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Abstract. We study lattices in non-positively curved metric spaces. Borel density is
established in that setting as well as a form of Mostow rigidity. A converse to the �at
torus theorem is provided. Geometric arithmeticity results are obtained after a detour
through superrigidity and arithmeticity of abstract lattices. Residual �niteness of lattices
is also studied. Riemannian symmetric spaces are characterised amongst CAT(0) spaces
admitting lattices in terms of the existence of parabolic isometries.

1. Introduction

Lattices in semi-simple algebraic groups have a tantalisingly rich structure; they include
arithmetic groups and more generally S-arithmetic groups over arbitrary characteristics.
The nature of these groups is shaped in part by the fact that they are realised as isometries
of a canonical non-positively curved space: the associated Riemannian symmetric space, or
Bruhat�Tits building, or a product of both types.

Many other groups of rather diverse origins share this property to occur as lattices in
non-positively curved spaces, singular or not:

� The fundamental group of a closed Riemannian manifold of non-positive sectional
curvature. Here the space acted upon is the universal covering, which is a Hadamard
manifold (i.e. a complete simply connected manifold of non-positive sectional cur-
vature).

� Many Gromov-hyperbolic groups admit a properly discontinuous cocompact iso-
metric action on some CAT(−1) space. Amongst the examples arising in this way
are hyperbolic Coxeter groups [Mou88], C ′(1

6) and C ′(1
4)-T (4) small cancellation

groups [Wis04], 2-dimensional 7-systolic groups [J�06]. It is in fact a well known
open problem of M. Gromov to construct an example of a Gromov-hyperbolic group
which is not a CAT(0) group (see [Gro93, 7.B]; also Remark 2.3(2) in Chapter III.Γ
of [BH99]).

� In [BM00b], striking examples of �nitely presented simple groups are constructed
as lattices in a product of two locally �nite trees. Tree lattices were previously
studied in [BL01].

� A minimal adjoint Kac�Moody group over a �nite �eld, as de�ned by J. Tits [Tit87],
is endowed with two BN -pairs which yield strongly transitive actions on a pair of
twinned buildings. When the order of the ground �eld is large enough, the Kac�
Moody group is a lattice in the product of these two buildings [Rém99].
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Subsuming all the above examples, we de�ne aCAT(0) lattice as a pair (Γ, X) consisting
of a proper CAT(0) space X with cocompact isometry group Is(X) and a lattice subgroup
Γ < Is(X), i.e. a discrete subgroup of �nite invariant covolume (the compact-open topology
makes Is(X) a locally compact second countable group which is thus canonically endowed
with Haar measures). We say that (Γ, X) is uniform if Γ is cocompact in Is(X) or, equiva-
lently, if the quotient Γ\X is compact; that case corresponds to Γ being a CAT(0) group
in the usual terminology.

Amongst CAT(0) lattices, the most important, and also the best understood, notably
through the work of G. Margulis, consist undoubtedly of those arising from lattices in semi-
simple groups over local �elds. It is therefore natural to address two sets of questions.

(a) What properties of these lattices are shared by all CAT(0) lattices?
(b) What properties characterise them within the class of CAT(0) lattices?

This article is devoted to the study of CAT(0) lattices and centres largely around the
above questions, though we also address the general question of the interplay between the
algebraic structure of a CAT(0) lattice and the geometric properties of the underlying space.
Some of the techniques established in the present paper have been used in a subsequent
investigation of lattices in products of Kac�Moody groups [CM08d].

We shall now describe the main results of this article; for many of them, the core of
the text will contain a stronger, more precise but perhaps more ponderous version. Our
notation is standard, as recalled in the Notation section of the companion paper [CM08c].
We refer to the latter for terminology and shall quote it freely.

.

Geometric Borel density. As a link between the general theory exposed in [CM08c]
and the study of CAT(0) lattices, we propose the following analogue of A. Borel's density
theorem [Bor60].

Theorem 1.1. Let X be a proper CAT(0) space, G a locally compact group acting contin-
uously by isometries on X and Γ < G a lattice. Suppose that X has no Euclidean factor.

If G acts minimally on X without �xed point at in�nity, so does Γ.

(Minimality means that there is no smaller invariant CAT(0) subspace.)

The conclusion fails for spaces with a Euclidean factor. The theorem will be established
more generally for closed subgroups with �nite invariant covolume. It should be compared
to (and can of course be gainfully combined with) a similar density property of normal
subgroups established as Theorem 1.10 in [CM08c].

Remark 1.2. Theorem 1.1 applies to general proper CAT(0) spaces. It implies in particular
the classical Borel density theorem (see the end of Section 2).

As with classical Borel density, we shall use this density statement to derive statements
about the centraliser, normaliser and radical of lattices in Section 2.

A more elementary variant of the above theorem shows that a large class of groups have
rather restricted actions on proper CAT(0) spaces; as an application, one shows:

Any isometric action of R. Thompson's group F on any proper CAT(0) space X has a
�xed point in X,
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see Corollary 2.3. Theorem 1.1 also provides additional information about the totally dis-
connected groups Dj occurring in Theorem 1.6 in [CM08c].

.

Lattices: Euclidean factor, boundary, irreducibility and Mostow rigidity. Recall
that the Flat Torus theorem, originating in the work of Gromoll�Wolf [GW71] and Lawson�
Yau [LY72], associates Euclidean subspaces Rn to any subgroup Zn of a CAT(0) group,
see [BH99, � II.7]. (In the classical setting, when the CAT(0) group is given by a compact
non-positively curved manifold, this amounts to the seemingly more symmetric statement
that such a subgroup exists if and only if there is a �at torus is the manifold.)

The converse is a well known open problem stated by M. Gromov in [Gro93, � 6.B3]; for
manifolds see S.-T. Yau, problem 65 in [Yau82]). Point (i) in the following result is a (very
partial) answer; in the special case of cocompact Riemannian manifolds, this was the main
result of P. Eberlein's article [Ebe83].

Theorem 1.3. Let X be a proper CAT(0) space, G < Is(X) a closed subgroup acting
minimally and cocompactly on X and Γ < G a �nitely generated lattice. Then:

(i) If the Euclidean factor of X has dimension n, then Γ possesses a �nite index sub-
group Γ0 which splits as Γ0 ' Zn × Γ′.
Moreover, the dimension of the Euclidean factor is characterised as the maximal
rank of a free Abelian normal subgroup of Γ.

(ii) G has no �xed point at in�nity; the set of Γ-�xed points at in�nity is contained in
the (possibly empty) boundary of the Euclidean factor.

Point (ii) is particularly useful in conjuction with the many results assuming the absence
of �xed points at in�nity in [CM08c]. In addition, it is already a �rst indication that the
mere existence of a (�nitely generated) lattice is a serious restriction on a proper CAT(0)
space even within the class of cocompact minimal spaces. We recall that E. Heintze [Hei74]
produced simply connected negatively curved Riemannian manifolds that are homogeneous
(in particular, cocompact) but have a point at in�nity �xed by all isometries.

Since a CAT(0) lattice consists of a group and a space, there are two natural notions of
irreducibility: of the group or of the space. In the case of lattices in semi-simple groups, the
two notions are known to coincide by a result of Margulis [Mar91, II.6.7]. We prove that
this is the case for CAT(0) lattices as above.

Theorem 1.4. In the setting of Theorem 1.3, Γ is irreducible as an abstract group if and
only if for any �nite index subgroup Γ1 and any Γ1-equivariant decomposition X = X1×X2

with Xi non-compact, the projection of Γ1 to both Is(Xi) is non-discrete.

The combination of Theorem 1.4, Theorem 1.3 and of an appropriate form of superrigidity
allow us to give a CAT(0) version of Mostow rigidity for reducible spaces (Section 4.E).

.

Geometric arithmeticity. We now expose results giving perhaps unexpectedly strong
conclusions for CAT(0) lattices � both for the group and for the space. These results were
announced in [CM08e] in the case of CAT(0) groups; the present setting of �nitely generated
lattices is more general since CAT(0) groups are �nitely generated (cf. Lemma 3.3 below).
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We recall that an isometry g is parabolic if the translation length infx∈X d(gx, x) is not
achieved. For general CAT(0) spaces, parabolic isometries are not well understood; in fact,
ruling out their existence can sometimes be the essential di�culty in rigidity statements.

Theorem 1.5. Let (Γ, X) be an irreducible �nitely generated CAT(0) lattice with X geodesi-
cally complete. Assume that X possesses some parabolic isometry.

If Γ is residually �nite, then X is a product of symmetric spaces and Bruhat�Tits build-
ings. In particular, Γ is an arithmetic lattice unless X is a real or complex hyperbolic space.

If Γ is not residually �nite, then X still splits o� a symmetric space factor. Moreover,
the �nite residual ΓD of Γ is in�nitely generated and Γ/ΓD is an arithmetic group.

(Recall that the �nite residual of a group is the intersection of all �nite index subgroups.)
We single out a purely geometric consequence.

Corollary 1.6. Let (Γ, X) be a �nitely generated CAT(0) lattice with X geodesically com-
plete.

Then X possesses a parabolic isometry if and only if X ∼= M×X ′, whereM is a symmetric
space of non-compact type.

Without the assumption of geodesic completeness, we still obtain an arithmeticity state-
ment when the underlying space admits some parabolic isometry that is neutral, i.e.
whose displacement length vanishes. Neutral parabolic isometries are even less understood,
not even for their dynamical properties (which can be completely wild at least in Hilbert
space [Ede64]); as for familiar examples, they are provided by unipotent elements in semi-
simple algebraic groups.

Theorem 1.7. Let (Γ, X) be an irreducible �nitely generated CAT(0) lattice. If X admits
any neutral parabolic isometry, then either:

(i) Is(X) is a rank one simple Lie group with trivial centre; or:
(ii) Γ has a normal subgroup ΓD such that Γ/ΓD is an arithmetic group. Moreover, ΓD

is either �nite or in�nitely generated.

We turn to another type of statement of arithmeticity/geometric superrigidity. Having
established an abstract arithmeticity theorem (presented below as Theorem 1.9), we can
appeal to our geometric results and prove the following.

Theorem 1.8. Let (Γ, X) be an irreducible �nitely generated CAT(0) lattice with X geodesi-
cally complete. Assume that Γ possesses some faithful �nite-dimensional linear representa-
tion (in characteristic 6= 2, 3).

If X is reducible, then Γ is an arithmetic lattice and X is a product of symmetric spaces
and Bruhat�Tits buildings.

Section 6 contains more results of this nature but also demonstrates by a family of exam-
ples that some of the intricacies in the more detailed statements re�ect indeed the existence
of more exotic pairs (Γ, X).

.

Abstract arithmeticity. When preparing for the proof of our geometric arithmeticity
statements, we are led to study irreducible lattices in products of general topological groups
in the abstract. Building notably on ideas of Margulis, we stablish the following arithmetic-
ity statement (for which we recall that the quasi-centre QZ of a topological group is the
subset of elements with open centraliser).
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Theorem 1.9. Let Γ < G = G1×· · ·×Gn be an irreducible �nitely generated lattice, where
each Gi is any locally compact group.

If Γ admits a faithful Zariski-dense representation in a semi-simple group over some �eld
of characteristic 6= 2, 3, then the amenable radical R of G is compact and the quasi-centre
QZ (G) is virtually contained in Γ · R. Furthermore, upon replacing G by a �nite index
subgroup, the quotient G/R splits as G+ ×QZ (G/R) where G+ is a semi-simple algebraic
group and the image of Γ in G+ is an arithmetic lattice.

In particular, the quasi-centre QZ (G/R) is discrete. In shorter terms, this theorem states
that up to a compact extension, G is the direct product of a semi-simple algebraic group
by a (possibly trivial) discrete group, and that the image of Γ in the non-discrete part is an
arithmetic group. The assumption on the characteristic can be slightly weakened.

In the course of the proof, we characterise all irreducible �nitely generated lattices in
products of the form G = S × D where S is a semi-simple Lie group and D a totally
disconnected group (Theorem 5.18). In particular, it turns our that D must necessarily be
locally pro�nite by analytic. The corresponding question for simple algebraic groups instead
of Lie groups is also investigated (Theorem 5.20).

.

Unique geodesic extension. Complete simply connected Riemannian manifolds of non-
positive curvature, sometimes also called Hadamard manifolds, form a classical family of
proper CAT(0) spaces to which the preceding results may be applied. In fact, a wider
class that is natural to consider in our context consists of those proper CAT(0) spaces in
which every geodesic segment extends uniquely to a bi-in�nite geodesic line. Clearly, this
class contains all Hadamard manifolds, but it presumably contains more examples. It is,
however, somewhat restricted with respect to the main thrust of the present work since it
does not allow for, say, simplicial complexes; accordingly, the conclusions below are also
more stringent. In a complementary direction, we refer to the well-known rank rigidity for
Hadamard manifolds (see Theorem C in [Bal95]).

Theorem 1.10. Let X be a proper CAT(0) space with uniquely extensible geodesics. Assume
that Is(X) acts cocompactly on X without �xed points at in�nity.

(i) If X is irreducible, then either X is a symmetric space or Is(X) is discrete.
(ii) If Is(X) possesses a �nitely generated non-uniform lattice Γ which is irreducible as

an abstract group, then X is a symmetric space (without Euclidean factor).

In the special case of Hadamard manifolds, statement (i) was known under the assumption
that Is(X) satis�es the duality condition, without assuming that Is(X) acts cocompactly
without �xed points at in�nity. This is due to P. Eberlein (Proposition 4.8 in [Ebe82]).

In a similar vein, the next result was known for Hadamard manifolds (Proposition 4.5
in [Ebe82] together with the main result of [Ebe83]).

Theorem 1.11. Let X be a proper CAT(0) space with uniquely extensible geodesics and
Γ < Is(X) be a discrete cocompact group of isometries.

If Γ is irreducible (as an abstract group) and X is reducible, then X is a symmetric space
(without Euclidean factor).

More recently, Farb�Weinberger [FW06] investigated analogous questions for aspherical
manifolds.



6 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONOD

.

Lattices and the de Rham decomposition. In [CM08c], we proved a �de Rham�
decomposition

(1.i) X ′ ∼= X1 × · · · ×Xp ×Rn × Y1 × · · · × Yq
for proper CAT(0) spaces X with �nite-dimensional Tits boundary and such that Is(X) has
no �xed point at in�nity, see Addendum 1.8 in [CM08c]. (Here X ′ ⊆ X is the canonical
minimal invariant subspace, and we recall thatX ′ = X e.g. whenX is geodesically complete
and admits a cocompact lattice by Lemma 3.13 in [CM08c].)

It turns out that this de Rham decomposition is an invariant of CAT(0) groups in the
following sense (see Corollary 4.13).

Theorem 1.12. Let X be a proper CAT(0) space and Γ < Is(X) be a group acting properly
discontinuously and cocompactly.

Then any other such space admitting a properly discontinuous cocompact Γ-action has the
same number of factors in (1.i) and the Euclidean factor has same dimension.
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2. An analogue of Borel density

Before discussing our analogue of Borel's density theorem [Bor60] in Section 2.B below,
we present a more elementary phenomenon based on co-amenability.

2.A. Fixed points at in�nity. Recall that a subgroup H of a topological group G is
co-amenable if any continuous a�ne G-action on a convex compact set (in a Hausdor�
locally convex topological vector space) has a �xed point whenever it has an H-�xed point.
The arguments of Adams�Ballmann [AB98] imply the following preliminary step towards
Theorem 2.4:

Proposition 2.1. Let G be a topological group with a continuous isometric action on a
proper CAT(0) space X without Euclidean factor. Assume that the G-action on X is mini-
mal and does not have a global �xed point in ∂X.

Then any co-amenable subgroup of G still has no global �xed point in ∂X.

Proof. Suppose for a contradiction that a co-amenable subgroup H < G �xes ξ ∈ ∂X. Then
G preserves a probability measure µ on ∂X and we obtain a convex function f : X → R by
integrating Busemann functions against this measure; as in [AB98], the cocycle equation for
Busemann functions (see � 2 in [CM08c]) imply that f is G-invariant up to constants. The
arguments therein show that f is constant and that µ is supported on �at points. However,
in the absence of a Euclidean factor, the set of �at points has a unique circumcentre when
non-empty [AB98, 1.7]; this provides a G-�xed point, a contradiction. �

Combining the above with the splitting methods used in Theorem 4.3 in [CM08c], we
record a consequence showing that the exact conclusions of the Adams�Ballmann theo-
rem [AB98] hold under much weaker assumptions than the amenability of G.

Corollary 2.2. Let G be a topological group with a continuous isometric action on a proper
CAT(0) space X. Assume that G contains two commuting co-amenable subgroups.

Then either G �xes a point at in�nity or it preserves a Euclidean subspace in X.

We emphasise that one can easily construct a wealth of examples of highly non-amenable
groups satisfying these assumptions. For instance, given any group Q, the restricted wreath
product G = Z n

⊕
n∈ZQ contains the pair of commuting co-amenable groups H+ =⊕

n≥0Q and H− =
⊕

n<0Q, see [MP03]. (In fact, one can even arrange for H± to be
conjugated upon replacing Z by the in�nite dihedral group.)

For similar reasons, we deduce the following �xed-point property for R. Thompson's group

F :=
〈
gi, i ∈ N | g−1

i gjgi = gj+1 ∀ j > i
〉
;

this �xed-point result explains why the strategy proposed in [Far08] to disprove amenability
of F with the Adams�Ballmann theorem cannot work.

Corollary 2.3. Any F -action by isometries on any proper CAT(0) space X has a �xed
point in X.

Proof of Corollary 2.2. We assume that G has no �xed point at in�nity. By Proposition 4.1
in [CM08c], there is a minimal non-empty closed convex G-invariant subspace. Upon con-
sidering the Euclidean decomposition [BH99, II.6.15] of the latter, we can assume that X is
G-minimal and without Euclidean factor and need to show that G �xes a point in X.

Let H± < G be the commuting co-amenable groups. In view of Proposition 2.1, both
act without �xed point at in�nity. In particular, we have an action of H = H+ × H−
without �xed point at in�nity and the splitting theorem from [Mon06] provides us with a
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canonical subspace X+×X− ⊆ X with component-wise and minimal H-action. All of ∂X+

is �xed by H−, which means that this boundary is empty. Since X is proper, it follows
that X+ is bounded and hence reduced to a point by minimality. Thus H+ �xes a point in
X ⊆ X and co-amenability implies that G �xes a probability measure µ on X. If µ were
supported on ∂X, the proof of Proposition 2.1 would provide a G-�xed point at in�nity,
which is absurd. Therefore µ(X) > 0. Now choose a bounded set B ⊆ X large enough so
that µ(B) > µ(X)/2. Then any G-translate of B must meet B. It follows that G has a
bounded orbit and hence a �xed point as claimed. �

Proof of Corollary 2.3. We refer to [CFP96] for a detailed introduction to the group F .
In particular, F can be realised as the group of all orientation-preserving piecewise a�ne
homeomorphisms of the interval [0, 1] that have dyadic breakpoints and slopes 2n with
n ∈ Z. Given a subset A ⊆ [0, 1] we denote by FA < F the subgroup supported on A.

