluster point of the net (δA)A∈Pf (A). Since G is
amenable, G fixes a point in K, which is exactly extensive amenability.

If the action of a group G on a nonempty set X is extensively amenable in partic-
ular there is a G-invariant mean m on Pf(X) \ {∅}. Then the mean f ∈ ℓ∞(X) 7→∫
Pf (X)\{∅}

1
|A|

∑
x∈A f(x)dm(A) is G-invariant.

In the next lemma we study permanence properties of extensive amenability. The
equivalence between (i) and (ii) in particular shows that extensive amenability is preserved
by direct limits.

Lemma 2.2. Let G be a group acting on a set X. The following are equivalent:

(i) The action of G on X is extensively amenable.

(ii) For every finitely generated subgroup H of G and every H-orbit Y ⊂ X, the action
of H on Y is extensively amenable.

(iii) For every finitely generated subgroup H of G and every x0 ∈ X, there is an H-
invariant mean on Pf(Hx0) that gives nonzero weight to {A ∈ Pf(Hx0), x0 ∈ A}.

(iv) There is a G-invariant mean on Pf(X) that gives nonzero weight to {A ∈ Pf(X), x0 ∈
A} for all x0 ∈ X.

Proof. (i)⇒(iv) holds by definition.
(iv)⇒(iii). Denote by Y = Hx0. The map f ∈ ℓ∞(Pf(Y )) → f(· ∩Y ) ∈ ℓ∞(Pf(X)) is

a positive unital H-map, so that the composition of the mean given by (iv) is a H-invariant
mean giving positive weight to the sets containing x0.

(iii)⇒(ii) follows from [JM13, Lemma 3.1].
(ii)⇒(i). For every finitely generated subgroup H of G and every finite union Y =

Y1 ∪ · · · ∪ Yn of H-orbits, we have means mi on Pf(Yi) given by (ii), and we construct a
mean mH,Y on Pf(X) as follows:

∫
fdmH,Y =

∫

Pf(Y1)
. . .

∫

Pf(Yn)
f(B1 ∪ · · · ∪Bn)dm1(B1) . . . dmn(Bn).

The mean mH,Y is H-invariant and gives full weight to the sets containing any given finite
subset of Y . If we order the pairs (H,Y ) by inclusion, any cluster point of the net (mH,Y )
is G-invariant and gives full weight to the sets containing any given finite subset of X.

We say that a group action G y X is hereditarily amenable if for every subgroup H of
G the action of H on every H-orbit is amenable. Thereby we have

Corollary 2.3. Extensively amenable actions are hereditarily amenable.
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In § 6 we shall see that the converse is not true.

We now prove that in some sense extensive amenability is preserved by extensions of
actions. In the statement below, we denote by Gy the stabilizer of y in G.

Proposition 2.4. Let G be a group acting on two sets X,Y and let q : X → Y be a G-map.
If G y Y is extensively amenable and if Gy y q−1(y) is extensively amenable for every
y ∈ Y , then G y X is extensively amenable. The converse holds if q is surjective.

The special case of transitive actions can be reformulated as the following particularly
clean equivalence. We recall that the corresponding statement for amenability does not
hold, see [MP03].

Corollary 2.5. Let F ≤ H ≤ G be groups. Then the action of G on G/F is extensively
amenable if and only if both the actions of H on H/F and G on G/H are extensively
amenable.

Proof of the corollary. Apply Proposition 2.4 toX = G/F and Y = G/H with the quotient
map.

Proof of Proposition 2.4. Assume that G y Y and Gy y q−1(y) are extensively amenable
for all y ∈ Y . Take a mean m1 on Pf(Y ) as in Definition 1.1 for G y Y . We claim
that for all y ∈ Y there is a mean my on Pf(q

−1(y)) giving full weight to the subsets of
q−1(y) that contain any given finite subset of q−1(y) and with the property that mgy is the
push-forward by g of the mean my for all y ∈ Y and g ∈ G. Indeed, by the assumption
that Gy y q−1(Y ) is extensively amenable we can take such a Gy-invariant mean my on
Pf(q

−1(y)) for each y in a fixed G-transversal of Y , and, for y′ = gy in the G-orbit of such
y, define my′ as the push-forward of my by g; this definition does not depend on g because
my is Gy-invariant, and this defines the requested mean on Pf(q

−1(y′)).
For any subset A = {y1, . . . , yn} ∈ Pf(Y ), denote by mA the mean on Pf(X) by

mA(f) =
1

n!

∑

σ : {1,...,n}→A

∫

q−1(σ(1))
. . .

∫

q−1(σ(n))
f(∪n

i=1Bi)dmσ(1)(B1) . . . dmσ(n)(Bn).

The average is taken over all bijections σ, in order to ensure that mA does not depend on
the chosen ordering of the elements of A. By the properties of the means my, we have the
following two properties of the means mA. Firstly the push-forward of mA by g ∈ G is
mgA; secondly mA gives full weight to the subsets of X that contain any given subset of
q−1(A). These properties ensure that the mean m on Pf (X) defined by

m : f ∈ ℓ∞(Pf(X)) =

∫

Pf (Y )
mA(f)dm1(A),

is G-invariant and gives full weight to the subsets of X that contain any given subset of
X. This proves that G y X is extensively amenable.

8



For the converse, assume first that G y X is extensively amenable, and take m a mean
on Pf(X) as in Definition 1.1. Then by Lemma 2.2 the action of the subgroup Gy on the
subset q−1(y) of X is extensively amenable for all y ∈ Y . Consider q′ : A ∈ Pf(X) 7→
{q(a), a ∈ A} ∈ Pf(Y ). The map

f ∈ ℓ∞(Pf(Y )) 7→ m(f ◦ q′)

is a G-invariant mean that gives full weight to the sets containing every finite subset of
q(Y ). This proves that G y q(Y ) is extensively amenable.

Corollary 2.6. Let G and H be two groups, and G y X and H y Y be two extensively
amenable actions. Then

(i) the diagonal action of G×H on X × Y is extensively amenable.

(ii) the action on HX
⋊G on X × Y is extensively amenable.

In the second statement, G acts diagonally on X × Y (with trivial action on Y ), and
HX acts by (hx)x∈X · (x, y) = (x, hxy), and this gives rise to an action of HX

⋊G.

Proof. The first statement is Proposition 2.4 for the actions of G × H on X × Y and X
(trivial action of H), and q : X × Y → X the first coordinate projection.

The second statement is Proposition 2.4 for the actions on HX
⋊G on X × Y and X

(trivial action of HX) for the same projection q.