We claim that whenever A has non-empty interior, FA is co-amenable in F . The argument
is analogous to [MP03] and to [GM07, � 4.F]; indeed, in view of the alternative de�nition of
F just recalled, one can choose a sequence {gn} in F such that gnA contains [1/n, 1− 1/n]
and thus F gn

A contains F[1/n,1−1/n]. Consider the compact space of means on F/FA, namely
�nitely additive measures, endowed with the weak-* topology from the dual of `∞(F/FA).
Any accumulation point µ of the sequence of Dirac masses at g−1

n FA will be invariant under
the union F ′ of the groups F[1/n,1−1/n]. Now F ′ is the kernel of the derivative homomorphism
F → 2Z × 2Z at the pair of points {0, 1}. In particular, F ′ is co-amenable in F and thus
the F ′-invariance of µ implies that there is also a F -invariant mean on F/FA, which is one
of the characterisations of co-amenability [Eym72].

Let now X be any proper CAT(0) space with an F -action by isometries. We can assume
that F has no �xed point at in�nity and therefore we can also assume that X is minimal
by Proposition 4.1 in [CM08c]. The above claim provides us with many pairs of commuting
co-amenable subgroups upon taking disjoint sets of non-empty interior. Therefore, Corol-
lary 2.2 shows thatX ∼= Rn for some n. In particular the isometry group is linear. Since F is
�nitely generated (by g0 and g1 in the above presentation, compare also [CFP96]), Malcev's
theorem [Mal40] implies that the image of F is residually �nite. The derived subgroup of F
(which incidentally coincides with the group F ′ introduced above) being simple [CFP96], it
follows that it acts trivially. It remains only to observe that two commuting isometries of
Rn always have a common �xed point in Rn, which is a matter of linear algebra. �

The above reasoning can be adapted to yield similar results for branch groups and related
groups; we shall address these questions elsewhere.

2.B. Geometric density for subgroups of �nite covolume. The following geometric
density theorem generalises Borel's density (see Proposition 2.8 below) and contains Theo-
rem 1.1 from the Introduction.

Theorem 2.4. Let G be a locally compact group with a continuous isometric action on a
proper CAT(0) space X without Euclidean factor.

If G acts minimally on X and without global �xed point in ∂X, then any closed subgroup
with �nite invariant covolume in G still has these properties.

Remark 2.5. For a related statement without the assumption on the Euclidean factor of
X or on �xed points at in�nity, see Theorem 3.14 below.

Proof. Retain the notation of the theorem and let Γ < G be a closed subgroup of �nite
invariant covolume. In particular, Γ is co-amenable and thus has no �xed points at in�nity
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by Proposition 2.1. By Proposition 4.1 in [CM08c], there is a minimal non-empty closed
convex Γ-invariant subset Y ⊆ X and it remains to show Y = X. Choose a point x0 ∈ X
and de�ne f : X → R by

f(x) =
∫
G/Γ

(
d(x, gY )− d(x0, gY )

)
dg.

This integral converges because the integrand is bounded by d(x, x0). The function f is
continuous, convex (by [BH99, II.2.5(1)]) and �quasi-invariant� in the sense that it satis�es

(2.i) f(hx) = f(x)− f(hx0) ∀h ∈ G.

Since G acts minimally and without �xed point at in�nity, this implies that f is constant
(see Section 2 in [AB98]; alternatively, when ∂X is �nite-dimensional, it follows from The-
orem 1.10 in [CM08c] since (2.i) implies that f is invariant under the derived subgroup
G′).

In particular, d(x, gY ) is a�ne for all g. It follows that for all x ∈ X the closed set

Yx =
{
z ∈ X : d(z, Y ) = d(x, Y )

}
is convex. We claim that it is parallel to Y in the sense that d(z, Y ) = d(y, Yx) for all z ∈ Yx
and all y ∈ Y . Indeed, on the one hand d(z, Y ) is constant over z ∈ Yx by de�nition, and on
the other hand d(y, Yx) is constant by minimality of Y since d(·, Yx) is a convex Γ-invariant
function. In particular, Yx is Γ-equivariantly isometric to Y via nearest point projection
(compare [BH99, II.2.12]) and each Yx is Γ-minimal. At this point, Remarks 39 in [Mon06]
show that there is an isometric Γ-invariant splitting

X ∼= Y × T.

It remains to show that the �space of components� T is reduced to a point. Let thus s, t ∈ T
and let m be their midpoint. Applying the above reasoning to the choice of minimal set Y0

corresponding to Y ×{m}, we deduce again that the distance to Y0 is an a�ne function on
X. However, this function is precisely the distance function d(·,m) in T composed with the
projection X → T . Being non-negative and a�ne on [s, t], it vanishes on that segment and
hence s = t. �

Remark 2.6. When Γ is cocompact in G, the proof can be shortened by integrating just
d(x, gY ) in the de�nition of f above.

Corollary 2.7. Let X be a proper CAT(0) space without Euclidean factor such that G =
Is(X) acts minimally without �xed point at in�nity, and let Γ < G be a closed subgroup with
�nite invariant covolume. Then:

(i) Γ has trivial amenable radical.
(ii) The centraliser ZG(Γ) is trivial.
(iii) If Γ is �nitely generated, then is has �nite index in its normaliser NG(Γ) and the

latter is a �nitely generated lattice in G.

Proof. (i) and (ii) follow by the same argument as in the proof of Theorem 1.10 in [CM08c].
For (iii) we follow [Mar91, Lemma II.6.3]. Since Γ is closed and countable, it is discrete
by Baire's category theorem and thus is a lattice in G. Since it is �nitely generated, its
automorphism group is countable. By (ii), the normaliser NG(Γ) maps injectively to Aut(Γ)
and hence is countable as well. Thus NG(Γ), being closed in G, is discrete by applying Baire
again. Since it contains the lattice Γ, it is itself a lattice and the index of Γ in NG(Γ) is
�nite. Thus NG(Γ) is �nitely generated. �
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As pointed out by P. de la Harpe, point(ii) implies in particular that any lattice in G is
ICC (which means by de�nition that all its non-trivial conjugacy classes are in�nite). As is
well known, this is the criterion ensuring that the type II1 von Neumann algebra associated
to the lattice is a factor [Tak02, �V.7].

Finally, we indicate why Theorem 2.4 implies the classical Borel density theorem of [Bor60].
It su�ces to justify the following:

Proposition 2.8. Let k by a local �eld (Archimedean or not), G a semi-simple k-group
without k-anisotropic factors, X the symmetric space or Bruhat�Tits building associated to
G = G(k) and L < G any subgroup. If the L-action on X is minimal without �xed point at
in�nity, then L is Zariski-dense.

Proof. Let L̄ be the (k-points of the) Zariski closure of L. Then L̄ is semi-simple; this
follows e.g. from a very special case of Corollary 5.8 in [CM08c], which guarantees that the
radical of L̄ is trivial.

In the Archimedean case, we may appeal to Karpelevich�Mostow theorem (see [Kar53]
or [Mos55]): any semi-simple subgroup has a totally geodesic orbit in the symmetric space.
So the only semi-simple subgroup acting minimally is G itself.

In the non-Archimedean case, we could appeal to E. Landvogt functoriality theorem [Lan00]
which would �nish the proof. However, there is an alternative direct and elementary argu-
ment which avoids appealing to loc. cit. and goes as follows. First notice that, by the same
argument as in the proof of Theorem 7.4 in [CM08c] point (iv), the k-rank of a semi-simple
subgroup acting minimally equals the k-rank of G (this holds in all cases, not only in the
non-Archimedean one). Therefore, the inclusion of spherical buildings BL̄→ BG provided
by the group inclusion L̄→ G has the property that BL̄ is a top-dimensional sub-building
of BG. An elementary argument (see [KL06, Lemma 3.3]) shows that the union Y of all
apartments of X bounded by a sphere in BL̄ is a closed convex subset of X. Clearly Y is
L̄-invariant, hence Y = X by minimality. Therefore BL̄ = BG, which �nally implies that
L̄ = G. �

2.C. The limit set of subgroups of �nite covolume. Let X be a complete CAT(0)
space and G a group acting by isometries on X. Recall that the limit set ΛG of G is the
intersection of the boundary ∂X with the closure of the orbit G.x0 in X = X t ∂X of any
x0 ∈ X, this set being independent of x0.

Proposition 2.9. Let G be a locally compact group acting continuously by isometries on a
complete CAT(0) space X. If Γ < G is any closed subgroup with �nite invariant covolume,
then ΛΓ = ΛG.

Consider the following immediate corollary, which in the special case of Hadamard man-
ifolds follows from the duality condition, see 1.9.16 and 1.9.32 in [Ebe96].

Corollary 2.10. Let G be a locally compact group with a continuous action by isometries
on a proper CAT(0) space. If the G-action is cocompact, then any lattice in G has full limit
set in ∂X. �

Proof of Proposition 2.9. We observe that for any non-empty open set U ⊆ G there is a
compact set C ⊆ G such that U−1ΓC = G. Indeed, (using an idea of Selberg, compare
Lemma 1.4 in [Bor60]), it su�ces to take C so large that

µ
(
ΓC) > µ(Γ\G)− µ(ΓU),
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where µ denotes an invariant measure on Γ\G; any right translate of ΓU in Γ\G will then
meet ΓC.

Now let ξ ∈ ΛG and x0 ∈ X. For any neighbourhood V of ξ in ∂X, we shall construct an
element in ΛΓ ∩ V . Let U ⊆ G be a compact neighbourhood of the identity in G such that
Uξ ⊆ V and let {gn} be a sequence of elements of G with gnx0 converging to ξ (one uses
nets if X is not separable). In view of the above observation, there are sequences {un} in
U and {cn} in C such that ungnc−1

n ∈ Γ. The points gnc−1
n x0 remain at bounded distance

of gnx0 as n→∞, and thus converge to ξ. Therefore, choosing an accumulation point u of
{un} in U , we see that uξ is an accumulation point of {ungnc−1

n x0}, which is a sequence in
Γx0. �

For future use, we observe a variant of the above reasoning yielding a more precise fact
in a simpler situation:

Lemma 2.11. Let G be a locally compact group with a continuous cocompact action by
isometries on a proper CAT(0) space X. Let Γ < G be a lattice and c : R+ → X a geodesic
ray such that G �xes c(∞). Then there is a sequence {γi} in Γ such that γic(i) remains
bounded over i ∈ N.

Proof. For the same reason as above, there is a compact set U ⊆ G such that G = UΓU−1.
Choose now {gi} such that gic(i) remains bounded and write gi = uiγiv

−1
i with ui, vi ∈ U .

We have

d(γic(i), c(0)) = d(givic(i), uic(0)) ≤ d(givic(i), gic(i)) + d(gic(i), uic(0))

≤ d(vic(i), c(i)) + d(gic(i), c(0)) + d(uic(0), c(0)).

This is bounded independently of i because d(vic(i), c(i)) ≤ d(vic(0), c(0)) since c(∞) is
G-�xed. �

We shall also need the following:

Lemma 2.12. A locally compact group containing a �nitely generated subgroup whose clo-
sure has �nite covolume is compactly generated.

Proof. Denoting the closure of the given �nitely generated subgroup by Γ, we can write
G = UΓC as in the proof of Proposition 2.9 with both U and C compact. Since Γ is
a locally compact group containing a �nitely generated dense subgroup, it is compactly
generated and the conclusion follows. �

3. CAT(0) lattices, I: the Euclidean factor

3.A. Preliminaries on lattices. We begin this section with a few well known basic facts
about general lattices.

Proposition 3.1. Let G be a locally compact second countable group and N �G be a closed
normal subgroup.

(i) Given a closed cocompact subgroup Γ < G, the projection of Γ on G/N is closed if
and only if Γ ∩N is cocompact in N .

(ii) Given a lattice Γ < G, the projection of Γ on G/N is discrete if and only if Γ ∩N
is a lattice in N .

Proof. See Theorem 1.13 in [Rag72]. �

The second well known result is straightforward to establish:
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Lemma 3.2. Let G = H × D be a locally compact group. Given a lattice Γ < G and a
compact open subgroup Q < D, the subgroup ΓQ := Γ∩ (H×Q) is a lattice in H×Q, which
is commensurated by Γ.

If moreover G/Γ is compact, then so is (H ×Q)/ΓQ. �

(As we shall see in Lemma 5.15 below, there is a form of converse.)

Let X be a proper CAT(0) space and G = Is(X) be its isometry group. Given a discrete
group Γ acting properly and cocompactly on X, then the quotient G\X is compact and the
image of Γ in G is a cocompact lattice (note that the kernel of the map Γ→ Is(X) is �nite).
Conversely, if the quotient G\X is compact, then any cocompact lattice of G is a discrete
group acting properly and cocompactly on X.

Lemma 3.3. In the above setting, G is compactly generated and Γ is �nitely generated.

Proof. For lack of �nding a classical reference, we refer to Lemma 22 in [MMS04]). �

3.B. Variations on Auslander's theorem.

Lemma 3.4. Let A = RnoO(n) and S be a semi-simple Lie group without compact factor.
Any lattice Γ in G = A × S has a �nite index subgroup Γ0 which splits as a direct product
Γ0 ∼= ΓA × Γ′, where ΓA = Γ ∩ (A× 1) is a lattice in (A× 1).

Proof. Let V = Rn denote the translation subgroup of A and U denote the closure of
the projection of Γ to S. The subgroup U < S is closed of �nite covolume; therefore it is
either discrete or it contains a semi-simple subgroup of positive dimension by Borel's density
theorem (in fact one could be more precise using the Main Result of [Pra77], but this is
not necessary for the present purposes). On the other hand, Auslander's theorem [Rag72,
Theorem 8.24] ensures that the identity component of the projection of Γ in S × A/V is
soluble, from which it follows that U has a connected soluble normal subgroup. Thus U is
discrete. Therefore, by Proposition 3.1, the group ΓA = Γ ∩ (A× 1) is a lattice in (A× 1).
In particular ΓA is virtually Abelian [Thu97, Corollary 4.1.13].

Since the projection of Γ to S is a lattice in S, it is �nitely generated [Rag72, 6.18].
Therefore Γ possesses a �nitely generated subgroup Λ containing ΓA and whose projection
to S coincides with the projection of Γ. Notice that Λ is a lattice in S × A by [Sim96,
Theorem 23.9.3]; therefore Λ has �nite index in Γ, which shows that Γ is �nitely generated.

Since ΓA is normal in Γ, the projection ΓA of Γ to A normalises the lattice ΓA and is thus
virtually Abelian. Hence ΓA is a �nitely generated virtually Abelian group which normalises
ΓA. Therefore ΓA has a �nite index subgroup which splits as a direct product of the form
ΓA×C, and the preimage Γ′ of C in Γ is a normal subgroup which intersects ΓA trivially. In
particular the group Γ′ ·ΓA ∼= Γ′×ΓA is a �nite index normal subgroup of Γ, as desired. �

Lemma 3.5. Let Γ be a group containing a subgroup of the form Γ0 ∼= Γ0
S×Γ0

A, where Γ0
S is

isomorphic to a lattice in a semi-simple Lie group with trivial centre and no compact factor,
and Γ0

A is amenable. If Γ commensurates Γ0, then Γ commensurates both Γ0
S and Γ0

A.

Proof. Let Γ1 ∼= Γ1
S×Γ1

A be a conjugate of Γ0 in Γ. The projection of Γ0∩Γ1 to Γ0
S is a �nite

index subgroup of Γ0
S . By Borel density theorem, it must therefore have trivial amenable

radical. In particular the projection of Γ0 ∩ Γ1
A to Γ0

S is trivial. Therefore the image of
the projection of Γ0 ∩ Γ1

S (resp. Γ0 ∩ Γ1
A) to Γ0

S (resp. Γ0
A) is of �nite index. The desired

assertion follows. �

Proposition 3.6. Let A = RnoO(n), S be a semi-simple Lie group with trivial centre and
no compact factor, D be a totally disconnected locally compact group and G = S × A ×D.
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Then any �nitely generated lattice Γ < G has a �nite index subgroup Γ0 which splits as a
direct product Γ0

∼= ΓA × Γ′, where ΓA ⊆ Γ ∩ (1 × A × D) is a �nitely generated virtually
Abelian subgroup whose projection to A is a lattice.

Proof. Let Q < D be a compact open subgroup. By Lemma 3.2, the intersection Γ0 =
Γ ∩ (S × A × Q) is a lattice in S × A × Q, which is commensurated by Γ. Since Q is
compact, the projection of Γ0 to S × A is a lattice, to which we may apply Lemma 3.4.
Upon replacing Γ0 by a �nite index subgroup (which amounts to replacing Q by an open
subgroup), this yields two normal subgroups Γ0

S ,Γ
0
A < Γ0 and a decomposition Γ0 = Γ0

S ·Γ0
A,

where Γ0
S ∩ Γ0

A ⊆ Q and Γ0
A = Γ0 ∩ (1 × A × Q) is a �nitely generated virtually Abelian

group whose projection to A is a lattice.
By virtue of Lemma 3.5, we deduce that the image of the projection of Γ to A com-

mensurates a lattice in A. But the commensurator of any lattice in A is virtually Abelian.
Therefore, upon replacing Γ by a �nite index subgroup, it follows that the projection of Γ
to A normalises the projection of Γ0

A. We now de�ne

ΓA =
⋂
γ∈Γ

γΓ0
Aγ
−1.

Then the projection of ΓA coincides with the projection of Γ0
A since A is Abelian; in partic-

ular it is still a lattice. Furthermore, the subgroup ΓA is normal in Γ. We now proceed as
in the proof of Lemma 3.4. Since the projection of Γ to A is �nitely generated and virtually
Abelian, we may thus �nd in this group a virtual complement to the image of the projection
of ΓA. Let Γ′ be the preimage of this complement in Γ. Then, upon replacing Γ by a �nite
index subgroup, the group Γ′ is normal in Γ and Γ = ΓA ·Γ′. Since ΓA is normal as well, the
commutator [ΓA,Γ′] is contained in the intersection ΓA∩Γ′, which is trivial by construction.
This �nally shows that Γ ∼= ΓA × Γ′, as desired. �

Remark 3.7. In the setting of Proposition 3.6, assume that any compact subgroup of D
normalised by Γ is trivial. Then ΓA ⊆ 1×A×1 and the projection of Γ to S×D is discrete.
Indeed, the de�nition of ΓA given in the proof shows that it is contained in 1×A× γQγ−1

for all γ ∈ Γ and under the current assumptions the intersection
⋂
γQγ−1 is trivial. The

claim about the projection to S ×D follows from Proposition 3.1.

3.C. Lattices, the Euclidean factor and �xed points at in�nity. Given a proper
CAT(0) space X and a discrete group Γ acting properly and cocompactly, it is a well known
open question, going back to M. Gromov [Gro93, � 6.B3], to determine whether the presence
of an n-dimensional �at in X implies the existence of a free Abelian group of rank n in Γ.
(In the manifold case, see problem 65 on Yau's list [Yau82].) Here we propose the following
theorem; the special case where X/Γ is a compact Riemannian manifold is the main result
of Eberlein's article [Ebe83] (compare also the earlier Theorem 5.2 in [Ebe80]).

Theorem 3.8. Let X be a proper CAT(0) space such that G = Is(X) acts cocompactly.
Suppose that X ∼= Rn ×X ′.

(i) Any �nitely generated lattice Γ < G has a �nite index subgroup Γ0 which splits as
a direct product Γ0

∼= Zn × Γ′.
(ii) If moreover X is G-minimal ( e.g. if X is geodesically complete), then Zn acts

trivially on X ′ and as a lattice on Rn; the projection of Γ to Is(X ′) is discrete.

We recall that cocompact lattices are automatically �nitely generated in the above set-
ting, Lemma 3.3. The following example shows that, without the assumption that G acts
minimally, the projection of Γ to Is(X ′) should not be expected to have discrete image:
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Example 3.9. Let X be the closed submanifold of R3 de�ned by X = {(x, y, z) ∈ R3 | 1 ≤
z ≤ 2} and consider the following Riemannian metric on X:

ds2 = dx2 + z2dy2 + dz2.

One readily veri�es that it is non-positively curved; thus X is a CAT(0) manifold. Clearly X
splits o� a one-dimensional Euclidean factor along the x-axis. Moreover the group H ∼= R2

of all translations along the xy-plane preserves X and acts cocompactly. Let Γ be the
subgroup of H generated by a and b, where

a : (x, y, z) 7→ (x, y, z) + (
√

2, 1, 0) and b : (x, y, z) 7→ (x, y, z) + (1,
√

2, 0).

Then Γ ∼= Z2 is a cocompact lattice in Is(X), but no non-trivial subgroup of Γ acts trivially
on the yz-factor of X. The projection of Γ to the isometry group of that factor is not
discrete (see Proposition 3.1(ii)).

The above result is the converse to the Flat Torus Theorem when it is stated as in [BH99,
II.7.1]. In particular we deduce that the dimension of the Euclidean de Rham factor is an
invariant of Γ. In the manifold case, again, this is the main point of [Ebe83].

Corollary 3.10. Let X be a proper CAT(0) space such that G = Is(X) acts cocompactly
and minimally. Let Γ < G be a �nitely generated lattice.

Then the dimension of the Euclidean factor of X equals the maximal rank of a free Abelian
normal subgroup of Γ.

In order to apply Theorem 1.6 in [CM08c] and Addendum 1.8 in [CM08c] towards The-
orem 3.8, we will need the following.

Theorem 3.11. Let X be a proper CAT(0) space such that G = Is(X) acts cocompactly and
contains a �nitely generated lattice. Then X contains a canonical closed convex G-invariant
G-minimal subset X ′ 6= ∅ which has no Is(X ′)-�xed point at in�nity.

Consider the immediate corollary.

Corollary 3.12. Let X be a proper CAT(0) space such that G = Is(X) acts cocompactly
and minimally. If G contains a �nitely generated lattice, then G has no �xed point at
in�nity. �

This shows that the mere existence of a �nitely generated lattice imposes restrictions
on cocompact CAT(0) spaces; much more detailed results in that spirit will be given in
Section 6.

We do not know whether the statement of Corollary 3.12 remains true without the �nite
generation assumption on the lattice (see Problem 7.3 below)1.

Example 3.13. We emphasise that the full isometry group of a cocompact proper CAT(0)
space may have global �xed points at in�nity; in fact, the space might even be homogeneous,
as it is the case for E. Heintze's manifolds [Hei74] mentioned earlier. An even simpler way
to construct cocompact proper CAT(0) space with this property is to mimic Example 7.6
in [CM08c]: Start from a regular tree T , assuming for de�niteness that the valency is three.
Replace every vertex by a congruent copy of an isosceles triangle that is not equilateral, in
such a way that its distinguished vertex always points to a �xed point at in�nity (of the
initial tree). Then the stabiliser H in Is(T ) of that point at in�nity still acts faithfully and
cocompactly on the modi�ed space T ′; the construction is so that the isometry group of T ′

is in fact reduced to H.

1This question will be adressed in the forthcoming [CM08b].



16 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONOD

We shall also establish a strengthening of Corollary 3.12, which can be viewed as a form
of Borel (or geometric) density theorem without assumption about �xed points at in�nity.

Theorem 3.14. Let X be a proper CAT(0) space such that G = Is(X) acts cocompactly and
minimally. Assume there is a �nitely generated lattice Γ < G. Then Γ acts minimally on
X and moreover all Γ-�xed points at in�nity are contained in the boundary of the (possibly
trivial) Euclidean factor of X.

We now turn to the proofs. In the case of a discrete cocompact group Γ = G, a version
of the following was �rst established by Burger�Schroeder [BS87] (as pointed out in [AB98,
Corollary 2.7]).

Proposition 3.15. Let X be a proper CAT(0) space, G < Is(X) a closed subgroup whose
action on X is cocompact and Γ < G a �nitely generated lattice. Then there exists a Γ-
invariant closed convex subset Y ⊆ X which splits Γ-equivariantly as Y = E ×W , where E
is a (possibly 0-dimensional) Euclidean space on which Γ acts by translations and such that
∂E contains the �xed point set of G in ∂X.

Proof. We can assume that there are G-�xed points at in�nity, since otherwise there is
nothing to prove. We claim that for any G-�xed point ξ there is a geodesic line σ : R→ X
with σ(+∞) = ξ such that any γ ∈ Γ moves σ to within a bounded distance of itself � and
hence to a parallel line by convexity of the metric.

Indeed, let c : R+ → X be a geodesic ray with c(∞) = ξ and let {γi} be as in Lemma 2.11.
Then, by Arzelà�Ascoli, there is a subsequence I ⊆ N and a geodesic line σ : R→ X such
that σ(t) = limi∈I γi c(t + i) for all t. Since each g ∈ G has bounded displacement along
c, the sequence {γigγ−1

i }i∈I is bounded and thus we can assume that it converges for all g
(recalling that G is second countable, but we shall only consider g ∈ Γ anyway). Since Γ is
discrete and �nitely generated, we can further restrict I so that there is γ∞ ∈ Γ such that

γiγγ
−1
i = γ∞γγ

−1
∞ ∀ γ ∈ Γ, i ∈ I.

Since

d(γγ−1
∞ σ(t), γ−1

∞ σ(t)) = lim
i∈I

d(γ−1
i γ∞γγ

−1
∞ γic(t+ i), c(t+ i))

= lim
i∈I

d(γc(t+ i), c(t+ i)) ≤ d(γc(0), c(0)),

It now follows that every γ ∈ Γ has bounded displacement length along the geodesic γ−1
∞ σ.

Thus the same holds for the geodesic σ which is therefore (by convexity) translated to a
parallel line by each element of Γ as claimed.

Consider a �at E ⊆ X that is maximal for the property that each element of Γ has
constant displacement length on E. Let Y be the union of all �ats that are at �nite distance
from E. One shows that Y splits as Y ∼= E ×W for some closed convex W ⊆ X using
the Sandwich Lemma [BH99, II.2.12] and Lemma II.2.15 of [BH99] just like in Section 3.B
in [CM08c]. The de�nition of Y shows that Γ preserves Y as well as its splitting and acts
on the E coordinate by translations.

It remains to show that any G-�xed point ξ ∈ ∂X belongs to ∂E. First, ξ ∈ ∂Y since
∂Y = ∂X by Corollary 2.10; we thus represent ξ by a ray c : R+ → Y . Let now σ be
a geodesic line as provided by the claim. We can assume that σ lies in Y because it was
constructed from Γ-translates of c and Y is Γ-invariant. One can write σ = (σE , σW ) where
σE , σW are linearly re-parametrised geodesics in E and W , see [BH99, I.5.3]. We need to
prove that σW has zero speed. Since any given γ ∈ Γ has constant displacement along σ and
on each of the parallel copies of E individually, its displacement is constant on the union of
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all parallel copies of E visited by σ, which is E × σW (R). The latter being again a �at, the
maximality of E shows that σW is constant. �

Proof of Theorem 3.11. Let Y = E × W ⊆ X be as in Proposition 3.15. Recall that
∂Y = ∂X by Corollary 2.10. We claim that ∂X has circumradius > π/2. Indeed, it would
otherwise have a G-�xed circumcentre by Proposition 3.1 in [CM08c], but this circumcentre
cannot belong to ∂E since E is Euclidean; this contradicts Proposition 3.15. We now apply
Corollary 3.10 in [CM08c]. This yields a canonical G-invariant closed convex subset X ′,
which is minimal with respect to the property that ∂X ′ = ∂X. It follows in particular
by Corollary 2.10 that Γ acts minimally on X ′. Let now X ′ = E′ × X ′0 be the canonical
splitting, where E′ is the maximal Euclidean factor [BH99, II.6.15]. On the one hand,
since X ′ is Γ-minimal, Proposition 3.15 applied to X ′ shows that G has no �xed points in
∂X ′0 since E′ is maximal as a Euclidean factor. On the other hand, Is(E′) �xes no point
at in�nity on E′. We deduce that Is(X ′) ∼= Is(E′) × Is(X ′0) has indeed no �xed point at
in�nity. �

End of proof of Theorem 3.14. Arguing as in the proof of Theorem 3.11, we establish that
X is Γ-minimal. Let X = X ′ × E be the canonical splitting, where E is the maximal
Euclidean factor. Since any isometry of X decomposes uniquely as isometries of E and X ′

(II.6.15 in [BH99]), is su�ces to show that Γ has no �xed point in ∂X ′. This follows from
Proposition 2.1 applied to the G-action on X ′. �

End of proof of Theorem 3.8. Assume �rst that X is G-minimal, recalling that this is the
case if X is geodesically complete by Lemma 3.13 in [CM08c]. In view of Corollary 3.12, we
can apply Theorem 1.6 in [CM08c] and we are therefore in the setting of Proposition 3.6.
Since the group ΓA provided by that proposition contains a �nite index subgroup isomorphic
to Zn, we have already established (i) under the additional minimality assumption.

In order to show (ii), it su�ces by Remark 3.7 to prove that any compact subgroup of G
normalised by Γ is trivial. This follows from the fact that X is Γ-minimal, as established in
Theorem 3.14.

It remains to prove (i) without the assumption that X is G-minimal. Let Y ⊆ X be
the G-minimal set provided by Theorem 3.11 and let Y ∼= Rm × Y ′ be its Euclidean
decomposition. Then m ≥ n because of the characterisation of the Euclidean factor in
terms of Cli�ord isometries [BH99, II.6.15]; indeed, any (non-trivial) Cli�ord isometry of
X restricts non-trivially to Y because Y has �nite co-diameter. The kernel F � Γ of the
Γ-action on Y is �nite and thus we can assume that it is central upon replacing Γ with a
�nite index subgroup. Passing to a further �nite index subgroup, we know from the minimal
case that Γ/F splits as Γ/F = Zm × Λ′. Let ΓZm ,Γ′ � Γ be the pre-images in Γ of those
factors. Thus we can write Γ = ΓZm · Γ′ with ΓZm ∩ Γ′ ⊆ F . It is straightforward that a
�nite central extension of Zm is virtually Zm (see e.g. [BH99, II.7.9]). Therefore Γ contains
a �nite index subgroup isomorphic to Zm × Γ′ and the result follows since m ≥ n. �

Proof of Corollary 3.10. Notice that a splitting Γ0
∼= Zn×Γ′ with Γ0 normal and n maximal

provides a normal subgroup Zn � Γ since Zn is characteristic in Γ0. Therefore, given
Theorem 3.8, it only remains to see that a normal Zn � Γ of maximal rank forces X to
have a Euclidean factor of dimension at least n. Otherwise, the projection of Γ to the non-
Euclidean factor X ′ would be a lattice by Theorem 3.8(ii) and contain an in�nite normal
amenable subgroup, contradicting Corollary 2.7(i). �
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Finally, we record that Theorem 1.3 is contained in Theorem 3.8 and Corollary 3.10
for (i), and Corollary 3.12 and Theorem 3.14 for (ii).

4. CAT(0) lattices, II: products

4.A. Irreducible lattices in CAT(0) spaces. Recall from that a (topological) group
is called irreducible if no (open) �nite index subgroup splits non-trivially as a direct
product of (closed) subgroups. For example, any locally compact group acting continuously,
properly, minimally, without �xed point at in�nity on an irreducible proper CAT(0) space
is irreducible by Theorem 1.10 in [CM08c].

In particular, an abstract group Γ is irreducible if it does not virtually split. This ter-
minology is inspired by the concept of irreducibility for closed manifolds, which means that
no �nite cover of the manifold splits non-trivially. Of course, the universal cover of such a
manifold can still split. Indeed, one gets many classical CAT(0) groups by considering �irre-
ducible lattices� in products of simple Lie groups or more generally of semi-simple algebraic
groups over various local �elds.

The latter concept of irreducibility for lattices is de�ned as follows: A lattice Γ < G =
G1× · · · ×Gn in a product of locally compact groups is called an irreducible lattice if its
projections to any subproduct of the Gi's are dense and each Gi is non-discrete.

The point of this notion (and of the nearly confusing terminology) is that it prevents
Γ and its �nite index subgroups from splitting as a product of lattices in Gi. Moreover,
if all Gi's are centre-free simple Lie (or algebraic) groups without compact factors, the
irreducibility of Γ as a lattice is equivalent to its irreducibility as a group in and for itself;
this is a result of Margulis [Mar91, II.6.7]. As we shall see in Theorem 4.2 below, a version
of this equivalence holds for lattices in the isometry group of a CAT(0) space.

Remark 4.1.

(i) The non-discreteness of Gi is often omitted from this de�nition; the di�erence is
inessential since the notion of a lattice is trivial for discrete groups. Notice however
that our de�nition ensures that all Gi are non-compact and that n ≥ 2.

(ii) One veri�es that any lattice Γ < G = G1 × G2 is an irreducible lattice in the
product G∗ < G of the closures G∗i < Gi of its projections to Gi (provided these
projections are non-discrete).

The following geometric version of Margulis' criterion contains Theorem 1.4 from the
Introduction.

Theorem 4.2. Let X be a proper CAT(0) space, G < Is(X) a closed subgroup acting
cocompactly on X, and Γ < G a �nitely generated lattice.

(i) If Γ is irreducible as an abstract group, then for any �nite index subgroup Γ0 < Γ
and any Γ0-equivariant splitting X = X1 ×X2 with X1 and X2 non-compact, the
projection of Γ0 to both Is(Xi) is non-discrete.

(ii) If in addition the G-action is minimal, then the converse statement holds as well.

Remark 4.3. Recall that the G-minimality is automatic if X is geodesically complete
(Lemma 3.13 in [CM08c]). Statement (ii) fails completely without minimality (as witnessed
for instance by the uncosmopolitan mien of an equivariant mane).

Proof of Theorem 4.2. Suppose Γ irreducible. Let X ′ ⊆ X be the canonical subspace pro-
vided by Theorem 3.11. By Theorem 3.8, the space X ′ has no Euclidean factor unless
X = R and Γ is virtually cyclic, in which case the desired statement is empty.
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We �rst deal with the case when G acts minimally on X; by Theorem 2.4 this amounts
to assume X = X ′. Suppose for a contradiction that for Γ0 and X ′ = X ′1 × X ′2 as in
the statement, the projection G1 of Γ0 to Is(X ′1) is discrete. Let G2 be the closure of the
projection of Γ0 to Is(X ′2) and notice that both Gi are compactly generated since Γ and
hence also Γ0 is �nitely generated. The projection Γ2 of Γ0 ∩ (1 × G2) to G2 is a lattice
(by Lemma 3.2 or by Proposition 3.1); being normal, it is cocompact and hence �nitely
generated. By Theorem 3.14, the group Γ0, and hence also G2, acts minimally and without
�xed point at in�nity onX ′2. Therefore Corollary 2.7(ii) implies that the centraliser ZG2(Γ2)
is trivial. But Γ2 is discrete, normal in G2, and �nitely generated. Hence ZG2(Γ2) is open
and thus G2 is discrete. Therefore, the product G1 ×G2, which contains Γ0, is a lattice in
Is(X ′1)× Is(X ′2) and thus in G. Now the index of Γ0 in G1 ×G2 is �nite and thus Γ0 splits
virtually, a contradiction.

We now come back to the general case X ′ ⊆ X and suppose that X possesses a Γ0-
equivariant splitting X = X1 ×X2. The group H = Is(X1) × Is(X2) < Is(X) contains Γ0;
hence its action on X ′ is minimal without �xed point at in�nity by Corollary 3.12. There-
fore, the splitting theorem [Mon06, Theorem 9] implies that X ′ possesses a Γ0-equivariant
splitting X ′ = X ′1×X ′2 induced by X = X1×X2 via H. Upon replacing Γ0 be a �nite index
subgroup, the preceding paragraph thus yields a splitting Γ0/F ∼= G1 ×G2 of the image of
Γ0 in Is(X ′), where F denotes the kernel of the Γ0-action on X ′. Since F is �nite, so is the
projection to Is(X3−i) of the preimage Ĝi of Gi in Γ, for i = 1, 2. Therefore upon passing to
a �nite index subgroup we may and shall assume that Ĝi acts trivially on Is(X3−i). Now the
subgroup of Is(X1)×Is(X2) generated by Ĝ1 and Ĝ2 splits as Ĝ1×Ĝ2 and is commensurable
to Γ0, a contradiction.

Conversely, suppose now that the G-action is minimal and that Γ = Γ′ × Γ′′ splits non-
trivially (after possibly having replaced it by a �nite index subgroup). If X = Rn, then
reducibility of Γ forces n ≥ 2 and we are done in view of the structure of Bieberbach groups.
If X is not Euclidean but has a Euclidean factor, then Theorem 3.8(ii) provides a discrete
projection of Γ to the non-Euclidean factor Is(X ′); furthermore, X ′ is indeed non-compact
as desired since otherwise by minimality it is reduced to a point, contrary to our assumption.

If on the other hand X has no Euclidean factor, then Γ acts minimally and without �xed
point at in�nity by Theorem 3.11. Then the desired splitting is provided by the splitting
theorem [Mon06, Theorem 9]. Both projections of Γ are discrete, indeed isomorphic to Γ′

respectively Γ′′ because the cited splitting theorem ensures componentwise action of Γ. �

We now brie�y turn to uniquely geodesic spaces and to the analogues in this setting of
some of P. Eberlein's results for Hadamard manifolds.

Theorem 4.4. Let X be a proper CAT(0) space with uniquely extensible geodesics such that
Is(X) acts cocompactly on X.

If Is(X) admits a �nitely generated non-uniform irreducible lattice, then X is a symmetric
space (without Euclidean factor).

Proof. The action of Is(X) is minimal by Lemma 3.13 in [CM08c] and without �xed point at
in�nity by Corollary 3.12. Thus we can apply Theorem 1.6 in [CM08c] and Addendum 1.8
in [CM08c]. Notice that Is(X) itself is non-discrete since it contains a non-uniform lattice;
moreover, if it admits more than one factor in the decomposition of Theorem 1.6 in [CM08c],
then the latter are all non-discrete by Theorem 4.2. Therefore, we can apply Theorem 7.10
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in [CM08c] to all factors of X. It remains only to justify that X has no Euclidean fac-
tor; otherwise, Auslander's theorem (compare also Theorem 3.8) implies X = R, which is
incompatible with the fact that Γ is non-uniform. �

We can now prove Theorem 1.11 from the Introduction; we shall later establish another
result of the same vein later without assuming that geodesics are uniquely extensible (see
Theorem 6.6).

Proof of Theorem 1.11. One follows line-by-line the proof of Theorem 4.4. The only dif-
ference is that, in the present context, the non-discreteness of the isometry group of each
irreducible factor of X follows from Theorem 4.2 since X is assumed reducible. �

We can now conclude the proof of Theorem 1.10 from the Introduction. The �rst
statement was established in Theorem 7.10 in [CM08c]. The second follows from Theo-
rem 4.4. �

4.B. The hull of a lattice. Let X be a proper CAT(0) space X such that Is(X) acts
cocompactly on X. Let Γ < Is(X) be a �nitely generated lattice; note that the condition
of �nite generation is redundant if Γ is cocompact by Lemma 3.3. Theorem 3.11 provides
a canonical Is(X)-invariant subspace X ′ ⊆ X such that G = Is(X ′) has no �xed point at
in�nity.