3 Functors from sets to amenable group actions

This section deals with the proof (and generalizations) of Theorem 1.3 and 1.4. We start
by giving examples of functors I → Amen.

Example 3.1. Fix an amenable group A. Consider the functor F which maps any finite set
Y to AY with the obvious extension map on inclusions. Then for a general set X we have
F (X) = A(X), the restricted product.

Example 3.2. If F (Y ) is the symmetric group of the finite set Y , then F (X) will be the
finitely supported permutation group Sym(X) of a general set X.

In the following two examples rings are always assumed to have a unit, but are not
assumed to be commutative.

Example 3.3. Fix a finite ring R (rings are always assumed to have a unit). Consider the
functor F (Y ) given by the group of invertible matrices over R indexed by a finite set Y ,
with the “corner” inclusions. For an infinite set X, the group F (X) is a stable linear group
which we denote by GL(X)(R) (it is the usual one when X is countable). As a variation,
we can define F (Y ) to be the group ELY (R) generated by elementary matrices; this yields
stable elementary groups ELX(R) for arbitrary sets X.

9



Example 3.4. Fix again a finite ring R. Given a finite set Y consider the (unstable)
Steinberg group or degree |Y | over R. Then for X general we obtain a (stable) Steinberg
group which we denote by St(X)(R). Thus we have a natural transformation given by the
morphisms St(X)(R) → ELX(R) (recall that these are isomorphisms if R is a finite field).

Example 3.5. Finally, a trivial example is given by the constant functor F (Y ) = A for
any given amenable group A. We also have the modified constant functor F0 defined by
F0(Y ) = A for all non-empty sets Y and F0(∅) being the trivial group.

Recall the definition of a tight functor from the introduction.

Definition 3.6. A functor F : I → Amen is called tight on a (possibly infinite) set X if
for all x ∈ X the morphism F (X \ {x}) → F (X) is not onto.

It is straightforward to verify that all examples above are tight on every set X except
some degenerate cases: Example 3.5, Example 3.1 with A trivial and X nonempty, and in
Examples 3.2, 3.3 and 3.4 one should exclude |X| = 1.

We first treat separately a special case of Theorem 1.3, which is enough for the applica-
tion to interval exchange transformations. The proof of the full statement of Theorem 1.3
will be given later in a more general setting, see Theorem 3.14.

Proposition 3.7. Let F : I → Amen be a functor as in Theorem 1.3, and assume more-
over that F (A) is a finite group whenever A is a finite set.

If the action of G on X is extensively amenable, then the action of F (X)⋊G on F (X)
is extensively amenable.

Proof. Assume that the action of G on X is extensively amenable. Let m be a G-invariant
mean on Pf(X) giving full weight to the collection of subsets that contain any given finite
subset. Let F be a functor from I to the category of finite groups.

We first prove that the action of F (X) ⋊ G on F (X) is amenable. Then we will see
how to adapt the proof to show that the action is extensively amenable.

For a finite set A, let mA be the uniform probability measure on F (A), which is a finite
group by assumption. We denote by mX

A the mean on F (X) obtained by push-forward
through F (A) → F (X); this mean is F (A)-invariant by construction. Observe also that
for we have gmX

A = mX
gA for every g ∈ G.

We obtain a mean m̃ on F (X) by integrating mX
A over m; more precisely, given f ∈

ℓ∞(F (X)) we define

m̃(f) =

∫

Pf(X)
mX

A (f)dm(A).

This mean is G-invariant by construction and we claim that it is also F (X)-invariant. It
is enough to show that m is F (A)-invariant for every finite subset A of X. But this holds
because m gives full weight to the set of finite subsets containing A, and since mX

B is
F (A)-invariant whenever B contains A.
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To prove that the (transitive) action of F (X) ⋊ G on F (X) is extensively amenable,
by [JM13, Lemma 3.1] we have to prove that there is a mean on (Z/2Z)(F (X)) that is
invariant under the action of (Z/2Z)(F (X))

⋊ (F (X) ⋊ G). For every A ∈ Pf (X), the
map F (⊂) : F (A) → F (X) induces a group homomorphism (Z/2Z)F (A) → (Z/2Z)(F (X))

obtained by sending δs to δF (⊂)(x). If mA is the uniform probability measure on the (finite)
image of this group homomorphism, then the same argument as above shows the mean
obtained on (Z/2Z)(F (X)) by integrating mA over m is invariant under (Z/2Z)(F (X))

⋊

(F (X) ⋊G).

We now proceed to the

Proof of Corollary 1.4. To prove that H is amenable we find an amenable action of H with
amenable stabilizers. Let e be the unit element of F (X), and consider the action of H on
the H-orbit of e. By Theorem 1.3 and Lemma 2.2, this action is extensively amenable
and in particular is amenable. Moreover the stabilizer of e is H ∩ ({1} × G) which by
assumption is amenable. So is every other stabilizer, which is a conjugate of the stabilizer
of e. This implies that H is amenable.

Remark 3.8. In the above proof we appealed to Theorem 1.3 in full generality, however it
is sufficient to apply Proposition 3.7 if its assumptions are satisfied.

To prove the full statement of Theorem 1.3 it is convenient to pass to a slightly more
general setting of functors from I to the category AmenAct of amenable actions. This
generalization is needed in order to obtain that the action of F (X) ⋉ G on F (X) is not
only amenable, but also extensively amenable.

The objects in AmenAct are given by a group acting amenably on a set, and a
morphism from G y X to H y Y is given by a map X → Y and a group homomorphism
G → H that intertwines the two actions. If F : I → AmenAct is a functor, we denote by
FGrp and FSet the associated functors from I to the category of groups and sets respectively.
That is, F (X) is the action of FGrp(X) on FSet(X). Since AmenAct has direct limits,
any functor F : I → AmenAct extends to the category of all sets with injective maps as
morphisms, in the same way as for functors to Amen. We still denote the resulting functor
by F .

As before, notice that any group action G y X yields an action G y FGrp(X) by
automorphisms and an action G y FSet(X), hence an action FGrp(X)⋊G y FSet(X).

Example 3.9. Any functor F : I → Amen is in particular a functor I → AmenAct

(G 7→ (G y G) realizes Amen as a subcategory of AmenAct).