In this section we shall de�ne the hull HΓ of the lattice Γ; this is a locally compact group
HΓ < Is(X ′) canonically attached to the situation and containing the image of Γ in Is(X ′).

For simplicity, we �rst treat the special case where Is(X) acts minimally; thus X ′ = X
and G = Is(X). Applying Theorem 1.6 in [CM08c] and Addendum 1.8 in [CM08c], we see
in particular that Γ possesses a canonical �nite index normal subgroup Γ∗ = Γ ∩G∗ which
is the kernel of the Γ-action by permutation on the set of factors in the decomposition given
by Addendum 1.8 in [CM08c].

In the classical case when X is a symmetric space, the closure of the projection of Γ to
the isometry group Is(Xi) of each factor is an open subgroup of �nite index, as soon as X
is reducible. This is no longer true in general, even in the case of Euclidean buildings. In
fact, the same Γ may (and generally does) occur as lattice in increasingly large ambient
groups Γ < G < G′ < G′′ < · · · . In order to address this issue, we de�ne the hull as follows.
Consider the closed subgroup HΓ∗ < G which is the direct product of the closure of the
images of Γ∗ in each of the factors in the decomposition of Theorem 1.6 in [CM08c]. Then
set HΓ = Γ ·HΓ∗ . In other words, we have inclusions

Γ < HΓ < G.

The closed subgroup HΓ∗ is nothing but the hull of the lattice Γ∗. It coincides with
H∗Γ = HΓ ∩G∗. In particular H∗Γ = HΓ∗ is a direct product of irreducible groups satisfying
all the restrictions of Theorem 1.10 in [CM08c] (except for the possible Euclidean motion
factor), and the image of Γ∗ in each of these factors is dense.

Remark 4.5. Notice that Γ is always a lattice in HΓ (by [Rag72, Lemma 1.6]). We
emphasise that HΓ is non-discrete and that Γ∗ is an irreducible lattice in HΓ∗ (in the
sense of � 4.A) as soon as Γ is irreducible as a group and X is reducible; this follows from
Theorem 4.2.

We now de�ne the hull HΓ < G in the general situation G = Is(X ′) with X ′ ⊆ X given
by Theorem 3.11. Since Is(X)\X is cocompact, it follows that X ′ is r-dense in X for some
r > 0 and the canonical map Is(X) → G is proper. Let FΓ � Γ be the �nite kernel of the
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induced map Γ → G and write Γ′ := Γ/FΓ. Then the hull of Γ is de�ned by HΓ := HΓ′

(reducing to the above case).
In other words, Γ sits in HΓ only modulo the canonical �nite kernel FΓ. In fact, FΓ is

even canonically attached to Γ viewed as an abstract group.

Lemma 4.6. FΓ is a (necessarily unique) maximal �nite normal subgroup of Γ. Moreover,
X ′ is Γ′-minimal.

Proof. The Γ′-action on X ′ is minimal by an application of Theorem 3.14 and therefore
every �nite normal subgroup of Γ′ is trivial. Since moreover the Γ-action on X ′ is proper,
it follows that a normal subgroup of Γ is �nite if and only if it lies in FΓ. �

For later references, we record the following expected fact.

Lemma 4.7. Assume that Γ is irreducible. If X ′ is reducible, then HΓ contains the identity
component of G := Is(X ′). In fact (HΓ)◦ = G◦ is a semi-simple Lie group with trivial centre
and no compact factor.

Proof. By Theorem 3.8, the hypotheses on Γ imply that X ′ has no Euclidean factor. Thus
each almost connected factor of G∗ is a simple Lie group with trivial centre and no compact
factor. The projection of Γ∗ to each of these factors is non-discrete by Theorem 4.2 and the
assumption made on X ′. Its closure is semi-simple and Zariski dense by Theorem 2.4 and
Proposition 2.8. The result follows. �

4.C. On the canonical discrete kernel. Let G = G1 × G2 be a locally compact group
and Γ < G be an irreducible lattice. It follows from irreducibility that the projection to Gi
of the kernel of the projection Γ → Gj 6=i is a normal subgroup of Gi. In other words, we
have a canonical discrete normal subgroup Γi �Gi de�ned by

Γ1 = ProjG1

(
Γ ∩ (G1 × 1)

)
(and likewise for Γ2) which we call the canonical discrete kernel of Gi (depending on Γ).
We observe that the image

Γ = Γ/(Γ1 · Γ2)
of Γ in the canonical quotient G1/Γ1 ×G2/Γ2 is still an irreducible lattice (see Proposi-
tion 3.1(ii)) and has the additional property that it projects injectively into both factors.

In this subsection, we collect some basic facts on lattices in (products of) totally discon-
nected locally compact groups, adapting ideas of M. Burger and Sh. Mozes (see Proposi-
tions 2.1 and 2.2 in [BM00b]).

Proposition 4.8. Let Γ < G = G1×G2 be an irreducible lattice. Assume that G2 is totally
disconnected, compactly generated and without non-trivial compact normal subgroup. If Γ
is residually �nite, then canonical the discrete kernel Γ2 = Γ ∩ (1×G2) commutes with the

discrete residual G
(∞)
2 .

Recall that the discrete residual G(∞) of a topological group G is by de�nition the
intersection of all open normal subgroups. It is important to remark that, by Corollary 6.13
in [CM08c] the discrete residual of a non-discrete compactly generated locally compact group
without non-trivial compact normal subgroup is necessarily non-trivial.

Proof of Proposition 4.8. By a slight abuse of notation, we shall identify G2 with the sub-
group 1×G2 of G. Given a �nite index normal subgroup Γ0 � Γ, the intersection Γ0 ∩Γ2 is
a discrete normal subgroup of G2 (by irreducibility), contained as a �nite index subgroup
in Γ2. Thus G2 acts by conjugation on the �nite quotient Γ2/Γ0 ∩ Γ2. In particular the
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kernel of this action is a �nite index closed normal subgroup, which is thus open. Therefore,
the discrete residual G(∞)

2 acts trivially on Γ2/Γ0 ∩ Γ2. In other words, this means that

[Γ2, G
(∞)
2 ] ⊆ Γ0 ∩ Γ2.

Assume now that Γ is residually �nite. The preceding argument then shows that the
commutator [Γ2, G

(∞)
2 ] is trivial, as desired. �

Proposition 4.9. Let Γ < G = G1 × G2 be a cocompact lattice in a product of compactly
generated locally compact groups. Assume that G2 is totally disconnected and that the cen-
traliser in G1 of any cocompact lattice of G1 is trivial. If the discrete kernel Γ2 = Γ∩(1×G2)
is trivial, then the quasi-centre QZ (G2) is topologically locally �nite.

Proof. Let S ⊆ QZ (G2) be a �nite subset of the quasi-centre. Then G2 possesses a compact
open subgroup U which centralises S. By Lemma 3.2 the group ΓU = Γ ∩ (G1 × U) is
a cocompact lattice in G1 × U . In particular, there is a �nite generating set T ⊆ ΓU .
By a lemma of Selberg [Sel60], the group ZΓ(T ) is a cocompact lattice in ZG(T ). But
ZG(T ) = ZG(ΓU ) ⊆ 1×G2 since the projection of ΓU to G1 is a cocompact lattice. Since
the discrete kernel Γ ∩ (1 × G2) is trivial by hypothesis, the centraliser ZΓ(T ) is trivial
and, hence, ZG(T ) is compact. By construction S is contained in ZG(T ), which yields the
desired result. �

4.D. Residually �nite lattices.

Theorem 4.10. Let X be a proper CAT(0) space such that Is(X) acts cocompactly and
minimally. Let Γ < Is(X) be a �nitely generated lattice. Assume that Γ is irreducible and
residually �nite. Then we have the following (see Section 4.B for the notation):

(i) Γ∗ acts faithfully on each irreducible factor of X.
(ii) If Γ is cocompact and X is reducible, then for any closed subgroup G < Is(X)

containing HΓ∗ , we have QZ (G) = QZ (G∗) = 1. Furthermore soc(G∗) is a direct
product of r non-discrete closed subgroups, each of which is characteristically simple,
where r is the number of irreducible factors of X.

(We emphasise that the irreducibility assumption concerns Γ as an abstract group; compare
however Remark 4.5.)

Proof. If X is irreducible, there is nothing to prove. We assume henceforth that X is
reducible. In view of Theorem 3.8, X has no Euclidean factor. Moreover, Corollary 3.12
implies that Is(X) �xes no point at in�nity. In particular, Γ and HΓ∗ act minimally without
�xed point at in�nity by Theorem 2.4.

Let H1, . . . ,Hr be the irreducible factors of HΓ∗ ; thus r coincides with the number of
irreducible factors of X. In view of Theorem 4.2, the group Γ∗ is an irreducible lattice in
this product. By Corollary 1.11 in [CM08c] and Theorem 2.4, each Hi is either a centre-free
simple Lie group or totally disconnected with trivial amenable radical. If H1 is a simple Lie
group, then it has no non-trivial discrete normal subgroup and hence

(Γ∗)1 := Γ∗ ∩ (H1 × 1× · · · × 1) = 1.

If H1 is totally disconnected, then by Proposition 4.8 the canonical discrete kernel (Γ∗)1

commutes with the discrete residualH(∞)
1 , which is non-trivial by Corollary 6.13 in [CM08c].

Thus ZH1(H(∞)
1 ) = 1 by Theorem 1.10 in [CM08c] and hence (Γ∗)1 = 1.

Assertion (i) now follows from a straightforward induction on r.

Assume next that Γ is cocompact. Let G1, . . . , Gr be the irreducible factors of G∗. By
Lemma 4.7 and Proposition 4.9, and in view of Part (i), for each totally disconnected factor
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Gi, the quasi-centre QZ (Gi) is topologically locally �nite. Its closure is thus amenable,
hence trivial by Theorem 1.10 in [CM08c]. Moreover, the quasi-centre of each almost con-
nected factor is trivial as well by Lemma 4.7.

Clearly the projection of the quasi-centre of G∗ to the irreducible factor Gi is contained
in QZ (Gi). This shows that QZ (G∗) is trivial. Hence so is QZ (G), since it contains
QZ (G∗) as a �nite index subgroup and since G has no non-trivial �nite normal subgroup
by Corollary 5.8 in [CM08c]. Now the desired conclusion follows from Proposition 6.11
in [CM08c]. �

4.E. Strong rigidity for product spaces. In [CM08c], we presented a few superrigidity
results (Section 8 in [CM08c]). Superrigidity should contain, in particular, strong rigidity
à la Mostow. This is indeed the content of Theorem 4.11 below, where an isomorphism
of lattices is shown to extend to an ambient group. However, in contrast to the classical
case of symmetric spaces, which are homogeneous, the full isometry group does not in
general determine the space since CAT(0) spaces are in general not homogeneous. Another
di�erence is that the hull of a lattice, as described in Section 4.B, is generally smaller than
the full isometry group of the ambient CAT(0) space.

In view of the de�nition of the hull, the following statement is non-trivial only when X
(or an invariant subspace) is reducible; this is expected since we want to use superrigidity
for irreducible lattices in products.

Theorem 4.11. Let X,Y be proper CAT(0) spaces and Γ,Λ discrete cocompact groups of
isometries of X, respectively Y , not splitting (virtually) a Zn factor.

Then any isomorphism Γ ∼= Λ determines an isomorphism HΓ
∼= HΛ such that the fol-

lowing commutes:

Γ

��

// Λ

��

HΓ

∼= // HΛ

Theorem 4.11 provides a partial answer to Question 21 in [FHT08].

Remark 4.12. The assumption on Zn factors is equivalent to excluding Euclidean fac-
tors from X (or its canonical invariant subspace) by Theorem 3.8. On the one hand, this
assumption is really necessary for the theorem to hold, even for symmetric spaces, since
one can twist the product using a Γ-action on the Euclidean factor when H1(Γ) 6= 0 (com-
pare [LY72, � 4]). On the other hand, since Bieberbach groups are obviously Mostow-rigid,
Theorem 4.11 together with Theorem 3.8 give us as complete as possible a description of
the situation with Zn factors.

Proof. Let X ′ ⊆ X be the subset provided by Theorem 3.11. We retain the notation FΓ �Γ
and Γ′ = Γ/FΓ < Is(X ′) from Section 4.B and recall from Lemma 4.6 that FΓ depends only
on Γ as abstract group and that X ′ is Γ′-minimal. We de�ne Y ′, FΛ and Λ′ in the same way
and have the corresponding lemma. In particular, it follow that the isomorphism Γ ∼= Λ
descends to Γ′ ∼= Λ′. Therefore, we can and shall assume from now on that X and Y are
minimal and Γ < HΓ < Is(X), Λ < HΛ < Is(Y ). By Theorem 3.8, we know that X,Y have
no Euclidean factor. Thus Γ,Λ have no �xed point at in�nity by Theorem 3.14. We claim
that Γ has a �nite index subgroup Γ† which decomposes as a product Γ† = Γ1 × · · · × Γs
of irreducible factors, with s maximal for this property. Indeed, otherwise we could apply
the splitting theorem of [Mon06] to a chain a �nite index subgroups and contradict the
properness of X. We write Λ† = Λ1×· · ·×Λs for the corresponding groups in Λ. Combining
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the splitting theorem with Addendum 1.8 in [CM08c], it follows from the de�nition of the
hull that it is su�cient to prove the statement for s = 1. We assume henceforth that Γ, and
hence also Λ, is irreducible. Furthermore, if X and Y are both irreducible, then HΓ = Γ
and HΛ = Λ and the desired statement is empty. We now assume that X is reducible.

By Theorem 2.4, the lattice Γ (resp. Λ) acts minimally without �xed point at in�nity
on X (resp. Y ). Theorem 8.4 in [CM08c] yields a continuous morphism f : HΓ∗ → HΛ∗ ,
which shows in particular (by the splitting theorem [Mon06]) that Y is reducible as well.
A second application of Theorem 8.4 in [CM08c] yields a second continuous morphism
f ′ : HΛ∗ → HΓ∗ . Notice that the respective restrictions to Γ∗ and Λ∗ coincides with the
given isomorphism and its inverse. In particular f ′ ◦ f (resp. f ′ ◦ f) is the identity on Γ
(resp. Λ). By de�nition of the hull, it follows that f ′ ◦ f (resp. f ′ ◦ f) is the identity on
HΓ∗ (resp. HΛ∗). The desired result �nally follows, since there is a canonical isomorphism
Γ/Γ∗ ∼= HΓ/HΓ∗ and since the action of HΓ/HΓ∗ on HΓ∗ is canonically determined by the
action of Γ/Γ∗ on Γ∗. �

The above proof shows in particular that amongst spaces that are Γ-minimal without
Euclidean factor, the number of irreducible factors depends only upon the group Γ. If we
combine this with Theorem 3.14, Corollary 3.10 and Theorem 3.8(ii), we obtain that the
number of factors in the �de Rham� decomposition

(4.i) X ′ ∼= X1 × · · · ×Xp ×Rn × Y1 × · · · × Yq
of Addendum 1.8 in [CM08c] is an invariant of the group:

Corollary 4.13. Let X be a proper CAT(0) space and Γ < Is(X) be a group acting properly
discontinuously and cocompactly.

Then any other such space admitting a proper cocompact Γ-action has the same number
of factors in (4.i) and the Euclidean factor has same dimension. �

(We recall that minimality is automatic when X is geodesically complete: Lemma 3.13
in [CM08c].)

5. Arithmeticity of abstract lattices

The main goal of this section is to prove Theorem 1.9, which we now state in a slightly
more general form. Following G. Margulis [Mar91, IX.1.8], we shall say that a simple
algebraic group G de�ned over a �eld k is admissible if none of the following holds:

� char(k) = 2 and G is of type A1, Bn, Cn or F4.
� char(k) = 3 and G is of type G2.

A semi-simple group will be said admissible if all its factors are.

Theorem 5.1. Let Γ < G = G1×· · ·×Gn be an irreducible �nitely generated lattice, where
each Gi is any locally compact group.

If Γ admits a faithful Zariski-dense representation in an admissible semi-simple group
(over any �eld), then the amenable radical R of G is compact and the quasi-centre QZ (G)
is virtually contained in Γ · R. Furthermore, upon replacing G by a �nite index subgroup,
the quotient G/R splits as G+ ×QZ (G/R) where G+ is a semi-simple algebraic group and
the image of Γ in G+ is an arithmetic lattice.

Since the projection map G → G/R is proper, the statement of Theorem 5.1 implies in
particular that QZ (G/R) is discrete.
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Corollary 5.2. Let G = G1×· · ·×Gn be a product of locally compact groups. Assume that
G admits a �nitely generated irreducible lattice with a faithful Zariski-dense representation
in a semi-simple group over some �eld of characteristic 6= 2, 3.

Then G is a compact extension of a direct product of a semi-simple algebraic group by a
discrete group. �

To be more precise, the arithmeticity conclusion of Theorem 5.1 means the following.

There exists a global �eld K, a connected semi-simple K-anisotropic K-group H and a
�nite set Σ of valuations of K such that:

(i) The quotient Γ := Γ/Γ ∩ (R ·QZ (G)) is commensurable with the arithmetic group
H(K(Σ)), where K(Σ) is the ring of Σ-integers of K. Moreover, Σ contains all Archimedean
valuations v for which H isKv-isotropic, whereKv denotes the v-completion ofK. In partic-
ular, by Borel�Harish-Chandra and Behr�Harder reduction theory, the diagonal embedding
realises H(K(Σ)) as a lattice in the product

∏
v∈Σ H(Kv).

(ii) The group G+ is isomorphic to
∏
v∈Σ H(Kv)+ and this isomorphism implements the

commensurability of Γ with H(K(Σ)). For background references, including on H(Kv)+,
see [Mar91, I.3].

In contrast to statements in [Mon05], there is no assumption on the subgroup structure
of the factors Gi in Theorem 5.1, which may not even be irreducible. The nature of the
linear representation is however more restricted.

Another improvement is that no (weak) cocompactness assumption is made on Γ. In
particular, under the same algebraic restrictions on the factors Gi as in loc. cit., we obtain
the following arithmeticity vs. non-linearity alternative for all �nitely generated lattices.

Corollary 5.3. Let Γ < G = G1 × · · · × Gn be an irreducible �nitely generated lattice,
where each Gi is a locally compact group such that every non-trivial closed normal subgroup
is cocompact. Then one of the following holds:

(i) Every �nite-dimensional linear representation of Γ in characteristic 6= 2, 3 has vir-
tually soluble image.

(ii) G is a semi-simple algebraic group and Γ is an arithmetic lattice.

The hypothesis made on each factor Gi may be used to describe to some extent its
structure independently of the existence of a lattice in G; one can in particular show [CM08a]
that each Gi is monolithic, thus extending the classical result of Wilson [Wil71] to locally
compact groups. However, we will not appeal to this preliminary description of the Gi when
proving Corollary 5.3: the structural information will instead be obtained a posteriori.

Remark 5.4. In [Mon05], the conclusion (i) was replaced by �niteness of the image. This
follows from the current conclusion in the more restricted setting of loc. cit. thanks to
Y. Shalom's superrigidity for characters [Sha00], unless of course Gi admits (virtually) a
non-zero continuous homomorphism to R (after all in the current setting we can have
Gi = R). It is part of the assumptions in [Mon05] that no such homomorphism exists, so
that Corollary 5.3 indeed generalises loc. cit.