Example 3.10. Take two functors E,F : I → AmenAct. Assume furthermore that FSet is
a functor from I to the category of sets with injective maps as morphisms, and FGrp is a
functor I → Amen. For a finite set Y , we have an action of an amenable group FGrp(Y )
on FSet(Y ), and hence by the functoriality of E an action of EGrp(FSet(Y )) ⋊ FGrp(Y )
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on ESet(FSet(Y )). This action is amenable because EGrp(FSet(Y )) y ESet(FSet(Y )) is
amenable and the group FGrp(Y ) is amenable. This defines a new functor, which we denote
E ⋄ F : I → AmenAct.

Example 3.11. The previous construction also makes sense if F : I → AmenAct is a
functor such that FGrp : I → Amen and E : Set → AmenAct.

Definition 3.12. A functor F : I → AmenAct is called tight on a (possibly infinite)
set X if for all x ∈ X, no invariant mean for F (X) gives full weight to the image of
FSet(X \ {x}) → FSet(X).

This definition extends Definition 3.6 to functors F : I → AmenAct, because if H is a
subgroup of an amenable group G then any G-invariant mean on G gives weight |G : H|−1

to H, where |G : H| is the index of H in G.

We now define the support maps associated to functors F : I → Amen and F : I →
AmenAct. Consider first the case of a functor F : I → Amen. Given an arbitrary set X,
define

suppX : F (X) −→ Pf(X)

as follows: for a ∈ F (X), the set suppX(a) is the intersection of all Y ∈ Pf(X) such that
a is in the image of the morphism F (Y ) → F (X).

One checks that for any injective map i : X → Z one has

suppZ(F (i)(a)) ⊆ i suppX(a).

Therefore, given any group action G y X, the map suppX is equivariant with respect to
the induced action on F (X).

Remarks 3.13. The above inclusion can be strict. This happens for instance for the functor
F0 of Example 3.5 if A is non-trivial, |X| = 1 and |Z| > 1. Indeed any non-trivial
a ∈ F (X) ∼= A satisfies suppX(a) = X and suppZ(F (i)(a)) = ∅.

We also observe that a non-trivial element can have empty support even if F is tight.
For instance, let F be a tight functor and take the direct product F ′ of F with a constant
functor associated to a non-trivial group A. Then F ′ is still tight but any element coming
from A has empty support.

In the case of a functor to AmenAct the support map is defined in the same way, by
replacing F by FSet, thereby yielding a G-equivariant map

suppX : FSet(X) −→ Pf(X).

We can now state and prove the results extending Theorem 1.3.
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Theorem 3.14. Let F : I → AmenAct be any functor and let G be a group acting on a
set X.

If the action of G on X is extensively amenable, then the action of FGrp(X) ⋊ G on
FSet(X) is amenable. Moreover it is extensively amenable if FGrp takes values in Amen.

Conversely assume that the action of FGrp(X) ⋊G on FSet(X) is amenable and that
F is tight on X. Then the action of G on X is extensively amenable.

Proof. For each integer n ≥ 0 we write [n] = {j ∈ N : 1 ≤ j ≤ n} and choose a mean
mn on FSet([n]) invariant under the (amenable) action of FGrp([n])⋊Sym([n]). Given any
finite set A, we obtain a mean mA on FSet(A) by transporting mn for n = |A| through
some bijection [n] → A. This mean mA does not depend on the chosen bijection since mn

is Sym([n])-invariant, and any bijection between two finite sets A,A′ maps mA to mA′ .
We denote by mX

A the mean on FSet(X) obtained by push-forward through FSet(A) →
FSet(X); this mean is FGrp(A)-invariant, and we have gmX

A = mX
gA for every g ∈ G.

If m is a G-invariant mean on Pf(X) giving full weight to the collection of subsets
that contain any given finite subset, we get a mean m̃ as in the proof of Proposition 3.7
by setting for every f ∈ ℓ∞(FSet(X))

m̃(f) =

∫

Pf(X)
mX

A (f)dm(A).

This mean is G-invariant and FGrp(X)-invariant for the same reason as in the proof of
Proposition 3.7. This proves that the action of FGrp(X) ⋊ G on FSet(X) is amenable.
Before proving that it is extensively amenable if FGrp takes values in Amen, let us prove
the converse part of the statement.

Assume that FGrp(X) ⋊ G y FSet(X) is amenable and that F is tight on X. Given
a G-invariant mean m on FSet(X), the G-map suppX provides us by push-forward with a
G-invariant mean m on Pf(X). Let x0 ∈ X. By definition, the value of m on the collection
of finite sets containing x0 is m(B), where B =

{
b ∈ FSet(X) : x0 ∈ suppX(b)

}
. This can

be re-written as

B =
{
b ∈ FSet(X) : ∀A ∈ Pf(X) with x0 /∈ A : b /∈ Im(FSet(A) → FSet(X))

}
.

In plain words, B is the complement in FSet(X) of the image of the direct limit of FSet(A)
over all finite A not containing x0. It is thus the complement of the image of FSet(X\{x0}).
Since F is tight, we deduce m(B) > 0 if m is FGrp(X)-invariant. By Lemma 2.2 we
conclude that G y X is extensively amenable.

It remains to be proven that the action FGrp(X)⋊G y FSet(X) is extensively amenable
whenever FGrp takes values in Amen. By the above it is enough to find a tight functor
F1 : I → Amen such that the action of F1(FSet(X)) ⋊ (FGrp(X) ⋊ G) on F1(FSet(X))
is amenable. We consider the functor F1(X) = (Z/2Z)(X) and we observe that we can
see F1 as a functor Set → Amen (for a map f : X → Y between sets, the associated
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group homomorphism (Z/2Z)(X) → (Z/2Z)(Y ) maps δx to δf(x)). By the assumption
that FGrp(Y ) is amenable for all Y we can consider the functor F1 ⋄ F as defined in
Example 3.11. Since F1 commutes with direct limits, we see that F1 ⋄ F (X) is the action
of F1(FSet(X))⋊FGrp(X) on F1(FSet(X)) not only for finite sets X, but also infinite sets.
The first part of the statement applied to the functor F1 ⋄ F implies that the action of
F1(FSet(X)) ⋊ (FGrp(X) ⋊G) on F1(FSet(X)) is amenable and concludes the proof.

4 Probabilistic reformulation and recurrent actions

4.1 The inverted orbit

We now give a more probabilistic reformulation of extensive amenability. To simplify the
statements we make the assumption that G = 〈S〉 is finitely generated and acts transitively
on X (this is very inessential by Lemma 2.2). We fix a symmetric probability measure µ
on G with generating support and a base point x0 ∈ X. We can consider the (left) random
walk (gn)n≥0 on G defined by g0 = e and gn = hngn−1 for n ≥ 1, where (hi)i≥1 are
independent with law µ.

The inverted orbit On is then the (random) subset of X

On = {x0, g
−1
1 x0 · · · , g

−1
n x0}. (1)

If G is not abelian, the inverted orbit need not have the same distribution as the directed
orbit of the random walk on X. The inverted orbit is a well-known object, central to the
study of growth and random walks on permutational wreath products, see [BE12, BE11,
AV12].

It is sometimes convenient to consider the following variation of the inverted orbit

O′
n = {x0, hnx0, hnhn−1x0, . . . , hn · · · h1x0}. (2)

For a fixed n, On and O′
n have the same distribution, although the joint distributions of

the processes (On)n and (O′
n)n differ.

The next proposition shows that proving extensive amenability of an action G y X
boils down to a fine understanding the asymptotic behavior of the distribution of |On|.
The third reformulation was suggested to us by Gidi Amir, to whom we are grateful for
letting us include it here.

Proposition 4.1. Fix G y X, x0 ∈ X and µ as before. The following properties are all
equivalent to extensive amenability.

(i) limn→∞− 1
n logE(2−|On|) = 0.

(ii) for every ε > 0 we have P(|On| < εn) > e−εn for infinitely many n’s.
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(iii) There exists a sequence of events An ∈ σ(g1, . . . , gn) verifying − 1
n log P(An) → 0,

conditioned to which 1
nE(|On| : An) → 0.

In particular these conditions do not depend on µ and x0.

In the last part E(|On| : An) = E(|On|1An)/P(An) denotes the expectation of |On|
conditioned to the event An.

Proof. In the proof we will freely use [JM13] that G y X is extensively amenable if and
only if (Z/2Z)(X)

⋊ G y (Z/2Z)(X) is amenable (as follows from Theorem 3.14). Since
we assume that G is finitely generated and acts transitively on X, the wreath product
(Z/2Z)(X)

⋊G is finitely generated and acts transitively on (Z/2Z)(X). Thereby if we fix
any non-degenerate symmetric, finitely supported probability measure ν on (Z/2Z)(X)

⋊G
we can consider the Schreier graph Γ associated to the action (Z/2Z)(X)

⋊G y (Z/2Z)(X)

with generating set supp(ν) and base-point the trivial configuration f0 = 0(Z/2Z)(X) . The

left random walk on (Z/2Z)(X)
⋊G with step measure ν then induces a nearest neighbour

random walk (fn) on Γ. By Kesten’s amenability criterion for a graph (see [Woe00, The-
orem 10.6]), amenability of the action (Z/2Z)(X)

⋊G y (Z/2Z)(X) is thereby equivalent
to

lim
n→∞

−
1

n
log P(fn = f0) = 0. (3)

Moreover it is sufficient to show this for any choice of ν with the above properties. We can
thereby choose ν to be the switch-walk-switch measure µ̃ on (Z/2Z)(X)

⋊G associated to the
measure µ on G and to the base-point x0 ∈ X. Recall that if λ is the uniform probability
measure on {0(Z/2Z)(X) , δx0} ⊂ (Z/2Z)(X) then by definition µ̃ = λ ∗ µ ∗ λ, where λ and µ

are naturally seen as probability measures on (Z/2Z)(X)
⋊ G. With this choice of ν it is

then easy to see that fn+1 is obtained from fn through the following steps: first change
the value of fn(x0) to a uniform random value in Z/2Z to obtain a new f ′

n, then translate
f ′
n to f ′′

n = hn+1 · f
′
n where hn+1 ∈ G has distribution µ, finally randomize again f ′′

n(x0) to
obtain fn+1. It follows from this description that suppfn ⊂ O′

n for every n, where O′
n is as

in (2). Moreover fn lights each point in O′
n independently with probability 1/2. From this

we immediately get that P(fn = f0) = E(2−|O′

n|) = E(2−|On|). The equivalence between
(i) and extensive amenability follows.

The equivalence between (i) and (ii) is essentially Markov’s inequality.
The second condition implies the third by a diagonal extraction argument.
To see that the first condition implies the first, observe that 2−|On| ≥ 2−|On|1An and

thereby by Jensen’s inequality

−
1

n
logE(2−|On|) ≤ −

1

n
logE(2−|On|1An) ≤ −

1

n
log P(An)−

1

n
E(|On| : An) log 2 → 0.

15



4.2 Application to recurrent actions

As an application let us give a new proof of a criterion for extensive amenability in [JNdlS13].
Here a group action G y X is called recurrent if for every symmetric, finitely supported
probability measure µ on G and every x0 ∈ X, the random walk (gnx0) on the orbit of x0
induced by the left random walk on G is recurrent. If G is finitely generated, it is sufficient
to check this for a symmetric, finitely supported probability measure with generating sup-
port. Equivalently it is sufficient to check that for every x ∈ X and for a symmetric, finite
generating set S of G the Schreier graph Γ(G,x0, S) is recurrent for simple random walk.

Theorem 4.2 (Theorem 1.2 in [JNdlS13]). Recurrent actions are extensively amenable.

Let us give a direct proof based on the inverted orbit. The main ingredient is

Lemma 4.3 ([BE11],[AV12]). Assume that G is finitely generated and the action G y X
is transitive. Then G y X is recurrent if and only if 1

nE|On| → 0 for some (equivalently
for any) non-degenerate symmetric, finitely supported probability measure µ on G.

Although this is exactly [BE11, Lemma 3.1] we report a proof for the convenience of
the reader.

Proof. Let T = min{n ≥ 1 : gnx0 = x0} ∈ N ∪ {∞}. We have

E|On+1| − E|On| = P(g−1
n+1x0 /∈ On) =

P(h−1
n+1x0 6= x0, h

−1
n h−1

n+1x0 6= x0, . . . , h
−1
1 · · · h−1

n+1x0 6= x0) = P(T > n+ 1),

since by symmetry (h−1
n+1, h

−1
n h−1

n+1, . . . , h
−1
1 · · · h−1

n+1) has the same law as (g1, . . . , gn+1).
This computation shows that 1

nE|On| → P(T = ∞), which vanishes if and only if G y X
in recurrent.

Proof of Theorem 4.2. By Lemma 2.2 we may assume that G is finitely generated and acts
transitively on X. Apply part 1 of Proposition 4.1. By convexity

−
1

n
logE(2−|On|) ≤

1

n
E(|On|) log 2 → 0,

where we used Lemma 4.3. Part (i) of Proposition 4.1 gives the conclusion.