5.A. Superrigid pairs. For convenience, we shall use the following terminology. Let J be
a topological group and Λ < J any subgroup. We call the pair (Λ, J) superrigid if for any
local �eld k and any connected absolutely almost simple adjoint k-group H, every abstract
homomorphism Λ → H(k) with unbounded Zariski-dense image extends to a continuous
homomorphism of J .
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Proposition 5.5. Let (Λ, J) be a superrigid pair with J locally compact and Λ �nitely
generated with closure of �nite covolume in J .

If Λ admits a faithful representation in an admissible semi-simple group (over any �eld)
with Zariski-dense image, then the amenable radical R of J is compact and the quasi-centre
QZ (J) is virtually contained in Λ · R. Furthermore, upon replacing J by a �nite index
subgroup, the quotient J/R splits as J+ ×QZ (J/R) where J+ is a semi-simple algebraic
group and the image of Λ in J+ is an arithmetic lattice.

(We point out again that in particular the direct factor QZ (J/R) is discrete.)

One might expect that Theorem 5.1 could now be proved by establishing in complete
generality that �nitely generated irreducible lattices in products of locally compact groups
form a superrigid pair. For uniform lattices, or more generally weakly cocompact square-
summable lattices, this is indeed true and was proved in [Mon06]. We do not have a
proof in general and shall eschew this di�culty by giving �rst an independent proof of the
compactness of the amenable radical (Corollary 5.14 below) and using the residual �niteness
of �nitely generated linear groups before proceeding with Proposition 5.5.

Nevertheless, we do have a general proof as soon as the groups are totally disconnected.

Theorem 5.6. Let Γ < G = G1×· · ·×Gn be an irreducible �nitely generated lattice, where
each Gi is any locally compact group.

If G is totally disconnected, then (Γ, G) is a superrigid pair.

(As we shall see in Proposition 5.11, one can drop the �nite generation assumption in the
simpler case where Γ projects faithfully to some factor Gi.)

The proofs will use the following fact established in [CM08a].

Proposition 5.7. Let G be a compactly generated locally compact group and {Nv | v ∈ Σ}
be a collection of pairwise distinct closed normal subgroups of G such that for each v ∈ Σ,
the quotient Hv = G/Nv is quasi-simple, non-discrete and non-compact.

If
⋂
v∈ΣNv = 1, then Σ is �nite. �

We recall for the above statement that a group is called quasi-simple if it possesses a
cocompact normal subgroup which is topologically simple and contained in every non-trivial
closed normal subgroup.

Proof of Proposition 5.5. We will largely follow the ideas of Margulis, deducing arithmetic-
ity from superrigidity [Mar91, Chapter IX]. It is assumed that the reader has a copy
of [Mon05] at hand, since it contains a similar reasoning under di�erent hypotheses. The
characteristic assumption in loc. cit. will be replaced by the current admissibility assump-
tion.

The group J (and hence also all �nite index subgroups and factors) is compactly generated
by Lemma 2.12. Let τ : Λ→ H be the given faithful representation. Upon replacing Λ and
J by �nite index subgroups and post-composing τ with the projection map H→ H/Z (H),
we shall assume henceforth that H is adjoint and Zariski-connected. The representation
τ : Λ→ H need no longer be faithful, but it still has �nite kernel. As in [Mon05, (3.3)], in
view of the assumption that Λ is �nitely generated, we may assume that H is de�ned over a
�nitely generated �eld K. This is the �rst of two places where the admissibility assumption
is used in loc. cit. (following VIII.3.22 and IX.1.8 in [Mar91]).

By Tits' alternative [Tit72], the amenable radical of Λ is soluble-by-locally-�nite and thus
locally �nite since τ(Λ) is Zariski-dense and H is semi-simple. The �nite generation of K
implies that this radical is in fact �nite (see e.g. Corollary 4.8 in [Weh73]), thus trivial
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by Zariski-density since H is adjoint. (The �nite generation of K is essential in positive
characteristic since for algebraically closed �elds there is always a locally �nite Zariski-dense
subgroup [BGM04].)

It now follows that if J is a compact extension of a discrete group, then the latter
has trivial amenable radical and thus all the conclusions of Proposition 5.5 hold trivially.
Therefore, we assume henceforward that J is not compact-by-discrete.

Let H = H1× · · · ×Hk be the decomposition of H into its simple factors. We shall work
with the factors Hi one at a time. Let τi : Λ → Hi be the induced representation of Λ.
Notice that τi need not be faithful; however, it has Zariski-dense (and in particular in�nite)
image.

We let Σi denote the set of all (inequivalent representatives of) valuations v of K such
that the image of τi(Λ) is not relatively compact in Hi(Kv) (for the Hausdor� topology);
observe that this image is still Zariski-dense. Then Σi is non-empty since τi(Λ) is in�nite,
see [BG07, Lemma 2.1].

By hypothesis, there exists a continuous representation J → Hi(Kv) for each v ∈ Σi,
extending the given Λ-representation. We denote by Nv�J the kernel of this representation.
Let I ⊆ {1, . . . , k} be the set of all those indices i such that J/Nv is non-discrete for each
v ∈ Σi.

We claim that the set I is non-empty.

Indeed, for each index j 6∈ I, there exists vj ∈ Σj such that Nvj is open in J . Thus the
kernel

J+ =
⋂
j 6∈I

Nvj

of the continuous representation J →
∏
j 6∈I Hj(Kvj ) is open.

By assumption the closure of Λ in J has �nite covolume. Therefore, for each open
subgroup F < J , the closure of Λ∩F has �nite covolume in F . It follows in particular that
Λ ∩ F is in�nite unless F is compact.

These considerations apply to the open subgroup J+ < J . Since J is not compact-by-
discrete, we deduce that Λ∩J+ is in�nite. Therefore the restriction to Λ of the representation
J →

∏
j 6∈I Hj(Kvj ) has in�nite kernel and, hence, it does not factor through τ : Λ→ H(K).

In particular it cannot coincide with the given representation τ : Λ → H. Thus I is non-
empty.

We claim that for each i ∈ I, the set Σi is �nite.

Let i ∈ I and v ∈ Σi. The arguments of [Mon05, (3.7)] show that the isomorphic image of
J/Nv in Hi(Kv) contains Hi(Kv)+. These arguments use again the admissibility assumption
because the appeal to a result of R. Pink [Pin98]; the fact that the latter hold in the
admissible case is explicit in the table provided in Proposition 1.6 of [Pin98]. Furthermore,
it follows from Tits' simplicity theorem [Tit64] combined with [BT73, 6.14] that each J/Nv

is quasi-simple. Moreover, an application of [BT73, 8.13] shows that the various quotients
(J/Nv)v∈Σi are pairwise non-isomorphic. In particular the normal subgroups (Nv)v∈Σi are
pairwise distinct.

Let Di =
⋂
v∈Σi

Nv and recall that J/Di is compactly generated. Projecting each Nv to
J/Di, we obtain a family of pairwise distinct normal subgroups of J/Di indexed by Σi such
that each corresponding quotient is quasi-simple, non-discrete and non-compact. Therefore,
the desired claim follows from Proposition 5.7.

In particular, appealing again to [BT73, Corollaire 8.13], we obtain a continuous map
J →

∏
v∈Σi

Hi(Kv) which we denote again by τJi . The kernel of τ
J
i is Di. Upon replacing
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J and Λ by �nite index subgroups we may assume that the image of τJi , when projected
to any factor Hi(Kv), coincides with the subgroup Hi(Kv)+; compare [Mon05, (3.9)]. We
thus consider τJi as a map to

∏
v∈Σi

Hi(Kv)+ whose composition with the projection to any
Hi(Kv)+ is surjective. Since the latter factors are simple [Tit64], an elementary argument
(Goursat lemma) implies that τJi maps onto

∏
v∈Σi

Hi(Kv)+.

We claim that R := J+ ∩ D is compact and that J = J+ · D, where D is de�ned by
D =

⋂
i∈I Di.

We �rst show that R = J+ ∩D is compact. Assume for a contradiction that this is not
the case. Then, given a compact open subgroup U of J , the intersection Λ0 = Λ ∩ (U · R)
is in�nite: this follows from the same argument as above, using the assumption that the
closure of Λ has �nite covolume.

For each index j 6∈ I, we have J+ ⊆ Nvj and we deduce that the image of Λ0 in Hj(Kvj )
is �nite, since it is contained in the image of U . Equivalently, the subgroup τj(Λ0) < Hj(K)
is �nite. It follows in particular that τi(Λ0) is in�nite for some i ∈ I. By [BG07, Lemma 2.1],
there exists v ∈ Σi such that the image of Λ0 in Hi(Kv) is unbounded. This is absurd since
D ⊆ Nv and hence the image of Λ0 in Hi(Kv) is contained in the image of the compact
subgroup U . This shows that the intersection R is indeed compact.

At this point we know that the quotient J/D is isomorphic to a subgroup of the product∏
i∈I

∏
v∈Σi

Hi(Kv)+

which projects surjectively onto each factor of the form
∏
v∈Σi

Hi(Kv)+. Using again the
Goursat-type argument as above, we �nd that J/D is indeed isomorphic to a �nite product
of non-compact non-discrete simple groups Hi(Kv)+. In particular the quotient J/D has
no non-trivial open normal subgroup. Since J+ is open and normal in J , we deduce that
J = J+ ·D, thereby establishing the claim.

By the very nature of the statement, we may replace J by the quotient J/R without any
loss of generality, since R is compact. In view of this further simpli�cation, the preceding
claim implies that J ∼= J+ ×D. In particular D is discrete.

It now follows as in [Mon05, (3.11)] that K is a global �eld, and that the image of Λ in
the semi-simple group J/D is an arithmetic lattice (compare [Mon05, (3.13)]). Therefore,
by Proposition 3.1, the intersection Λ ∩D is a lattice in D and, hence, the discrete normal
subgroup D is virtually contained in Λ. As J ∼= J+ ×D and J+ has trivial quasi-centre, it
follows that the quasi-centre of J coincides with D. This �nishes the proof. �

For later use, we single out a (simpler) version of an argument referred to above.

Lemma 5.8. Let H be an admissible connected absolutely almost simple adjoint k-group
H, where k is a local �eld. Let J be a locally compact group with a continuous unbounded
Zariski-dense homomorphism τ : J → H(k). Then any compact normal subgroup of J is
contained in the kernel of τ .

Proof. Let K�J be a compact normal subgroup. The Zariski closure of τ(K) is normalised
by the Zariski-dense group τ(J) and therefore it is either H(k) or trivial. We assume the
former since otherwise we are done.

We claim that we can assume k non-Archimedean. Otherwise, either k = R or k = C. In
the �rst case, τ(K) coincides with its Zariski closure by Weyl's algebraicity theorem [Vin94,
4.2.1] so that H(k) is compact in which case the lemma is void by the unboundedness
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assumption. In the second case, one can reduce to the case τ(J) ⊆ H(R) as in [Mon05,
(3.5)] and thus τ(K) = 1 as before since H(R) is also simple; the claim is proved.

Following now an idea from [Sha00, p. 41] (see also the explanations in Section (3.7)
of [Mon05]), one uses [Pin98] to deduce that τ(K) is open upon possibly replacing k by
a closed sub�eld (the admissibility assumption enters as in the proof of Proposition 5.5).
We can still denote this sub�eld by k because it accommodates the whole image τ(J), see
again [Mon05, (3.7)]. Now τ(J) is an unbounded open subgroup and hence contains H(k)+

by a result of J. Tits (see [Pra82]; this also follows from the Howe�Moore theorem [HM79]
which however is posterior to Tits' result). This implies that the compact group τ(K) is
trivial since H(k)+ is simple by [Tit64]. �

5.B. Boundary maps. We record two statements extracted from Margulis' work in the
form most convenient for us.

Proposition 5.9. Let J be a second countable locally compact group with a measure class
preserving action on a standard probability space B. Let Λ < J be a dense subgroup with
a Zariski-dense unbounded representation τ : Γ → H(k) to a connected absolutely almost
k-simple adjoint group H over an arbitrary local �eld k.

If there is a proper k-subgroup L < H and a Λ-equivariant non-essentially-constant mea-
surable map B → H(k)/L(k), then τ extends to a continuous homomorphism J → H(k).

Proof. The argument is given by A'Campo�Burger in the characteristic zero case at the end
of Section 7 in [AB94] (pp. 18�19). This reference considers homogeneous spaces for B but
this restriction is never used. The general statement is referred to in [Bur95] and details are
given in [Bon04]. �

Proposition 5.10. Let Γ be a countable group with a Zariski-dense unbounded representa-
tion Γ→ H(k) to a connected absolutely almost k-simple adjoint group H over an arbitrary
local �eld k. Let B be a standard probability space with a measure class preserving Γ-action
that is amenable in Zimmer's sense [Zim84] and such that the diagonal action on B2 is
ergodic.

Then there is a proper k-subgroup L < H and a Γ-equivariant non-essentially-constant
measurable map B → H(k)/L(k).

Proof. Again, this is proved in [AB94] for the characteristic zero case (and B homogeneous)
and the necessary adaptations to the general case are explained in [Bon04]. �

We shall need these speci�c statements below. They �rst appeared within the proof
of Margulis' commensurator superrigidity, which can adapted as follows using [Bur95] and
Lemma 8.3 in [CM08c], providing a �rst step towards Theorem 5.6.

Proposition 5.11. Let G = G1×G2 be a product of locally compact σ-compact groups and
Λ < G be an irreducible lattice. Assume that the projection of Λ to G1 is injective and that
G2 admits a compact open subgroup. Then the pair (Λ, G) is superrigid.

Proof. We claim that one can assume G second countable. As explained in [Mon06, Proposi-
tion 61], σ-compactness implies the existence of a compact normal subgroup K�G meeting
Λ trivially and such that G/K is second countable. Applying the statement to G/K to-
gether with the image of Λ therein yields the general statement since the projection of Λ to
G/K is an isomorphism; this proves the claim.

Let τ : Λ→ H(k) be as in the de�nition of superrigid pairs and let U < G2 be a compact
open subgroup. Set ΛU = Λ∩ (G1 ×U). By the injectivity assumption and Lemma 3.2, we
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can consider ΛU as a lattice in G1 which is commensurated by (the image of the projection
of) Λ. We distinguish two cases.

Assume �rst that τ(ΛU ) is unbounded in the locally compact group H(k). We may then
apply Margulis' commensurator superrigidity in its general form proposed by M. Burger [Bur95,
Theorem 2.A], see [Bon04] for details. This yields a continuous map J → H(k) factoring
through G1 and extending the given Λ-representation, as desired.

Assume now that τ(ΛU ) is bounded, which is equivalent to ΛU �xing a point in the
symmetric space or Bruhat�Tits building associated to H(k). Then Lemma 8.3 in [CM08c]
yields a continuous map J → H(k) factoring through G2. �

5.C. Radical superrigidity.

Theorem 5.12. Let G be a locally compact group, R � G its amenable radical, Γ < G a
�nitely generated lattice and F the closure of the image of Γ in G/R.

Then any Zariski-dense unbounded representation of Γ in any connected absolutely almost
simple adjoint k-group H over any local �eld k arises from a continuous representation of
F via the map Γ→ F .

(In particular, the pair (Γ/(Γ ∩R), F ) is superrigid.)

Proof. Notice that G is σ-compact since it contains a �nitely generated, hence countable,
lattice. (In fact G is even compactly generated by Lemma 2.12.) Set J = G/R. There
exists a standard probability J-space B on which the Γ-action is amenable and such that
the diagonal Γ-action on B2 is ergodic; it su�ces to choose B to be the Poisson boundary
of a symmetric random walk with full support on J . Indeed: (i) The J-action is amenable
as was shown by Zimmer [Zim78]; this implies that the G-action is amenable since R is an
amenable group and thus that the Γ-action is amenable since Γ is closed in G (see [Zim84,
5.3.5]). (ii) The diagonal action of any closed �nite covolume subgroup F < J on B2 is
ergodic in view of the ergodicity with coe�cients of J , and hence the same holds for dense
subgroups of F . For detailed background on this strengthening of ergodicity introduced
in [BM02] and on the Poisson boundary in general, we refer the reader to [Ka��03].

Let now k be a local �eld, H a connected absolutely almost simple k-group and Γ→ H(k)
a Zariski-dense unbounded representation. We can apply Proposition 5.10 and obtain a
proper subgroup L < H and a Γ-equivariant map B → H(k)/L(k). Writing Λ for the
image of Γ in J , we can therefore apply Proposition 5.9 with F instead of J and the
conclusion follows. �

Remark 5.13. An examination of this proof shows that one has also the following related
result. Let J be a second countable locally compact group and Λ ⊆ J a dense countable
subgroup whose action on J by left multiplication is amenable. Then the pair (Λ, J) is
superrigid. Indeed, one can again argue with Propositions 5.9 and 5.10 because it is easy
to check that in the present situation any amenable J-space is also amenable for Λ viewed
as a discrete group. Related ideas were used by R. Zimmer in [Zim87].

Corollary 5.14. Let G be a locally compact group and Γ < G a �nitely generated lattice.
If Γ admits a faithful Zariski-dense representation in an admissible semi-simple group

(over any �eld), then the amenable radical of G is compact.

Proof. Let R be the amenable radical of G, F be the closure of the image of Γ in G/R
and J < G the preimage of F in G. The content of Theorem 5.12 is that the pair (Γ, J) is
superrigid. Since in addition Γ is closed and of �nite covolume in J (see [Rag72, Lemma 1.6]),
we may apply Proposition 5.5 and deduce that the amenable radical of J is compact. The
conclusion follows since R < J . �
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5.D. Lattices with non-discrete commensurators. The following useful trick allows
to realise the commensurator of any lattice in a locally compact group G as a lattice in a
product G × D. A similar reasoning in the special case of automorphism groups of trees
may be found in [BG02, Theorem 6.6].

Lemma 5.15. Let Λ be a group and Γ < Λ a subgroup commensurated by Λ. Let D be
the completion of Λ with respect to the left or right uniform structure generated by the
Λ-conjugates of Γ. Then D is a totally disconnected locally compact group.

If furthermore G is a locally compact group containing Λ as a dense subgroup such that
Γ is discrete (resp. is a lattice) in G, then the diagonal embedding of Λ in G×D is discrete
(resp. is an irreducible lattice).

The above lemma is in some sense a converse to Lemma 3.2. In the special case where one
starts with a lattice satisfying a faithfulness condition, this relation becomes even stronger.

Lemma 5.16. Let G,H be locally compact groups and Λ < G ×H a lattice. Assume that
the projection of Λ to G is faithful and that both projections are dense. Let U < H be a
compact open subgroup, set Γ = Λ∩ (G×U) as in Lemma 3.2 and consider the group D as
in Lemma 5.15 (upon viewing Λ as a subgroup of G). De�ne the compact normal subgroup
K �H as the core K =

⋂
h∈H hUh

−1 of U in G.
Then the map Λ→ D induces an isomorphism of topological groups H/K ∼= D.

Proof of Lemma 5.15. One veri�es readily the condition given in [Bou60] (TG III, � 3, No 4,
Théorème 1) ensuring that the completion satis�es the axioms of a group topology. We
emphasise that it is part of the de�nition of the completion that D is Hausdor�; in other
words D is obtained by �rst completing Λ with respect to the group topology as de�ned
above, and then dividing out the normal subgroup consisting of those elements which are
not separated from the identity.

Let U denote the closure of the projection of Γ to D. By de�nition U is open. Notice
that it is compact since it is a quotient of the pro�nite completion of Γ by construction. In
particular D is locally compact.