5 Interval exchange transformations

5.1 Amenability of subgroups of low rational rank

Let Λ < R/Z be a finitely generated subgroup of the circle. Thus, Λ is isomorphic to
Zd×F for some finite abelian group F and some integer d, the rational rank of Λ, denoted
rkQ(Λ). With this notation the rational rank (as defined in Definition 1.7) of a finitely
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generated subgroup G ≤ IET is an abbreviation for rkQ(Λ(G)). We denote IET(Λ) the
subgroup of all g ∈ IET so that the angle gx− x is in Λ for every x ∈ R/Z.

The following result is a reformulation of Theorem 1.9.

Theorem 5.1. Let Λ < R/Z be finitely generated. If rkQ(Λ) ≤ 2, then IET(Λ) is
amenable.

Our goal is to apply Corollary 1.4 for the functor F : Sym: I → Amen, given by
F (A) = Sym(A) the symmetric group. This extends to an infinite set as F (X) = Sym(X),
the group of permutations of X with finite support (see Example 3.2). If G y X we recall
that we have an action of G on Sym(X) by conjugation. For τ ∈ Sym(X) and g ∈ G we
denote gτ = gτg−1. The first ingredient is (see § 4.2 for the definition of a recurrent action)

Lemma 5.2. If rkQ(Λ) ≤ 2, the action of IET(Λ) on R/Z is recurrent. In particular, it
is extensively amenable.

Proof. Equip Λ with a finite symmetric generating set and the corresponding Cayley graph
structure. Then Λ is a recurrent graph. Let H < IET(Λ) be a finitely generated subgroup,
equipped with a finite symmetric generating set S. For x ∈ R/Z let Γ(x,H, S) be the
orbital Schreier graph for the action of H on Hx. We have an injective map

Γ(x,H, S) → Λ

y 7→ y − x

where the difference is taken in R/Z. This maps takes values in Λ since y = hx for some
h ∈ H < IET(Λ). It is not hard to check that this map is Lipschitz (for some constant
depending on the generating set S of H only). Since rkQ(Λ) = 2 this implies that the
action is recurrent, see [LP14, Theorem 2.17]. The action is then extensively amenable by
Theorem 4.2.

The other ingredient in the proof of Theorem 5.1 is the following result that concludes
the proof.

Proposition 5.3. A subgroup G ≤ IET is amenable if and only if the action G y R/Z is
extensively amenable.

Proof. The “only if part” is obvious (Lemma 2.1).
The ”if part” is based on the method explained in Remark 1.5. If we replace the

convention that interval exchanges are right-continuous by the condition that they are left
continuous, we get a group of permutations of R/Z that we denote by ĨET. The map

g ∈ IET 7→ g̃ ∈ ĨET, where g̃ is the unique left-continuous map that coincides with g
except on the points of discontinuity of g, is a group isomorphism. Then

τg = g̃g−1 (4)
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is a permutation of R/Z with finite support equal to the points of discontinuity of g−1.
Moreover

τgh = g̃h̃h−1g−1 = τggτhg
−1 = τg(

gτh), (5)

so that the map

ι : IET → Sym(R/Z)⋊ IET

g 7→ (τg, g)

is an injective group homomorphism. Observe that τg = 1 if and only if g is continuous,
i.e. a rotation. If G ≤ IET is a subgroup, the restriction of ι to G takes values in
Sym(R/Z) ⋊ G. Moreover ι(G) ∩ {1} × G consists of rotations and thereby is amenable.
In the terminology of Remark 1.5, g 7→ τg is a Sym(R/Z)-cocycle with amenable kernel.
The conclusion follows from Corollary 1.4.

5.2 Non-trivial boundary for subgroups of high rank

We take notations from the previous section. Let again Λ be a finitely generated subgroup
of R/Z. Note that Λ identifies with an abelian subgroup of IET(Λ) acting on R/Z by
rotations.

Theorem 5.4. Let Λ < R/Z be a finitely generated group.

1. If rkQ(Λ) = 1, then IET(Λ) has the Liouville property for every symmetric, finitely
supported measure.

2. Assume rkQ(Λ) ≥ 3. Let G ≤ IET(Λ) be a non-abelian group that contains Λ. Then
any finitely supported, non-degenerate probability measure µ on G has non-trivial Poisson–
Furstenberg boundary.

We do not know whether part 1 can be extended to the case rkQ(Λ) = 2.
The proof of part 1 is postponed to § 5.3. To prove part 2, we will use the following

fact that allows to restrict to symmetric measures. Given a probability measure µ on a
countable group G, we denote µ̌ the measure µ̌(g) = µ(g−1)

Lemma 5.5 (Baldi, Lohoué and Peryère [BLP77]). Let G be a countable group acting
transitively on a set X and µ be a probability measure on G. Consider the symmetric
measure ν = 1

2(µ + µ̌). Assume that the Markov chain on X induced by ν is transient.
Then so is the Markov chain induced by µ.

Proof. For G = X acting on itself, this is exactly [BLP77, Proposition 1], and the proof
extends with no changes to group actions.

Let (G,µ) be as in part 2 of Theorem 5.4. For the proof, it will be convenient to
consider the right random walk gn = h1 · · · hn with step measure µ. When speaking about
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recurrence or transience of left group actions we refer however to left random walk. Thereby
with the right random walk notations, saying that the action of G on the orbit of x0 ∈ R/Z
is transient means that the Markov chain (g−1

n x0) is transient. Observe that this is the
case under the assumptions of part 2 of Theorem 5.4.

For g ∈ IET let τg ∈ Sym(R/Z) be the permutation introduced in the proof of Propo-
sition 5.1.

Lemma 5.6. For every x ∈ R/Z the value τgn(x) ∈ R/Z is almost surely constant for
large enough n. We denote τ∞(x) its eventual value. The map τ∞ : R/Z → R/Z is an
injective map that preserves every Λ-coset.

Proof. Let Σ ⊂ R/Z be the union of suppτs for s ∈ suppµ. By transience, for every
x ∈ R/Z there exists a random N so that x /∈ gnΣ for n ≥ N . Now observe that by the
cocycle relation (5) we have

τgn = τh1 ◦
g1τh2 · · · ◦

gn−1τhn

and that the support of gi−1τhi
is contained in gi−1Σ. Hence τgn(x) = τgN (x) for every

n ≥ N . The fact that τ∞ is injective follows immediately from the fact that τgn is injective
for every n, and it preserve every Λ-coset in R/Z since so does G.

Denote InjΛ(R/Z,R/Z) the set of all injective maps of the circle to itself that preserve
every Λ coset. The group IET(Λ) acts on InjΛ(R/Z,R/Z) by

g · f = τg ◦
gf = τg ◦ g ◦ f ◦ g−1,

where g ∈ IET(Λ) and f ∈ InjΛ(R/Z,R/Z). Endow with the topology induced by the
product of the discrete topology on R/Z. Then the above construction shows that τgn
converges almost surely to a τ∞ ∈ InjΛ(R/Z,R/Z). If ν is the distribution of τ∞ then
(Inj(R/Z,R/Z), ν) is a quotient of the Poisson–Furstenberg boundary. To conclude the
proof we only need to check that this quotient is not the trivial one, namely that ν is not
concentrated on a single point.

Lemma 5.7. Let f ∈ InjΛ(R/Z,R/Z) and G be as in part 2 of Theorem 5.4. Then there
exists g ∈ G so that g · f 6= f .

Proof. Assume that G stabilizes f . A rotation r ∈ Λ < G acts on f by conjugation. Hence
the increment x 7→ f(x) − x is Λ-invariant. It follows that f coincides on every Λ-coset
with a translation by a fixed element in Λ. Observe that this implies the following: if
g ∈ G is arbitrary, then g ◦ f ◦ g−1 is either equal to f or it differs from f on infinitely
many points. Indeed, observe that the restriction of g ◦ f ◦ g−1 on every Λ-coset coincides
with the restriction of an interval exchange transformation, and two interval exchange
transformations are either equal or differ on infinitely many points in every Λ-coset (since
these are dense). Now consider g ∈ G which is not a rotation. For such a g we have τg 6= Id.
Hence g · f = τg ◦ g ◦ f ◦ g−1 cannot be equal to f , in the first case since τg is nontrivial,
and in the second case since it is finitely supported.
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Proof of Theorem 5.4 (part 2). Assume that τ∞ is deterministic. Then the Dirac mass on
τ∞ is a µ-stationary measure. This implies that the support of µ stabilizes τ∞, hence so
does G since µ is non-degenerate. But this is impossible by Lemma 5.7

Question 5.8. With the above notations, is (InjΛ(R/Z,R/Z), ν) isomorphic to the Poisson–
Furstenberg boundary of (G,µ)?

Similar ideas yield the following alternative for subgroup containing an irrational rota-
tion, that could also be proven more directly.

Proposition 5.9. Let G be a finitely generated subgroup of IET that contains an irrational
rotation. Then either G is an abelian group of rotations, or G has exponential growth.

Proof. Suppose that G is nonabelian. Let r ∈ G be an irrational rotation and h ∈ G be
an element which is not a rotation, so that τh 6= 0. Consider the non-symmetric measure
µ = 1

3δr +
1
3δh−1 + 1

3δh. The random walk on the Schreier graphs of the set of angles is
drifted in the direction of r (perhaps after replacing r with a big enough power). The same
idea as in the previous proof shows that µ has non-trivial Poisson–Furstenberg boundary.
Existence of a finitely supported measure with non-trivial boundary implies that G has
exponential growth, see [KV83, Proposition 1.4].

5.3 Connection with topological full groups and Liouville property in

rank 1

In this section we show part 1 of Theorem 5.4. We first explain in some details a construc-
tion, that has already appeared implicitly in [dC13], showing that the study of finitely
generated subgroups of IET is closely related to the study of the topological full groups of
a special family of minimal actions of finitely generated abelian groups on the Cantor set.

Let Γ be a group acting by homeomorphisms on a topological space X. The topological
full group of the action, [[Γ]], is the group of all homeomorphisms h of X such that every
point of X admits a neighborhood where h agrees with an element of Γ.

The dynamical system (Γ,X) is minimal if there are no non-trivial closed Γ-invariant
subsets in X.

A Cantor Γ-system is a dynamical system (Γ,X) where X is the Cantor set. Let A
be a finite alphabet. The Γ-shift over A is the Cantor system (Γ, AΓ) where Γ acts on
AΓ by translations. A Γ-subshift is a Cantor Γ-system (Γ,X) where X ⊂ AΓ is a closed
Γ-invariant subset.

In what follows we use the notation ∨α∈IPα for the join of a family of partitions (Pα)α∈I
of a set. Recall the following elementary criterion to establish whether a Cantor Γ-system
is conjugate to a subshift. For a proof see e.g. [dC13, Fait 2.2].
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Lemma 5.10. Let (Γ,X) be a Cantor Γ-system. then (Γ,X) is conjugate to a Γ-subshift
over a finite alphabet if and only if there exists a finite partition P of X into clopen sets so
that the partition ∨γ∈ΓγP is the point partition of X (i.e. for any x 6= y ∈ X there exists
γ ∈ Γ so that the partition γP separates x and y).

As before, let Λ < R/Z be a finitely generated and infinite subgroup, and let Σ =
{x1, . . . , xr} be a finite subset of R/Z. We denote IET(Λ;Σ) the subgroup of IET(Λ)
consisting of interval exchange transformations so that all extrema of the defining intervals
lie in cosets xi + Λ of points in Σ. Every finitely generated G < IET is contained in
IET(Λ,Σ), where Λ = Λ(G) and Σ is the set of extrema of the defining intervals of elements
in some generating set of G.

A construction going back essentially to [Kea75] realizes IET(Λ,Σ) as a group of home-
omorphisms of a Cantor set. Using Lemma 5.10, we will see through this construction that
IET(Λ;Σ) is isomorphic to the topological full group of a minimal Λ-subshift, and even
that the actions are semiconjugate.

Proposition 5.11. Let Λ < R/Z be infinite and finitely generated and Σ as above. There
is a minimal Λ-subshift (Λ,X), an isomorphism π : [[Λ]] → IET(Λ;Σ) and a continuous
surjective map h : X → R/Z such that h(g · x) = π(g) · x for all x ∈ X and g ∈ [[Λ]].

Remark 5.12. The Cantor minimal Λ-systems arising in this way have a very special
form. Recall that the topological full group of a Cantor minimal Zd-system may fail
to be amenable even for d = 2 [EM13], while this does not happen for IET as shown by
Theorem 5.1.

Proof. Let C be the space constructed out of the circle in the following way. Take a circle
and double all points in Σ + Λ. Namely, we replace each point x ∈ Σ + Λ by two points:
left and right, that we denote x− and x+. There is a natural topology on C that makes it
homeomorphic to the Cantor set. The action of Λ on R/Z by rotations induces an action
on C by homeomorphisms. This action is minimal as soon as Λ is infinite. It is then easy
to see that the map x± ∈ X 7→ x ∈ R/Z is a continuous surjection that implements a
semiconjugation between the action of [[Λ]] and IET(Λ;Σ).