By a slight abuse of notation, let us identify Γ and Λ with their images inD. We claim that
U ∩ Λ = Γ. Indeed, let {γn}n≥0 be a sequence of elements of Γ such that limn γn = λ ∈ Λ.
Since λΓλ−1 is a neighbourhood of the identity in Λ (with respect to the topology induced
from D), it follows that γnλ−1 ∈ λΓλ−1 for n large enough. Thus λ ∈ γnΓ = Γ.

Assume now that Γ is discrete and choose a neighbourhood V of the identity in G such
that Γ ∩ V = 1. In view of the preceding claim the product V × U is a neighbourhood of
the identity in G×D which meets Λ trivially, thereby showing that Λ is discrete.

Assume �nally that Γ is a lattice in G and let F be a fundamental domain. Then F ×U
is a fundamental domain for Λ in G×D, which has �nite volume since a Haar measure for
G ×D may be obtained by taking the product of respective Haar measures for G and D.
Thus Λ has �nite covolume in G×D. �

Proof of Lemma 5.16. In order to construct a continuous homomorphism π : H → D, it
su�ces to check that any net in Λ whose image in H converges to the identity also converges
to the identity in D; this follows from the de�nitions of Γ and D since the net is eventually
in any Λ-conjugate of U . Notice that π has dense image.

We claim that the kernel of π is
⋂
λ∈Λ λUλ

−1. Indeed, if on the one hand k ∈ ker(π)
is the limit of the images in H of a net {λi} in Λ, then for any λ we have eventually
λi ∈ λ−1Γλ ⊆ λ−1(G × U)λ so that indeed k ∈ λ−1Uλ since U is closed. Conversely, if
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k ∈
⋂
λ∈Λ λUλ

−1 is limit of images of {λi}, then, since U is open, for any λ the image of λi
is eventually in λUλ−1, hence in λΓλ−1 so that π(λi)→ 1. This proves the claim.

Now it follows that ker(π) is indeed the core K of the statement since U is compact.
The fact that π is onto and open follows from the existence of a compact open subgroup in
H. �

Theorem 5.17. Let G be a locally compact group and Γ < G be a lattice. Assume that G
possesses a �nitely generated dense subgroup Λ such that Γ < Λ < CommG(Γ).

If Λ admits a faithful Zariski-dense representation in an admissible semi-simple group
(over any �eld), then the amenable radical R of G is compact and the quasi-centre QZ (G)
is virtually contained in Γ · R. Furthermore, upon replacing G by a �nite index subgroup,
the quotient G/R splits as G+ ×QZ (G/R) where G+ is a semi-simple algebraic group and
the image of Γ in G+ is an arithmetic lattice.

Proof. Let J = G×D, where D is the totally disconnected locally compact group provided
by Lemma 5.15. As a totally disconnected group, it has numerous compact open subgroups
(for instance the closure of Γ). We shall view Λ as an irreducible lattice in J . The projection
of Λ to G is faithful by construction. By Proposition 5.11, the pair (Λ, J) is superrigid. This
allows us to apply Proposition 5.5. Since the amenable radical RG of G is contained in the
amenable radical RJ of J , it is compact. Furthermore, the quasi-centre of G is contained in
the quasi-centre of J and the centre-free group G/RG is a direct factor of J+×QZ (J/RJ);
the desired conclusions follow. �

5.E. Lattices in products of Lie and totally disconnected groups.

Theorem 5.18. Let Γ < G = S ×D be a �nitely generated irreducible lattice, where S is
a connected semi-simple Lie group with trivial centre and D is a totally disconnected locally
compact group. Let ΓD �D be the canonical discrete kernel of D.

Then D/ΓD is a pro�nite extension of a semi-simple algebraic group Q and the image of
Γ in S ×Q, which is isomorphic to Γ/ΓD, is an arithmetic lattice.

Corollary 5.19. In particular, D is locally pro�nite by analytic. �

A family of examples will be constructed in Section 6.C below, showing that the statement
cannot be simpli�ed even in a geometric setting (see Remark 6.7).

Proof of Theorem 5.18. By the very nature of the statement, we can factor out the canonical
discrete kernel. Therefore, we shall assume henceforth that the projection map Γ → S
is injective. We can also assume that S has no compact factors. Since S is connected
with trivial centre, there is a Zariski connected semi-simple adjoint R-group H without R-
anisotropic factors such that S = H(R). Notice that the injectivity of Γ → S is preserved
when passing to �nite index subgroups.

By Proposition 5.11, the pair (Γ, G) is superrigid. We can therefore apply Proposition 5.5.
In particular, D has compact amenable radical and therefore, in view of the statement of
Theorem 5.18, we can assume that this radical is trivial. Given the conclusion of Proposi-
tion 5.5, it only remains to show that the quasi-centre QZ (G) of G is trivial. We now know
that QZ (G) is virtually contained in Γ; since on the other hand S has trivial quasi-centre,
QZ (G) ⊆ 1×D. In other words, QZ (G) is contained in the discrete kernel ΓD, which has
been rendered trivial. This completes the proof. �

We have treated Theorem 5.18 as a port of call on the way to Theorem 5.1. In fact,
one can also describe lattices in products of groups with a simple algebraic factor over an
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arbitrary local �eld and in most cases without assuming �nite generation a priori. We
record the following statement, which will not be used below.

Theorem 5.20. Let k be any local �eld and G an admissible connected absolutely almost
simple adjoint k-group. Let H be any compactly generated locally compact group admitting
a compact open subgroup. Let Γ < G(k)×H be an irreducible lattice. In case k has positive
characteristic and the k-rank of G is one, we assume Γ cocompact.

Then H/ΓH is a compact extension of a semi-simple algebraic group Q and the image of
Γ in G(k)×Q is an arithmetic lattice.

There is no assumption whatsoever on the compactly generated locally compact group H
beyond admitting a compact open subgroup; recall that the latter is automatic ifH is totally
disconnected [Bou71, III � 4 No 6]. Notice that a posteriori it follows from arithmeticity
that Γ is �nitely generated; in the proof below, �nite generation will be established in two
steps.

Proof of Theorem 5.20. We factor out the canonical discrete kernel ΓH and assume hence-
forth that it is trivial. This does not a�ect the other assumptions and thus we choose some
compact open subgroup U < H. We write G = G(k) and consider ΓU = Γ ∩ (G × U)
as in Lemma 3.2. Since we factored out the canonical discrete kernel, we can consider ΓU
as a lattice in G commensurated by the dense subgroup Γ < G. Moreover, ΓU is �nitely
generated; indeed, either we have simultaneously rankk(G) = 1 and char(k) > 0, in which
case we assumed Γ cocompact, so that ΓU is cocompact in the compactly generated group
G(k) (again Lemma 3.2) and hence �nitely generated [Mar91, I.0.40]; or else, ΓU is known
to be �nitely generated by applying, as the case may be, either Kazhdan's property, or
the theory of fundamental domains, or the cocompactness of p-adic lattices � we refer to
Margulis, Sections (3.1) and (3.2) of Chapter IX in [Mar91].

We can now apply Margulis' arthmeticity [Mar91, 1.(1)] and deduce that G is de�ned
over a global �eld K and that ΓU is commensurable to G(K(S)) for some �nite set of places
S; in short ΓU is S-arithmetic. (The idea to obtain �rst this preliminary arithmeticity of
ΓU was suggested by M. Burger.) It follows that Γ is rational over the global �eld K,
see Theorem 3.b in [Bor66] (loc. cit. is formulated for the Lie group case; see [Wor07,
Lemma 7.3] in general).

Since the pair (Γ, G×H) is superrigid (for instance by Proposition 5.11), only the a priori
lack of �nite generation for Γ prevents us from applying Proposition 5.5. However, a good
part of the proof of that proposition is already secured here since Γ has been shown to be
rational over a global �eld. We now proceed to explain how to adapt the remaining part
of that proof to the current setting. We use those elements of notation introduced in the
proof of Proposition 5.5 that do not con�ict with present notation and review all uses of
�nite generation that are either explicit in the proof of Proposition 5.5 or implicit through
references to [Mon05].

The compact generation ofG×H is an assumption rather than a consequence of Lemma 2.12.
We also used �nite generation in order to pass to a �nite index subgroup of Γ contained

in G(Kv)+ for all valuations v ∈ Σ. We shall postpone this step, so that the whole argu-
mentation provides us with maps from G×H to a product Q of factors that lie in-between
G(Kv)+ and G(Kv). In particular all these factors are quasi-simple and we can still appeal
to Proposition 5.7 as before. Notice however that at the very end of the proof, once �nite
generation is granted, we can invoke the argument that G(Kv)/G(Kv)+ is virtually torsion
Abelian [BT73, 6.14] and thus reduce again to the case where Γ is contained in G(Kv)+.
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We now justify that the image of Γ in G×Q is discrete because previously this followed
from [Mon05, (3.13)] which relies on �nite generation. If Γ were not discrete, an application
of [BG07, Lemma 2.1] would provide a valuation v /∈ Σ with Γ unbounded in G(Kv), which
is absurd.

We are now in a situation where G×H maps to G×Q with cocompact �nite covolume
image and injectively on Γ; therefore the discreteness of the image of Γ implies that this
map is proper and hence H is a compact extension of Q. Pushing forward the measure on
(G×H)/Γ, we see that the image of Γ in G×Q is a lattice. Now Γ is �nitely generated (see
above references to [Mar91, IX]) and thus the proof is completed as in Proposition 5.5. The
discrete factor occurring in the conclusion of the latter proposition is trivial for the same
reason as in the proof of Theorem 5.18. �

5.F. Lattices in general products. We begin with the special case of totally disconnected
groups.

Proof of Theorem 5.6. An issue that we need to deal with is that the projection of Γ to G1

is a priori not faithful. In order to circumvent this di�culty, we proceed to a preliminary
construction.

Let ι : Γ→ Γ̂ be the canonical map to the pro�nite completion of Γ and denote its kernel
by Γ(f); in other words, Γ(f) is the �nite residual of Γ. Let Ĝ1 denote the locally compact
group which is de�ned as the closure of the image of Γ in G1 × Γ̂ under the product map
proj1×ι, where proj1 : G → G1 is the canonical projection. Since proj1(Γ) is dense in G1

and Γ̂ is compact, the canonical map Ĝ1 → G1 is surjective. In other words, the group Ĝ1

is a compact extension of G1.
We now de�ne G′1 = G2×· · ·×Gn and Ĝ = Ĝ1×G′1. Then Γ admits a diagonal embedding

into Ĝ through which the injection of Γ in G factors. We will henceforth identify Γ with its
image in Ĝ and consider Γ as an irreducible lattice of Ĝ.

We claim that the pair (Γ, Ĝ) is superrigid.

The argument is a variation on the proof of Proposition 5.11. Let τ : Γ → H(k) be
as in the de�nition of superrigid pairs. Since τ(Γ) is �nitely generated and linear, it is
residually �nite [Mal40]. This means that τ factors through Γ := Γ/Γ(f). Let U < G′1 be
a compact open subgroup, ΓU = Γ ∩ (Ĝ1 × U) and ΓU = ΓU/(ΓU ∩ Γ(f)). By construction

and Lemma 3.2, we can consider ΓU as a lattice in Ĝ1 commensurated by Γ. Arguing as
in Proposition 5.11, when τ(ΓU ) is unbounded one applies commensurator superrigidity
yielding a continuous map J → H(k) and extending the map Γ → H(k) and hence also
τ . When τ(ΓU ) is bounded, one applies Lemma 8.3 in [CM08c] instead and the resulting
extension factors through G′1. This proves the claim.

In order to conclude that the pair (Γ, G) is also superrigid, it now su�ces to apply
Lemma 5.8. �

Corollary 5.21. Theorem 5.1 holds in the particular case of totally disconnected groups.

Proof. Theorem 5.6 provides the hypothesis needed for Proposition 5.5. �

We now turn to the general case Γ < G = G1 × · · · × Gn of Theorem 5.1. The main
part of the remaining proof will consist of a careful analysis of how the lattice Γ might sit
in various subproducts hidden in the factors Gi or their �nite index subgroups once the
amenable radical has been trivialised. It will turn out that Γ is virtually a direct product
Γ′ × Γ′′, where Γ′ is an irreducible lattice in a product S′ × D′ with S′ a semi-simple Lie
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(virtual) subproduct of G and D′ a totally disconnected subgroup of G whose position will
be clari�ed; as for Γ′′, it is an irreducible lattice in a semi-simple Lie group S′′ that turns out
to satisfy the assumptions of Margulis' arithmeticity. Of course, any of the above factors
might well be trivial.

Completion of the proof of Theorem 5.1. The amenable radical is compact by Corollary 5.14
and hence we can assume that it is trivial. The group G (and hence also all �nite index
subgroups and factors) is compactly generated by Lemma 2.12. Upon regrouping the last
n−1 factors and in view of the de�nition of an irreducible lattice (see p. 18), we can assume
G = G1 × G2. We apply the solution to Hilbert's �fth problem (compare Theorem 5.6
in [CM08c]) and write Gi = Si × Di after replacing G and Γ with �nite index subgroups.
Here Si are connected semi-simple centre-free Lie groups without compact factors and Di

totally disconnected compactly generated with trivial amenable radical. Set S = S1 × S2

and D = D1 × D2. Thus Γ is a lattice in G = S × D. Notice that if S is trivial, then G
is totally disconnected and we are done by Theorem 5.6. We assume henceforth that S is
non-trivial. The main remaining obstacle is that the lattice Γ need not be irreducible with
respect to the product decomposition G = S ×D.

Observe that the closure projD(Γ) of the projection of Γ to D has trivial amenable radical.

Indeed projDi
(Γ) is dense in Γi for i = 1, 2, hence the projection projD(Γ) → Di has

dense image. The desired claim follows since G, and hence Di, has trivial amenable radical.

Let U < D be a compact open subgroup and set ΓU = Γ ∩ (S × U). By Lemma 3.2,
the projection projS(ΓU ) of ΓU to S is a lattice which is commensurated by projS(Γ). The
lattice projS(ΓU ) possesses a �nite index subgroup which admits a canonical splitting into
�nitely many irreducible groups Γ1 × · · · × Γr, compare Theorem 4.2. Furthermore each Γi

is an irreducible lattice in a semi-simple subgroup Si < S which is obtained by regrouping
some of the simple factors of S.

Since the projection of Γ to each G1 and G2, and hence to S1 and S2, is dense, it follows
that the projection of Γ to each simple factor of S is dense. We now consider the projection
of Γ to the various factors Si. In view of the preceding remark and the fact that Γi is
an irreducible lattice in Si, it follows that projSi(Γ) is either dense in Si or discrete and
contains Γi with �nite index, see [Mar91, IX.2.7]. Let now

S′ = 〈Si | projSi(Γ) is non-discrete〉 and S′′ = 〈Si | projSi(Γ) is discrete〉.

We claim that the projection of Γ to S′ is dense.

If this failed, then by [Mar91, IX.2.7] there would be a subproduct of some simple factors
of S′ on which the projection of Γ is a lattice. Since each Γi is irreducible, this subproduct
is a regrouping

Si1 × · · · × Sip

of some factors Si. Now the projection of Γ is a lattice in this subgroup, hence it contains
the product Γi1 × · · · × Γip with �nite index and thus projects discretely to each Sij . This
contradicts the de�nition of S′ and proves the claim.

Our next claim is that Γ has a �nite index subgroup which splits as Γ′ × Γ′′, where Γ′′ =
projS′′(Γ) and Γ′ is a lattice in S′ ×D.

In order to establish this, we de�ne

Γ′ = Ker(proj : Γ→ S′′) and Γ′′ =
⋂
γ∈Γ

γΓUγ−1.
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Notice that Γ′ and Γ′′ are both normal subgroups of Γ. Since projD(Γ′′) is a compact
subgroup of D normalised by projD(Γ), which has trivial amenable radical, it follows that
Γ′′ ⊂ S′×S′′×1. Therefore, the intersection Γ′∩Γ′′ is a normal subgroup of Γ contained in
S′ × 1× 1. In view of the preceding claim, we deduce that Γ′ ∩ Γ′′ = 1. Thus 〈Γ′ ∪ Γ′′〉� Γ
is isomorphic to Γ′ × Γ′′. Since Γ′U = Γ′ ∩ ΓU projects to a lattice in S′ which commutes
with the projection of Γ′′, we deduce moreover that projS′(Γ′′) = 1, or equivalently that
Γ′′ < 1× S′′ × 1.

Since the projection of Γ to S′′ has discrete image by de�nition, it follows from Propo-
sition 3.1 that Γ′ < S′ × 1 ×D projects onto a lattice in S′ ×D. On the other hand, the
very de�nition of S′′ implies projS′′(Γ) contains projS′′(ΓU ), and hence also projS′′(Γ′′), as
a �nite index subgroup. In particular, this shows that Γ′ × Γ′′ is a lattice in S′ × S′′ ×D.
Since it is contained in the lattice Γ, we �nally deduce that the index of Γ′ × Γ′′ in Γ is
�nite.

We observe that we have in particular obtained a lattice Γ′′ < S′′ with S′′ non-simple
and Γ′′ irreducible (unless both Γ′′ and S′′ are trivial), because the projection of Γ to any
simple Lie group factor is dense: indeed, any simple factor must be a factor of some Gi
and Γ projects densely on Gi. It follows from Margulis' arithmeticity theorem [Mar91,
Theorem 1.(1')] that Γ′′ is an arithmetic lattice in S′′.

Turning to the other lattice, we remark that Γ′ admits a faithful Zariski-dense represen-
tation in a semi-simple group, obtained by reducing the given representation of Γ. Further-
more, notice that the projection of Γ to S′ coincides (virtually) with the projection of Γ. In
particular it has dense image. Therefore, setting D′ = projD(Γ′), we may now view Γ′ as
an irreducible lattice in S′ ×D′. We may thus apply Theorem 5.18. Notice that the same
argument as before shows that D′ has trivial amenable radical.

We claim that the canonical discrete kernel Γ′D′ is in fact a direct factor of D′.

Indeed, since Γ is residually �nite by Malcev's theorem [Mal40], Proposition 4.8 ensures
that Γ′D′ centralises the discrete residual D′(∞). In particular D′(∞) ∩ Γ′D′ = 1 since D′

has trivial amenable radical. Furthermore, since D′/Γ′D′ is a semi-simple group, its discrete
residual has �nite index. In particular, upon replacing D′ by a �nite index subgroup we
have D′ ∼= D′(∞) × Γ′D′ as desired. It also follows that Γ′D′ itself admits a Zariski-dense
representation in a semi-simple group.

It remains to consider again the projection maps projDi
: D → Di. Restricting these maps

to D′ and using the fact that projDi
(D′) is dense, we obtain that Di

∼= projDi
(D′(∞))×D′i,

where D′i = projDi
(Γ′D′). The �nal conclusion follows by applying Corollary 5.21 to the

irreducible lattice Γ′D′ < D′1 ×D′2. �

Proof of Corollary 5.3. Since Γ is �nitely generated and irreducible, all Gi are compactly
generated (alternatively, apply Lemma 2.12).

We claim that all projections Γ→ Gi are injective. Indeed, if not, then (by induction on
n) there is j such that the canonical discrete kernel ΓGj is non-trivial. It is then cocompact,
which implies that the projection

Gj/ΓGj ×
∏
i 6=j

Gi −→
∏
i 6=j

Gi

is proper. This is contradicts the fact that the image of Γ in the left hand side above is
discrete whilst it is dense in the right hand side, proving the claim.
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Suppose given a linear representation of Γ in characteristic 6= 2, 3 whose image is not
virtually soluble. Arguing as in [Mon05], we can reduce to the case where we have a Zariski-
dense representation τ : Γ → H(K) in a non-trivial connected adjoint absolutely simple
group H over a �nitely generated �eld K. Since τ(Γ) is in�nite, we can choose a completion
k of K for which τ(Γ) is unbounded [BG07, 2.1].