To see that the Λ-Cantor system is in fact a subshift, we apply Lemma 5.10 to the
following partition. Let S be a generating set of Λ. For each λ ∈ S and x ∈ Σ consider the
partition Pλ,x of C in the two clopen sets [x+, (x+λ)−] and [(x+λ)+, x−]. Set P = ∨λ,xPλ,x.
Then the Λ-translates of P separate points.

We now explain how this implies Part 1 of Theorem 5.4. We first recall the notion of
complexity of a subshift. Let Γ be a finitely generated group with generating set S and X
be a Γ-subshift. Let P be a partition of X satisfying Lemma 5.10. The one-dimensional
complexity of the subshift (Γ,X) with respect to S and P is the function ρS,P : N → N

that counts the number of elements of the partition ∨|γ|s≤nγP, where | · |S is the word

metric associated to S. For a Z-subshift X ⊂ AZ this coincides with the more standard
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definition of complexity of sequences if one takes the standard generating set of Z and the
partition indexed by A into cylinder sets corresponding to the letter at position 0. The
proof of the following lemma is elementary and not difficult.

Lemma 5.13. Let (Λ, C) the Cantor minimal system constructed in the previous propo-
sition, and assume that rkQ(Λ) = d. Then for every generating set S of Λ and every
partition P satisfying Lemma 5.10 there exists a constant C > 0 so that ρS,P(n) ≤ Cnd.

Proof of Part 1 of Theorem 5.4. The conclusion follows from [MB14, Theorem 1.2] by Propo-
sition 5.11 and Lemma 5.13. (The statement of [MB14, Theorem 1.2] assumes that Λ = Z,
but the proof extends with no changes if Λ is virtually cyclic).

6 A hereditarily amenable action which is not extensively

amenable

Corollary 2.3 shows that an obstruction for an amenable action to be extensively amenable
is to fail be hereditarily amenable. In this section we show that this is not the only ob-
struction.

We consider a group H of piecewise projective orientation-preserving homeomorphisms
of R intruduced in [Mon13]. A self-homeomorphisms f of R belongs to this group if there
exist intervals I1, . . . , In covering R and g1, . . . , gn ∈ PSL(2,R) such that f coincides with
gi on Ii for all i ∈ {1, . . . , n}. Here we consider the standard projective action of PSL(2,R)

on P 1(R) = R ∪∞: g · x = ax+b
cx+d if g = ±

(
a b
c d

)
. The goal of this section is to show

Theorem 6.1. The action H y R is hereditarily amenable, but it is not extensively
amenable.

Remark 6.2. By Lemma 2.2, this implies that there exists a finitely generated subgroup
L ≤ H and an L-orbit X ⊂ R so that the action of L on X is hereditarily amenable but
not extensively amenable.

The first ingredient of the proof is:

Lemma 6.3. H y R is hereditarily amenable.

Proof. Let H(0) ≤ H be any subgroup and let x ∈ R. Denote by H(1) the commutator sub-
group of H(0), and by H(2) the commutator subgroup of H(1). Denote M = sup(H(0)x) ∈
R∪{∞}. It is a fixed point of H(0). Let xn ∈ H(0)x be a sequence converging to M . Since
the double commutator of the stabilizer of M in PSL(2,R) is trivial, every element h of
H(2) is trivial on a neighborhood of M , and hence satisfies hxn = xn for all n large enough
depending on h. Therefore any w-* cluster point of the sequence δxn is an H(2)-invariant
mean on H(0)x.

22



This shows that the compact convex subsetK ⊂ ℓ∞(H(0)x)∗ of all H(2)-invariant means
on X is nonempty. The action of H(0) on K factors to an action of the amenable group
H(0)/H(2), and hence has a fixed point. Such a fixed point is an H(0)-invariant mean on
X.

The fact that H y R is not extensively amenable follows from the following Theorem
because it was proved in [Mon13] that H is not amenable.

Theorem 6.4. A subgroup H1 of H is amenable if and only if H1 y R is extensively
amenable.

The proof relies on the main result in [JNdlS13]. Recall that given a topological space
X and a groupoid of germs of homeomorphims G acting on X, the topological full group
[[G]] of G is the group of all self-homeomorphisms of X whose germs belong to the groupoid
X.

Theorem 6.5 ([JNdlS13]). Let G be a group acting on a topological space X with groupoid
of germs G. Assume that there is a groupoid of germs of homeomorphisms H acting on X
so that the following holds

(i) For every g ∈ G the germ of g at x belongs to H for all but finitely many x ∈ X.

(ii) For every x ∈ X the isotropy group Gx is amenable.

(iii) The action G y X is extensively amenable.

(iv) The group [[H]] is amenable.

Then G is amenable.

In fact, condition (iii) in the original statement in [JNdlS13] was that the action is
recurrent, but this is used in the proof only through Theorem 4.2.

Proof of Theorem 6.4. The only if part holds in view of Lemma 2.1. Assume that H1 y R

is extensively amenable. Apply Theorem 6.5 to G = H1 with H the groupoid of germs
of the partial action of PSL(2,R) on the real line. Condition (ii) is satisfied since Gx ≃
Aff(R)×Aff(R). To check condition (iv), let h ∈ [[H]]. Since projective homeomorphisms
are analytic, it is easy to see that the germ of h in at any two points x, y ∈ R is represented
by the same element of PSL2(R). Therefore h ∈ PSL(2,R) and h stabilizes R globally.
This shows that [[H]] = Aff(R) is amenable. Thereby H1 is amenable.
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7 Unrestricted wreath product actions

This section is a complement to § 3. In the results therein, we restricted ourselves to
functors that can be written as direct limits of functor defined on finite sets. The next
proposition shows that Theorem 1.3 fails if this assumption is removed.

Proposition 7.1. There exists an extensively amenable, transitive action G y X of a
finitely generated group so that the action of the unrestricted wreath product (Z/2Z)X ⋊G
on (Z/2Z)X is not amenable.

Here (Z/2Z)X denotes the abelian group of all configurations f : X → Z/2Z.
We will use the following simple fact.

Lemma 7.2. Let G be a finitely generated group acting on a set Y , and let µ be a non-
degenerate, symmetric finitely supported probability measure on G. Then the action of G
on Y is non-amenable if, and only if, the spectral radius of µ on every G-orbit is uniformly
bounded sway from 1, i.e. if there exists a uniform ρ < 1 so that for any y0 ∈ Y we have
limn P(g2ny0 = y0)

1/2n < ρ, where Gn is the left random walk on G with step measure µ.