Part of the argument in [Mon05] is devoted to proving that the representation is a pos-
teriori faithful. One can adapt the entire proof to the present setting, but we propose an
alternative line of reasoning using an amenability theorem from [BS06]. Suppose towards
a contradiction that the kernel Γ0 � Γ of τ is non-trivial. Since the projections are in-
jective, the closure Ni of the image of Γ0 in Gi is a non-trivial closed subgroup, which is
normal by irreducibility and hence is cocompact. Then Theorem 1.3 in [BS06] implies that
Γ/Γ0 is amenable, contradicting the fact that τ(Γ) is not virtually soluble in view of Tits'
alternative [Tit72].

At this point we can conclude by Theorem 5.1. �

6. Geometric arithmeticity

6.A. CAT(0) lattices and parabolic isometries. We now specialise the various arith-
meticity results of Section 5 to the case of lattices in CAT(0) spaces and combine them with
some of our geometric results.

Recall that a parabolic isometry is called neutral if it has zero translation length; the
following contains Theorem 1.7 from the Introduction.

Theorem 6.1. Let X be a proper CAT(0) space with cocompact isometry group and Γ <
G := Is(X) be a �nitely generated lattice. Assume that Γ is irreducible and that G contains
a neutral parabolic isometry. Then one of the following assertions holds:

(i) G is a non-compact simple Lie group of rank one with trivial centre.
(ii) There is a subgroup ΓD ⊆ Γ normalised by G, which is either �nite or in�nitely

generated and such that the quotient Γ/ΓD is an arithmetic lattice in a product of
semi-simple Lie and algebraic groups.

Proof. Let X ′ ⊆ X be the canonical subspace provided by Theorem 3.11; notice that X ′

still admits a neutral parabolic isometry. Theorem 1.6 in [CM08c] and its addendum now
apply to X ′. The space X ′ has no Euclidean factor: indeed, otherwise Theorem 3.8 would
imply X ′ = R, which has no parabolic isometries. The kernel of the Γ-action on X ′ is �nite
and we will include it in the subgroup ΓD below.

We distinguish two cases according as X ′ has one or more factors.
In the �rst case, Is(X ′) cannot be totally disconnected since otherwise Corollary 6.3

in [CM08c] point (i) rules out neutral parabolic isometries. Thus Is(X ′) is a non-compact
simple Lie group with trivial centre. If its real rank is one, we are in case (i); otherwise,
Γ is arithmetic by Margulis' arithmeticity theorem [Mar91, Theorem 1.(1')] and we are in
case (ii).

For the rest of the proof we treat the case of several factors for X ′; let Γ∗ and let HΓ∗

be as in Section 4.B. Note that HΓ∗ acts cocompactly on each irreducible factor of X ′.
Furthermore, each irreducible factor of HΓ∗ is non-discrete by Theorem 4.2. Therefore HΓ∗

is a product of the form S ×D (possibly with one trivial factor), where S is a semi-simple
Lie group with trivial centre and D is a compactly generated totally disconnected group
without discrete factor.

By Corollary 6.3 in [CM08c] point (i), the existence of a neutral parabolic isometry in
G implies that Is(X ′) is not totally disconnected. Lemma 4.7 ensures that the identity
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component of Is(X ′) is in fact contained in HΓ∗ . Therefore, upon passing to a �nite index
subgroup, the identity component of Is(X ′) coincides with S.

If D is trivial, then HΓ∗ = S is a connected semi-simple Lie group containing Γ as an
irreducible lattice. Since S is non-simple, it has higher rank and we may appeal again to
Margulis' arithmeticity theorem; thus we are done in this case.

Otherwise, D is non-trivial and we may then apply Theorem 5.18. It remains to check
that the normal subgroup ΓD < Γ, if non-trivial, is not �nitely generated. But we know that
ΓD is a discrete normal subgroup of D. By Theorem 2.4, the lattice Γ, and hence also HΓ∗ ,
acts minimally without �xed point at in�nity on each irreducible factor of X ′. Therefore,
Corollary 5.8 in [CM08c] ensures that D has no �nitely generated discrete normal subgroup,
as desired. �

Here is another variation, of a more geometric �avour; this time, it is not required that
there be a neutral parabolic isometry:

Theorem 6.2. Let X be a proper geodesically complete CAT(0) space with cocompact isom-
etry group and Γ < Is(X) be a �nitely generated lattice. Assume that Γ is irreducible and
residually �nite.

If G := Is(X) contains any parabolic isometry, then X is a product of symmetric spaces
and Bruhat�Tits buildings. In particular, Γ is an arithmetic lattice unless X is a real or
complex hyperbolic space.

Proof. We maintain the notation of the previous proof and follow the same arguments. We
do not know a priori whether there exists a neutral parabolic isometry. However, under the
present assumption that X is geodesically complete, Corollary 6.3 in [CM08c] point (iii)
shows that the existence of any parabolic isometry is enough to ensure that Is(X ′) is not
totally disconnected. Thus the conclusion of Theorem 6.1 holds. In case (i), Theorem 7.4
in [CM08c] point (iii) ensures that X is a rank one symmetric space and we are done. We
now assume that (ii) holds and de�ne D as in the proof of Theorem 6.1.

The canonical discrete kernel ΓD is trivial by Theorem 4.10. Since D has no non-trivial
compact normal subgroup by Corollary 5.8 in [CM08c], it follows from Theorem 5.18 that
D is a totally disconnected semi-simple algebraic group. Therefore, the desired result is a
consequence of Theorem 7.4 in [CM08c] point (iii). �

For the record, we propose a variant of Theorem 6.2:

Theorem 6.3. Let X be a proper geodesically complete CAT(0) space with cocompact isom-
etry group and Γ < Is(X) be a �nitely generated lattice. Assume that Γ is irreducible and
that every normal subgroup of Γ is �nitely generated.

If G := Is(X) contains any parabolic isometry, then X is a product of symmetric spaces
and Bruhat�Tits buildings of total rank ≥ 2. In particular, Γ is an arithmetic lattice.

Proof. As for Theorem 6.2, we can apply Theorem 6.1. We claim that case (i) is ruled
out under the current assumptions. Indeed, a lattice in a simple Lie group of rank one is
relatively hyperbolic (see [Far98] or [Osi06]) and as such has numerous in�nitely generated
normal subgroups (and is even SQ-universal, see [Gro87] or [Del96] for the hyperbolic case
and [AMO07] for the general relative case). In case (ii) the discrete kernel ΓD is trivial and
rank one is excluded as in case (i) if the group is Archimedean; if it is non-Archimedean,
then there are no non-uniform �nitely generated lattices (see [BL01]) and thus Γ is again
Gromov-hyperbolic which contradicts the assumption on normal, subgroups as before. �

We can now complete the proof of some results stated in the Introduction.
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Proof of Theorem 1.5. If Γ is residually �nite, then Theorem 6.2 yields the desired conclu-
sion; it therefore remains to consider the case where Γ is not residually �nite. We follow the
beginning of the proof of Theorem 6.2 until the invocation of Theorem 4.10, since the latter
no longer applies. However, we still know that there is a non-trivial Lie factor in Is(X ′) and
therefore we apply Theorem 5.18 in order to obtain the desired conclusion about the lattice
Γ. As for the symmetric space factor of the space, it is provided by Theorem 7.4 in [CM08c]
point (iii). �

Proof of Corollary 1.6. One implication is given by Theorem 1.5. For the converse, it su�ces
to recall that unipotent elements exist in all semi-simple Lie groups of positive real rank. �

6.B. Arithmeticity of linear CAT(0) lattices. We start by considering CAT(0) lattices
with a linear non-discrete linear commensurator:

Theorem 6.4. Let X be a proper geodesically complete CAT(0) space with cocompact isom-
etry group and Γ < Is(X) be a �nitely generated lattice. Assume that Is(X) possesses a
�nitely generated subgroup Λ containing Γ as a subgroup of in�nite index, and commensu-
rating Γ.

If X is irreducible and Λ possesses a faithful �nite-dimensional linear representation (in
characteristic 6= 2, 3), then X is a symmetric space or a Bruhat�Tits building; in particular
Γ is an arithmetic lattice.

Remark 6.5. Several examples of irreducible CAT(0) spaces X of dimension > 1 ad-
mitting a discrete cocompact group of isometries with a non-discrete commensurator in
Is(X) have been constructed by F. Haglund [Hag98] and A. Thomas [Tho06] (see also [Hag,
Théorème A] and [BT]). In all cases that space X is endowed with walls; in particular X
is the union of two proper closed convex subspaces. This implies in particular that X is
not a Euclidean building. Therefore, Theorem 6.4 has the following consequence: in the
aforementioned examples of Haglund and Thomas, either the commensurator of the lattice
is nonlinear, or it is the union of a tower of lattices. In fact, as communicated to us by
F. Haglund, for most of these lattices the commensurator contains elliptic elements of in-
�nite order; this implies right away that the commensurator is not an ascending union of
lattices and, hence, it is nonlinear. Note on the other hand that it is already known that
Is(X) is mostly nonlinear in these examples, since it contains closed subgroups isomorphic
to the full automorphism group of regular trees.

Proof of Theorem 6.4. Since X is irreducible and the case X = R satis�es the conclusions
of the theorem, we assume henceforth that X has no Euclidean factor.

The Is(X)-action on X is minimal by Lemma 3.13 in [CM08c] and has no �xed point at
in�nity by Corollary 3.12. In particular, we can apply Theorem 1.1 in [CM08c]: either Is(X)
is totally disconnected or it is simple Lie group with trivial centre and X is the associated
symmetric space. In the latter case, Margulis' arithmeticity theorem �nishes the proof. We
assume henceforth that Is(X) is totally disconnected.

Let G denote the closure of Λ in Is(X). Note that G acts minimally without �xed point
at in�nity, since it contains a subgroup, namely Γ, which possesses these properties by
Theorem 2.4. In particular G has trivial amenable radical by Theorem 1.10 in [CM08c] and
thus the same holds for the dense subgroup Λ < G. In particular any faithful representation
of Λ to an algebraic group yields a faithful representation of Λ to an adjoint semi-simple
algebraic group with Zariski-dense image, to which we can apply Theorem 5.17. As we saw,
the groupG has no non-trivial compact (in fact amenable) normal subgroup and furthermore
G is irreducible since X is so, see Theorem 1.10 in [CM08c]. The fact that the lattice Γ has
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in�nite index in Λ rules out the discrete case. Therefore G is a simple algebraic group and
Γ an arithmetic lattice.

It remains to deduce that X has the desired geometric shape. This will follow from
Theorem 7.4 in [CM08c]point (iii) provided we show that ∂X is �nite-dimensional and that
G has full limit set. The �rst fact holds since X is cocompact; the second is provided by
Corollary 2.10. �

Remark 6.5 illustrates that Theorem 6.4 fails dramatically if one assumes only that Γ is
linear. However, passing now to the case where X is reducible, the linearity of Γ is enough
to establish arithmeticity, independently of any assumption on commensurators, the result
announced in Theorem 1.8 in the Introduction.

Theorem 6.6. Let X be a proper geodesically complete CAT(0) space with cocompact isom-
etry group and Γ < Is(X) be a �nitely generated lattice. Assume that Γ is irreducible and
possesses some faithful linear representation (in characteristic 6= 2, 3).

If X is reducible, then Γ is an arithmetic lattice and X is a product of symmetric spaces
and Bruhat�Tits buildings.

Proof. In view of Theorem 3.8, we can assume that X has no Euclidean factor. The Is(X)-
action on X is minimal by Lemma 3.13 in [CM08c] and has no �xed point at in�nity by
Corollary 3.12. In particular, we can apply Theorem 1.1 in [CM08c] to obtain decomposi-
tions of Is(X) and X in which the factors of X corresponding to connected factors of Is(X)
are isometric to symmetric spaces. There is no loss of generality in assuming Γ∗ = Γ in the
notation of Section 4.B. Let now G be the hull of Γ. By Remark 4.5, the group Γ is an
irreducible lattice in G.

Since Is(X) acts minimally without �xed point at in�nity, it follows from Corollary 2.7
that Γ has trivial amenable radical. In particular any faithful representation of Γ to an
algebraic group yields a faithful representation of Γ to an adjoint semi-simple algebraic
group with Zariski-dense image, to which we can apply Theorem 5.1.

The group G has no non-trivial compact normal subgroup e.g. by minimality. Further-
more the discrete factor is trivial by Theorem 4.2. Therefore G is a simple algebraic group
and Γ an arithmetic lattice.

It remains to deduce that X has the desired geometric shape and this follows exactly as
in the proof of Theorem 6.4. �

6.C. A family of examples. We shall now construct a family of lattices Γ < G = S ×D
as in the statement of Theorem 5.18 (see also Theorem 6.2) with the following additional
properties:

(i) There is a proper CAT(0) space Y with D < Is(Y ) such that the D-action is
cocompact, minimal and without �xed point at in�nity. In particular, setting X =
XS × Y , where XS denotes the symmetric space associated to S, the Γ-action on
X is properly discontinuous (in fact free), cocompact, minimal, without �xed point
at in�nity.

(ii) The canonical discrete kernel ΓD�D is in�nite (in fact, it is a free group of countable
rank).

(iii) The pro�nite kernel of D/ΓD → Q is non-trivial.

Remark 6.7. Since D is minimal, it has no compact normal subgroup and thus we see that
the pro�nite extension appearing in Theorem 5.18 cannot be eliminated.

We begin with a general construction:
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Let g be (the geometric realisation of) a locally �nite graph (not reduced to a single point)
and let Q < Is(g) a closed subgroup whose action is vertex-transitive. In particular, Q is
a compactly generated totally disconnected locally compact group. We point out that any
compactly generated totally disconnected locally compact group can be realised as acting on
such a graph by considering Schreier graphs g, see [Mon01, � 11.3]; the kernel of this action
is compact and arbitrary small. On the other hand, if Q is a non-Archimedean semi-simple
group, one can also take very explicit graphs drawn on the Bruhat�Tits building of Q, e.g.
the 1-skeleton (this part is inspired by [BM00a, 1.8], see also [BMZ04]).

Let moreover C be an in�nite pro�nite group and choose a locally �nite rooted tree t with
a level-transitive C-action for which every in�nite ray has trivial stabiliser. For instance,
one can choose the coset tree associated to any nested sequence of open subgroups with
trivial intersection, see the proof of Théorème 15 in � 6 on p. 82 in [Ser77]. We de�ne a
locally �nite graph h with a C × Q-action as the 1-skeleton of the square complex t × g.
Let a = h̃ be the universal cover of h, Λ = π1(h) and de�ne the totally disconnected locally
compact group D by the corresponding extension

1 −→ Λ −→ D −→ C ×Q −→ 1.

Proposition 6.8. There exists a proper CAT(0) space Y such that D sits in Is(Y ) as a
closed subgroup whose action is cocompact, minimal and without �xed point at in�nity.

Proof. One veri�es readily the following:

Lemma 6.9. Let a be (the geometric realisation of) a locally �nite simplicial tree and
D < Is(a) any subgroup. Let x ∈ a be a vertex and let Y be the completion of the metric
space obtained by assigning to each edge of a the length 2−r, where r is the combinatorial
distance from this edge to the nearest point of the orbit D.x.

Then Y is a proper CAT(0) space with a cocompact continuous isometric D-action. More-
over, if the D-action on a was minimal or without �xed point at in�nity, then the corre-
sponding statement holds for the D-action on Y . �

Apply the lemma to the tree a = h̃ considered earlier. We claim that the D-action on
a is minimal. Clearly it su�ces to show that the Λ-action is minimal. Note that Λ acts
transitively on each �bre of p : h̃ → h. Thus it is enough to show that the convex hull of
a given �bre meets every other �bre. Consider two distinct vertices v, v′ ∈ h. The product
nature of h makes it clear that v and v′ are both contained in a common minimal loop
based at v. This loop lifts to a geodesic line in h̃ which meets the respective �bres of v and
v′ alternatively and periodically. In particular, this construction yields a geodesic segment
joining two points in the �bre above v and containing a point sitting above v′, whence the
claim.

Since Λ acts freely and minimally on the tree a which is not reduced to a line, it follows
that Λ �xes no end of a. Thus the lemma provides a proper CAT(0) space Y with a
cocompact minimal isometric D-action, without �xed point at in�nity. It remains to show
that D < Is(Y ) is closed. This holds because the totally disconnected groups Is(a) and
Is(Y ) are isomorphic; indeed, the canonical map a → Y induces a continuous surjective
homomorphism Is(a)→ Is(Y ), which is thus open. �

Remark 6.10. The above construction gives an example of a proper CAT(0) space with
a totally disconnected cocompact and minimal group of isometries such that not all point
stabilisers are open. Consider indeed the points added when completing. Their stabilisers
map to Q under D → (C × Q) and hence cannot be open. In other words, the action is
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not smooth in the terminology of [Cap09]. Notice however that the set of points with open
stabiliser is necessarily a dense convex invariant set.

We shall now specialise this general construction to yield our family of examples. Let K,
H, Σ,K(Σ) be as described after Theorem 5.1 on p. 25. We write Σf ,Σ∞ ⊆ Σ for the subsets
of �nite/in�nite places and assume that both are non-empty. Let S =

∏
v∈Σf

H(Kv)+ and

Q =
∏
v∈Σ∞

H(Kv)+. The group ∆ = H(K(Σ)) ∩ (S × Q) is an irreducible cocompact
lattice in S × Q. Let C be any pro�nite group with a dense inclusion ∆ → C. We now
embed ∆ diagonally in S × C × Q; clearly ∆ is a cocompact lattice. Let Γ < G = S ×D
be its pre-image. Then Γ is a cocompact lattice since it contains the discrete kernel of the
canonical map G→ S × C ×Q. It is clearly irreducible and therefore provides an example
that the structure of the description in the conclusion of Theorem 5.18 cannot be simpli�ed.
Furthermore, the normal subgroup appearing in Theorem 6.1(ii) is also unavoidable.

We end this section with a few supplementary remarks on the preceding construction:

(i) If the pro�nite group C has no discrete normal subgroup, then ΓD = π1(h) coincides
with the quasi-centre of D. This would be the case for example if C = H(Kv) and
H is almost K-simple of higher rank, where v is a non-Archimedean valuation such
that H is Kv-anisotropic. In particular, in that situation ΓD is the unique maximal
discrete normal subgroup of D and the quotient D/ΓD has a unique maximal
compact normal subgroup. Thus the group G admits a unique decomposition as in
Theorem 5.18 in this case.

(ii) We emphasise that, even though D/ΓD decomposes as a direct product C × Q
in the above construction, the group D admits no non-trivial direct product de-
composition, since it acts minimally without �xed point at in�nity on a tree (see
Theorem 1.10 in [CM08c]).

(iii) The fact that D/ΓD decomposes as a direct product C × Q is not a coincidence.
In fact, this is happens always provided that every cocompact lattice in S has the
Congruence Subgroup Property (CSP). Indeed, given a compact open subgroup U
of D/ΓD, the intersection ΓU of Γ ∩ (S × U) is an irreducible lattice in S × U
with trivial canonical discrete kernels. By (CSP), upon replacing ΓU by a �nite
index subgroup (which amounts to replace U by an open subgroup), the pro�nite

completion Γ̂U splits as the product over all primes p of the pro-p completions (̂ΓU )p,

which are just-in�nite. Thus the canonical surjective map Γ̂U → U shows that U
is a direct product. This implies that the maximal compact normal subgroup of
D/ΓD is a direct factor.