Proof. The action is nonamenable if and only if the spectral radius (i.e. the norm of
the convolution operator f 7→ µ ∗ f on ℓ2(Y )) is smaller than 1. This is equivalent to
the fact that the spectral radius on every G-orbit is uniformly bounded away from 1. It
is well-known that the spectral radius on the orbit of y0 equals limn P(g2ny0 = y0)

1/2n,
see [Woe00].

To show Proposition 7.1 we construct a finitely generated group G = 〈S〉 acting faith-
fully and transitively on a set X so that

1. the Schreier graph of the action is isomorphic to Z;

2. the action of (Z/2Z)X ⋊G on (Z/2Z)X is not amenable.

Note that the first condition guarantees that the action is extensively amenable by
Theorem 4.2.

Set G = Z/2Z ∗ Z/2Z ∗ Z/2Z, freely generated by 3 involutions b, y, r and set X = Z.
Let B,R, Y denote three colors (blue, red and yellow). Consider the space of proper
colorings of edges of the line Z, i.e. colorings where two adjacent edges never have the
same color. Every such coloring defines an action of G on X, where the generators b, y, r
act as involutions by switching two adjacent integers whenever the edge between them has
the corresponding color B,Y,R. Consider any proper coloring so that every finite proper
word in B,R, Y appears infinitely many times (for example endow the space of of proper
colorings with the natural Markov measure and pick a random one). This coloring gives the
action G y X that we consider (this is essentially the same action constructed in [vD90]).
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We will abuse notations and identify a proper word in the colors B,R, Y with an element
of the group G.

Let f ∈ (Z/2Z)X to be determined later and consider the group H ≤ (Z/2Z)X ⋊ G
generated by G and f . We will construct an element f such that the action of H on any
H-orbit in (Z/2Z)X has spectral radius uniformly bounded away from 1. This concludes
by Lemma 7.2.

To construct f , arrange all reduced words in B,R,Y in a list (i.e. consider a numeration
of elements of G, but we avoid introducing the numeration explicitly). Consider the first
word in the list w, and let l = |w| be its length. Pick an auxiliary word w̃ so that |w̃| ≥ 5l.
Find l+1 copies of the word w̃ww̃ in the colored line X that do not overlap. For i = 0, . . . , l
let xi ∈ X be the vertex between the first w̃ and w in the i-th copy of w̃ww̃.

Consider a big interval Iw that contains all these words, and define f on Iw to be
f(xi + i) = 1 for every i = 0, . . . , l and f(y) = 0 for all other y ∈ I1. Here xi + i denotes
the point lying i positions to the right of xi

Then consider the second word w′ in the list and repeat the same construction taking
care that everything happens outside of Iw, define a bigger interval Iw′ containing Iw, and
so on. This defines f everywhere. In fact, a random f ∈ (Z/2Z)X distributed according
the uniform Bernoulli measure will also have the features that we need.

For every word w ∈ G, we denote x0(w), x1(w), · · · x|w|(w) ∈ X the points xi appearing
in the construction.

Let now ν be the equidistributed measure on the standard generating set of G, set
η = 1

2δf + 1
2δe, and consider the “switch-walk-switch like” measure on H ≤ (Z/2Z)X ⋊G

given by µ = η ∗ν ∗η. Let gn = (fn, wn) be the right random walk on H with step measure
µ, where fn ∈ (Z/2Z)X and wn ∈ G. Let also h1, · · · hn be the increments of (wj), so that
wn = hn · · · h1.

Let t ∈ (Z/2Z)X be arbitrary, and set tn = gn · t. The following lemma shows that the
action of H on (Z/2Z)X is nonamenable by Lemma 7.2, thereby concluding the proof.

Lemma 7.3. There exists a constant c > 0 that does not depend on t such that

P(tn = t) ≤ e−cn. (6)

To prove the lemma, recall first that the length |wn| is essentially a drifted random
walk on N with drift 1/3 and it behavior is completely understood. By classical large
deviations, there is a constant c1 > 0 such that

P(|wn| ≤ n/4) ≤ e−c1n.

Hence

P(tn = t) = P(tn = t, |wn| ≤ n/4) + P(tn = t, |wn| ≥ n/4)

≤ e−c1n + P(tn = t, |wn| ≥ n/4)

so it is sufficient to study the probability P(tn = t) conditionally to the event |wn| ≥ n/4.
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Lemma 7.4. Conditionally to wn and assuming that |wn| ≥ n/4, the values of tn on
the points from the construction tn(x0(wn)), tn(x1(wn)), · · · tn(x|wn|(wn)) are independent
uniform Bernoulli in Z/2Z.

This concludes the proof of Lemma 7.3, since then (conditionally to wn) the probability
that these values are equal to the corresponding values of t is bounded above by 2−|wn| ≤
2−n/4 and by disintegrating over possible values of wn we get

P(tn = t, |wn| ≥ n/4) ≤
∑

|w|≥n/4

P(wn = w)2−n/4 ≤ 2−n/4.

Proof of Lemma 7.4. Fix i and consider the sequence of vertices (hr · · · hnxi(wn))r≤n. For
i 6= j these sequences are obtained one from each other by a suitable translation (they
stay in a region where the coloring look the same, using that n ≥ 4|wn| and that the
auxiliary words w̃ from the construction have length ≥ 5|wn|). In particular it is not
possible that for i 6= j and for the same 0 ≤ r ≤ n we have hr · · · hnxi(wn) = xi(wn) + i
and hr · · · hnxj(wn) = xj(wn) + j. For each i = 0, . . . , |wn| let Σi be the set of times r ≤ n
so that hr · · · hnxi(wn) = xi(wn) + i. Then the following two properties are satisfied

1. Σi ∩ Σj = ∅ whenever i 6= j (because of the above observation).

2. Σi 6= ∅ for every i (since by construction wn = hn · · · h1 is the word read on the right
of xi(wn) and hence h1 · · · hnxi(wn) = xi(wn) + |wn|.)

Let ξ0, . . . , ξn be independent Bernoulli random variables taking values in Z/2Z. Then
it is readily checked that for every i the value of tn(xi(wn)) has the same distribution
as t(h1 · · · hnxi(wn)) +

∑
r∈Σi

ξr. These are all Bernoulli random variables because of the
second property above, and they are independent because of the first property.

We conclude with a question; a negative answer to it would trivialize Proposition 7.1.

Question 7.5. Does there exist a faithful action of a nonamenable group G on a set X
such that the action of (Z/2Z)X ⋊G on (Z/2Z)X is amenable?
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