(iv) According to a conjecture of Serre's (footnote on page 489 in [Ser70]), if S has
higher rank then every irreducible lattice in S has (CSP). (See [Rag04] for a recent
survey on this conjecture.)

7. A few questions

We conclude by collecting some further questions that we have encountered while working
on this paper and its companion [CM08c].

It is well known that the Tits boundary of a proper CAT(0) space with cocompact
isometry group is necessarily �nite-dimensional (see [Kle99, Theorem C]). It is quite possible
that the same conclusion holds under a much weaker assumption.

Question 7.1. Let X be a proper CAT(0) space such that Is(X) has full limit set. Is the
boundary ∂X �nite-dimensional?
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A positive answer to this question would show in particular that the second set of as-
sumptions � denoted (b) � in Theorem 7.4 in [CM08c] is in fact redundant.

Let G be a simple Lie group acting continuously by isometries on a proper CAT(0) space
X. The Karpelevich�Mostow theorem ensures that there exists a convex orbit when X is a
symmetric space of non-compact type. This statement, however, cannot be generalised to
arbitrary X in view of Example 7.7 in [CM08c].

Question 7.2. Let G be a simple Lie group acting continuously by isometries on a proper
CAT(0) space X. If the action is cocompact, does there exist a convex orbit?

It is shown in Theorem 7.4 in [CM08c] point (iii) that if X is geodesically complete,
then the answer is positive. It is good to keep in mind Example 7.6 in [CM08c], which
shows that the natural analogue of this question for a simple algebraic group over a non-
Archimedean local �eld has a negative answer. More optimistically, one can ask for a convex
orbit whenever the simple Lie group acts on a complete (not necessarily proper) CAT(0)
space, but assuming the action non-evanescent (in the sense of [Mon06]). A positive answer
would imply superrigidity statements upon applying it to spaces of equivariant maps.

Many of our statements on CAT(0) lattices require the assumption of �nite generation.
One should of course wonder for each of them whether it remains valid without this assump-
tion; in previous work on CAT(0) groups, this problem does not arise since such groups are
automatically �nitely generated. One instance where this question is especially striking is
the following (see Corollary 3.12).

Question 7.3. Let X be a proper CAT(0) space which is minimal and cocompact. Assume
that Is(X) contains a lattice. Is it true that Is(X) has no �xed point at in�nity?

In a forthcoming article [CM08b], we shall establish a positive answer to this question by
investigating the rôle of unimodularity for the full isometry group.

We have seen in Corollary 7.12 in [CM08c] that if the isometry group of a proper CAT(0)
space X is non-discrete in a strong sense, then Is(X) comes close to being a direct product
of topologically simple groups.

Question 7.4. Retain the assumptions of Corollary 7.12 in [CM08c]. Is it true that soc(G∗)
is a product of simple groups? Is it cocompact in G, or at least does G have compact
Abelianisation?

Clearly Corollary 7.12 in [CM08c] reduces the question to the case where Is(X) is totally
disconnected. One can also ask if soc(G∗) is compactly generated (which is the case e.g if
it is cocompact in G). If so, we obtain additional information by applying Proposition 6.12
in [CM08c].

In the above situation one furthermore expects that the geometry of X is encoded in the
structure of Is(X). In precise terms, we propose the following.

Question 7.5. Retain the assumptions of Corollary 7.12 in [CM08c]. It it true that any
proper cocompact action of G on a proper CAT(0) space Y yields an equivariant isometry
∂X → ∂Y between the Tits boundaries? Or an equivariant homeomorphism between the
boundaries with respect to the cône topology?

Some non-discreteness assumption, as e.g. in Corollary 7.12 in [CM08c], is needed in
view of the examples of Croke-Kleiner [CK00].

The discussion around Corollary 5.3 (cf. Remark 5.4) suggests the following.
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Question 7.6. Let Γ < G = G1×· · ·×Gn be an irreducible �nitely generated lattice, where
each Gi is a locally compact group. Does every character Γ → R extend continuously to
G?

Y. Shalom [Sha00] proved that this is the case when Γ is cocompact and in some other
situations.

References

[AB94] Norbert A'Campo and Marc Burger, Réseaux arithmétiques et commensurateur d'après G. A.
Margulis, Invent. Math. 116 (1994), no. 1-3, 1�25.

[AB98] Scot Adams and Werner Ballmann, Amenable isometry groups of Hadamard spaces, Math. Ann.
312 (1998), no. 1, 183�195.

[AMO07] Goulnara Arzhantseva, Ashot Minasyan, and Denis Osin, The SQ-universality and residual prop-
erties of relatively hyperbolic groups, J. Algebra 315 (2007), no. 1, 165�177.

[Bal95] Werner Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, vol. 25, Birkhäuser
Verlag, Basel, 1995, With an appendix by Misha Brin.

[BG02] Nadia Benakli and Yair Glasner, Automorphism groups of trees acting locally with a�ne permu-
tations, Geom. Dedicata 89 (2002), 1�24.

[BG07] Emmanuel Breuillard and Tsachik Gelander, A topological Tits alternative, Ann. of Math. (2) 166
(2007), no. 2, 427�474.

[BGM04] Janez Bernik, Robert Guralnick, and Mitja Mastnak, Reduction theorems for groups of matrices,
Linear Algebra Appl. 383 (2004), 119�126.

[BH99] Martin R. Bridson and André Hae�iger, Metric spaces of non-positive curvature, Grundlehren der
Mathematischen Wissenschaften 319, Springer, Berlin, 1999.

[BL01] Hyman Bass and Alexander Lubotzky, Tree lattices, Progress in Mathematics, vol. 176, Birkhäuser
Boston Inc., Boston, MA, 2001, With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg
and J. Tits.

[BM00a] Marc Burger and Shahar Mozes, Groups acting on trees: from local to global structure, Inst.
Hautes Études Sci. Publ. Math. (2000), no. 92, 113�150 (2001).

[BM00b] , Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. (2000), no. 92, 151�194
(2001).

[BM02] Marc Burger and Nicolas Monod, Continuous bounded cohomology and applications to rigidity
theory, Geom. Funct. Anal. 12 (2002), no. 2, 219�280.

[BMZ04] Marc Burger, Shahar Mozes, and Robert J. Zimmer, Linear representations and arithmeticity for
lattices in products of trees, FIM preprint, 2004.

[Bon04] Patrick Bonvin, Strong boundaries and commensurator super-rigidity, Geom. Funct. Anal. 14
(2004), no. 4, 843�848, Appendix to Topological simplicity, commensurator super-rigidity and
non-linearities of Kac-Moody groups by B. Rémy.

[Bor60] Armand Borel, Density properties for certain subgroups of semi-simple groups without compact
components, Ann. of Math. (2) 72 (1960), 179�188.

[Bor66] , Density and maximality of arithmetic subgroups, J. Reine Angew. Math. 224 (1966),
78�89.

[Bou60] Nicolas Bourbaki, Éléments de mathématique. Première partie. (Fascicule III.) Livre III; Topolo-
gie générale. Chap. 3: Groupes topologiques. Chap. 4: Nombres réels, Troisième édition revue et
augmentée, Actualités Sci. Indust., No. 1143. Hermann, Paris, 1960.

[Bou71] , Éléments de mathématique. Topologie générale. Chapitres 1 à 4, Hermann, Paris, 1971.
[BS87] Marc Burger and Viktor Schroeder, Amenable groups and stabilizers of measures on the boundary

of a Hadamard manifold, Math. Ann. 276 (1987), no. 3, 505�514.
[BS06] Uri Bader and Yehuda Shalom, Factor and normal subgroup theorems for lattices in products of

groups, Invent. Math. 163 (2006), no. 2, 415�454.
[BT] Angela Barnhill and Anne Thomas, Density of commensurators for right-angled buildings,

Preprint.
[BT73] Armand Borel and Jacques Tits, Homomorphismes �abstraits� de groupes algébriques simples,

Ann. of Math. (2) 97 (1973), 499�571.
[Bur95] Marc Burger, Rigidity properties of group actions on CAT(0)-spaces, Proceedings of the Interna-

tional Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (Basel), Birkhäuser, 1995, pp. 761�769.



ISOMETRY GROUPS OF NON-POSITIVELY CURVED SPACES: DISCRETE SUBGROUPS 45

[Cap09] Pierre-Emmanuel Caprace, Amenable groups and Hadamard spaces with a totally disconnected
isometry group, Comment. Math. Helv. 84 (2009), 437�455.

[CFP96] James W. Cannon, William J. Floyd, and Walter R. Parry, Introductory notes on Richard Thomp-
son's groups, Enseign. Math. (2) 42 (1996), no. 3-4, 215�256.

[CK00] Christopher B. Croke and Bruce Kleiner, Spaces with nonpositive curvature and their ideal bound-
aries, Topology 39 (2000), no. 3, 549�556.

[CM08a] Pierre-Emmanuel Caprace and Nicolas Monod, Decomposing locally compact groups into simple
pieces, Preprint, arXiv:math/0811.4101, 2008.

[CM08b] , Fixed points and amenability in non-positive curvature, In preparation, 2008.
[CM08c] , Isometry groups of non-positively curved spaces: Structure theory, Preprint, 2008.
[CM08d] , A lattice in more than two Kac�Moody groups is arithmetic, Preprint,

arXiv:math/0812.1383, 2008.
[CM08e] , Some properties of non-positively curved lattices, C. R. Math. Acad. Sci. Paris 346 (2008),

no. 15-16, 857�862.
[Del96] Thomas Delzant, Sous-groupes distingués et quotients des groupes hyperboliques., Duke Math. J.

83 (1996), no. 3, 661�682.
[Ebe80] Patrick Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math. (2) 111 (1980), no. 3,

435�476.
[Ebe82] , Isometry groups of simply connected manifolds of nonpositive curvature II, Acta Math.

149 (1982), no. 1-2, 41�69.
[Ebe83] , Euclidean de Rham factor of a lattice of nonpositive curvature, J. Di�erential Geom. 18

(1983), no. 2, 209�220.
[Ebe96] , Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University

of Chicago Press, Chicago, IL, 1996.
[Ede64] Michael Edelstein, On non-expansive mappings of Banach spaces, Proc. Cambridge Philos. Soc.

60 (1964), 439�447.
[Eym72] Pierre Eymard, Moyennes invariantes et représentations unitaires, Springer-Verlag, Berlin, 1972,

Lecture Notes in Mathematics, Vol. 300.
[Far98] Benson Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810�840.
[Far08] Daniel Farley, The action of Thompson's group on a CAT(0) boundary, Groups Geom. Dyn. 2

(2008), no. 2, 185�222.
[FHT08] Benson Farb, G. Christopher Hruska, and Anne Thomas, Problems on automorphism groups of

nonpositively curved polyhedral complexes and their lattices, To appear in Festschrift in honor of
Robert Zimmer's 60th Birthday, 2008.

[FW06] Benson Farb and Shmuel Weinberger, Isometries, rigidity and universal covers, Annals of Math.
(to appear), 2006.

[GM07] Yair Glasner and Nicolas Monod, Amenable actions, free products and a �xed point property, Bull.
Lond. Math. Soc. 39 (2007), no. 1, 138�150.

[Gro87] Mikhaïl Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8,
Springer, New York, 1987, pp. 75�263.

[Gro93] , Asymptotic invariants of in�nite groups, Geometric group theory, Vol. 2 (Sussex, 1991)
(Cambridge), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, 1993,
pp. 1�295.

[GW71] Detlef Gromoll and Joseph A. Wolf, Some relations between the metric structure and the algebraic
structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc.
77 (1971), 545�552.

[Hag] Frédéric Haglund, Finite index subgroups of graph products, Geom. Dedicata (to appear).
[Hag98] , Réseaux de Coxeter-Davis et commensurateurs, Ann. Inst. Fourier (Grenoble) 48 (1998),

no. 3, 649�666.
[Hei74] Ernst Heintze, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23�34.
[HM79] Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Funct.

Anal. 32 (1979), no. 1, 72�96.
[J�06] Tadeusz Januszkiewicz and Jacek �wi�atkowski, Simplicial nonpositive curvature, Publ. Math. Inst.

Hautes Études Sci. (2006), no. 104, 1�85.
[Ka��03] Vadim A. Ka��manovich, Double ergodicity of the Poisson boundary and applications to bounded

cohomology, Geom. Funct. Anal. 13 (2003), no. 4, 852�861.



46 PIERRE-EMMANUEL CAPRACE AND NICOLAS MONOD

[Kar53] Fridrikh I. Karpelevi£, Surfaces of transitivity of a semisimple subgroup of the group of motions
of a symmetric space, Doklady Akad. Nauk SSSR (N.S.) 93 (1953), 401�404.

[KL06] Bruce Kleiner and Bernhard Leeb, Rigidity of invariant convex sets in symmetric spaces, Invent.
Math. 163 (2006), no. 3, 657�676.

[Kle99] Bruce Kleiner, The local structure of length spaces with curvature bounded above, Math. Z. 231
(1999), no. 3, 409�456.

[Lan00] Erasmus Landvogt, Some functorial properties of the Bruhat-Tits building, J. Reine Angew. Math.
518 (2000), 213�241.

[LY72] H. Blaine Lawson, Jr. and Shing-Tung Yau, Compact manifolds of nonpositive curvature, J. Dif-
ferential Geometry 7 (1972), 211�228.

[Mal40] Anatoly I. Mal'cev, On isomorphic matrix representations of in�nite groups, Rec. Math. [Mat.
Sbornik] N.S. 8 (50) (1940), 405�422.

[Mar91] Gregory A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-
Verlag, Berlin, 1991.

[MMS04] Igor Mineyev, Nicolas Monod, and Yehuda Shalom, Ideal bicombings for hyperbolic groups and
applications, Topology 43 (2004), no. 6, 1319�1344.

[Mon01] Nicolas Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Math-
ematics, vol. 1758, Springer-Verlag, Berlin, 2001.

[Mon05] , Arithmeticity vs. nonlinearity for irreducible lattices, Geom. Dedicata 112 (2005), 225�
237.

[Mon06] , Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc. 19
(2006), no. 4, 781�814.

[Mos55] George D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math.
Soc. 1955 (1955), no. 14, 31�54.

[Mou88] Gabor Moussong, Hyperbolic coxeter groups, Ph.D. thesis, Ohio State University, 1988.
[MP03] Nicolas Monod and Sorin Popa, On co-amenability for groups and von Neumann algebras, C. R.

Math. Acad. Sci. Soc. R. Can. 25 (2003), no. 3, 82�87.
[Osi06] Denis Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic

problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100.
[Pin98] Richard Pink, Compact subgroups of linear algebraic groups, J. Algebra 206 (1998), no. 2, 438�504.
[Pra77] Gopal Prasad, Strong approximation for semi-simple groups over function �elds, Ann. of Math.

(2) 105 (1977), no. 3, 553�572.
[Pra82] , Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull.

Soc. Math. France 110 (1982), no. 2, 197�202.
[Rag72] Madabusi Santanam Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York,

1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68.
[Rag04] , The congruence subgroup problem, Proc. Indian Acad. Sci. Math. Sci. 114 (2004), no. 4,

299�308.
[Rém99] Bertrand Rémy, Construction de réseaux en théorie de Kac�Moody, C. R. Acad. Sc. Paris 329

(1999), 475�478.
[Sel60] Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces., Contrib. Function

Theory, Int. Colloqu. Bombay, Jan. 1960, 147-164 (1960)., 1960.
[Ser70] Jean-Pierre Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970),

489�527.
[Ser77] , Arbres, amalgames, SL2, Société Mathématique de France, Paris, 1977, Avec un sommaire

anglais, Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46.
[Sha00] Yehuda Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math. 141 (2000),

no. 1, 1�54.
[Sim96] Michel Simonnet,Measures and probabilities, Universitext, Springer-Verlag, New York, 1996, With

a foreword by Charles-Michel Marle.
[Tak02] Masamichi Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences,

vol. 124, Springer-Verlag, Berlin, 2002, Reprint of the �rst (1979) edition, Operator Algebras and
Non-commutative Geometry, 5.

[Tho06] Anne Thomas, Lattices acting on right-angled buildings, Algebr. Geom. Topol. 6 (2006), 1215�1238
(electronic).



ISOMETRY GROUPS OF NON-POSITIVELY CURVED SPACES: DISCRETE SUBGROUPS 47

[Thu97] William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical
Series, vol. 35, Princeton University Press, Princeton, NJ, 1997, Edited by Silvio Levy.

[Tit64] Jacques Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313�329.
[Tit72] , Free subgroups in linear groups, J. Algebra 20 (1972), 250�270.
[Tit87] , Uniqueness and presentation of Kac-Moody groups over �elds, J. Algebra 105 (1987),

no. 2, 542�573.
[Vin94] Èrnest B. Vinberg (ed.), Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences,

vol. 41, Springer-Verlag, Berlin, 1994, Structure of Lie groups and Lie algebras, A translation of
Current problems in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR,
Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990, Translation by V. Minachin.

[Weh73] Bertram A. F. Wehrfritz, In�nite linear groups. An account of the group-theoretic properties of
in�nite groups of matrices, Springer-Verlag, New York, 1973, Ergebnisse der Matematik und ihrer
Grenzgebiete, Band 76.

[Wil71] John S. Wilson, Groups with every proper quotient �nite., Proc. Camb. Philos. Soc. 69 (1971),
373�391.

[Wis04] Daniel T. Wise, Cubulating small cancellation groups, Geom. Funct. Anal. 14 (2004), no. 1, 150�
214.

[Wor07] Kevin Wortman, Quasi-isometric rigidity of higher rank S-arithmetic lattices., Geom. Topol. 11
(2007), 995�1048.

[Yau82] Shing Tung Yau, Problem section, Seminar on Di�erential Geometry, Ann. of Math. Stud., vol.
102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 669�706.

[Zim78] Robert J. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of
random walks, J. Functional Analysis 27 (1978), no. 3, 350�372.

[Zim84] , Ergodic theory and semisimple groups, Birkhäuser Verlag, Basel, 1984.
[Zim87] , Amenable actions and dense subgroups of Lie groups, J. Funct. Anal. 72 (1987), no. 1,

58�64.

UCL, 1348 Louvain-la-Neuve, Belgium

E-mail address: pe.caprace@uclouvain.be

EPFL, 1015 Lausanne, Switzerland

E-mail address: nicolas.monod@epfl.ch


	1. Introduction
	2. An analogue of Borel density
	2.A. Fixed points at infinity
	2.B. Geometric density for subgroups of finite covolume
	2.C. The limit set of subgroups of finite covolume

	3. CAT(0) lattices, I: the Euclidean factor
	3.A. Preliminaries on lattices
	3.B. Variations on Auslander's theorem
	3.C. Lattices, the Euclidean factor and fixed points at infinity

	4. CAT(0) lattices, II: products
	4.A. Irreducible lattices in CAT(0) spaces
	4.B. The hull of a lattice
	4.C. On the canonical discrete kernel
	4.D. Residually finite lattices
	4.E. Strong rigidity for product spaces

	5. Arithmeticity of abstract lattices
	5.A. Superrigid pairs
	5.B. Boundary maps
	5.C. Radical superrigidity
	5.D. Lattices with non-discrete commensurators
	5.E. Lattices in products of Lie and totally disconnected groups
	5.F. Lattices in general products

	6. Geometric arithmeticity
	6.A. CAT(0) lattices and parabolic isometries
	6.B. Arithmeticity of linear CAT(0) lattices
	6.C. A family of examples

	7. A few questions
	References

